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1. INTRODUCTION

1.1. Preface. These are notes for the intensive course I gave at To-
hoku university in the fall of 2024. T do not claim that anything in these
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notes is original: I just tried to explain the definition of Drinfeld mod-
ular forms and Hecke operators acting on them [Gosl, Gekl, Gek2],
the description of Drinfeld cuspforms using harmonic cocycles on the
Bruhat-Tits tree [Teil], the necessary background on the tree [Ser] and
on rigid analytic residue theorems [FvdP1]. In most parts I followed
the normalization and exposition of [Boc|, and I copied some arguments
of [Pel] on the analysis around cusps, though any errors are my fault.
It should be used at the reader’s own risk.

1.2. Convention. We follow the convention in [Béc].

(1) We consider V,, = K2 as the set of row vectors on which
GLy(Ky) acts tautologically from the right and we define a
left action o of GLy(K) on V,, by

_ dr —cy —br +a
volo) = el = (S ), e G

(2) Put P (K,) = (Vp\{(0,0)})/KZ and similarly for P!(C,). The
class of (z,y) is denoted by (x : y). We consider C,, as a subset
of P1(C) by

Cp — PYCy), zw (1:—2).
Thus we define o = (0 : 1).
This is compatible with the Mobius transformation, namely

@) = (1250 - i (4 ) = et

(3) For any vertex v = 7y o vg in the Bruhat-Tits tree T, we define
U(v) =~ oU(vy).

(4) For any edge e = (v — w), we define in Definition 11.4 the
orientation of the annulus V'(e) as follows: we have closed discs
U(e) and U(—e) in P}(C,) satisfying

V(e) = P(Cx)\(U(e) L U(—e)).

Then the orientation of V'(e) is given by an isomorphism

w:V(e) > {zeCyx|1<|z] <q}

such that w*(z) extends to a rigid analytic function on U(e)
having zero at the center of U(e).
In general there are two consistent choices of orientations of
V (e) for all e, but this is the unique choice that makes Res(F') =
¢ holds true.
(5) The residue map is defined as

Res(f)(e)( XY™ *7") = Res.((—2)" 27" f(2)dz).
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(6) The measure associated with a harmonic cocycle is defined from
the formula

f Pdpe(z) = (—1)ie(e) (X" 27V
U(e)
- fU( )<_I)n_2_idﬂc<x> = c(e)(X'Y" ).

1.3. Notation. Let p be a rational prime, ¢ > 1 be a p-power integer
and F, be the field of g elements. Let ¢ be an indeterminate. Put A =
F,[t] and K = F,(¢t). We denote by A, the set of monic polynomials
in A.

Let m, = 1/t and Ko = F, ((1/t)) = Fy((7)). Let vy @ Koy —
Z U {+o} be the normalized additive valuation on K. It is defined
by v (0) = 400 and

vp(a) =r ifa= Zciﬁoo, ¢ # 0.
=T

Let C4 be the m-adic completion of an algebraic closure of K. The
unique extension of v, to C, is also denoted by vy. For any z € Cg,
put

(z=0).
For any field L equipped with an additive valuation v and any ratio-
nal number s > 0, we put

—veo(2)
12| = { g (z #0),

m7® ={xeL|v(z) = s}

For any affinoid algebra R with its supremum seminorm | — |sp,
define

R ={feR||flap <1}, R ={feR||flw <1}, R=R/R".

2. BRUHAT-TITS TREE

2.1. The projective line and the action of GL;. Let B be an A-
algebra. Let V(B) = B? be the set of row vectors over B. The group
GLy(B) acts naturally from the right via

(x,y)y = (ax + cy,bxr + dy), = (CCL Z) e GLy(B).
Define its left action on V(B) by

_ 1
"~ ad — be

vo(z,y) = (z,y)y" (dx — cy, —bz + ay).
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Let L be a field. The multiplicative group L* acts on V(L) by
c(z,y) = (cx,cy), (v,y)eV(L), cel”

Write PY(L) = (V(L)\{(0,0)})/L* and the class of (x,y) by (z : y).
Then the action o induces an action of GLy(L) on P!(L) which is de-
noted also by o.

We consider L as a subset of P!(L) by the map
(2.1) L L—>PYL), 2z~ (1:-2).
Then we have P}(L) = L u {0} with oo = (0: 1).

Lemma 2.1. The subset (L) < P'(L) is open. Moreover, if we con-

sider o(L) as a subspace of P*(L), then the map ¢ induces a homeomor-
phism v : L — «(L).

Proof. Let f: L*\{(0,0)} — P!(L) be the natural surjection. Since

(L) ={(z:y) ePUL) [2#0}, fH (L)) ={(z,y) € L*\{(0,0)} | = # O},
we see that «(L) is open in P'(L).
Since the map ¢ factors as
L — L\{(0,0)} - PY(L), =z~ f((1.~2)),

the map ¢ : L — «(L) is continuous. Its inverse map is given by

Jrul) =L, (z:y)— —ya

To show that j is continuous, it is enough to prove that for any open

subset V < L, the subset j~'(V) < P!(L) is open. Since the set
fU7W) ={(e,y) e L x L | —yz™' e V}

is open in L* x L, it is open in L*\{(0,0)} and thus j7*(V) is open in

PY(L). O

Via the map ¢ we identify the action o of GLy(L) on P*(L) with the
Mobius transformation

az+b a b
Vo) =g 7= ( d) e GLy(L).

We give P1(Ky) = (V(K»)\{(0,0)})/K the quotient topology in-
duced from the natural topology on V(K,) = KZ. Since the natural
map

(O x {1}) U ({1} x Ocp) — P (K)

is surjective, it follows that P'(Ky) is compact.
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2.2. Definition of the tree. Put V, = V(K). An O-lattice of V,,
is a finitely generated O, -submodule of V,, which generates V,, over
K. We say two Oy-lattices M and M’ are equivalent if M’ = c¢M
for some ¢ € K, and the equivalence class of M is denoted by [M].
We say two equivalence classes A and A’ are adjacent if there exists
representatives M € A and M’ € A’ such that M 2 M’ and the Oy-
module M /M’ is of length one.

Let M and M’ be two Oy-lattices in V. By the elementary divisor
theorem, we can find a basis fi, fo of the Oy -module M and a,b € Z
such that 7% fi, 7t f, form a basis of M’. The integers a,b do not
depend on the choice of a basis of M, and the integer |a — b| depends
only on the equivalence classes A, A’ of M, M'. We write

X(M, M"Yy =a+b, d(AAN)=]a—D

and call the latter the distance of A and A’. Then A, A’ are adjacent if
and only if d(A,A") = 1.

For any representative M of A, there exists a unique representa-
tive M’ of A’ satisfying M = M’ and the O,-module M /M’ is mono-
genic. Then d(A, A’) agrees with the length {(M /M’) of the Oy-module
M/M'.

Define a graph T as follows.

e The set of vertices Ty is the set of equivalence classes of lattices
in V.

e The set of edges T; is the set of {A, A’} consisting of adjacent
equivalence classes A, A'.

Lemma 2.2 ([Ser], Ch. I, §1.1, Theorem 1). Let n be a positive inte-
ger. If Ao, Ay,..., A, is a sequence of adjacent vertices without back-
tracking (that is, A;, Ni11 are adjacent and A; # N;yo for any i), then
d(Ao, An) =n.

Proof. We proceed by induction on n. For n = 1 it is trivial. Suppose
n = 2. We can find representatives M; of A; satisfying M; = M,
and [(M;/M;,1) = 1. Then I(My/M,) = n. By the definition of the
distance, it is enough to show M, & 7w, M,.

By the induction hypothesis we have d(Ag, A,,—1) = n—1and M,,_; &
ToMo. By l(M,,—o/M,,—1) = 1, we have mox My, o © M,y and {(M,,_1 /7o M, —2) =
1. Thus the image of m, M, _» in the F -vector space M,,_1 /7o My,—1 is
a one-dimensional subspace.

On the other hand, the image of M, in M, /7 M,_; is also one-
dimensional. Indeed, if the image is zero, then we have M,, € 7, M, _1 <
M,,—1, which contradicts I(M,,—1/M,) = 1. If the image has dimension
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two, then we have M, = M, + m7,M,_; and Nakayama’s lemma
implies M,,_; = M,,, which is also a contradiction.
If these one-dimensional subspaces agree, then we have

Mn + 7T00Mn—1 = 7TOOMn—2 + 7roOMn—1 = 7TOOMn—2-

Since I(M,,_1/M,,) = 1, we have 7, M, < M, and this shows M,, =
TooM,,_5. Thus it gives the backtracking A,, = A, _s, which is a con-
tradiction. Hence the images of M,, and 7, M,_o generate the Q-
module M,,_y /7o M,_1, namely M,y = M, + m,M,_o. This forces
M, & 7M. O

Using Lemma 2.2, we can show that 7 is a connected (g + 1)-regular
tree and the distance d(A, A’) of equivalence classes A, A’ agrees with
the distance of the corresponding vertices in the tree 7T .

We call T the Bruhat-Tits tree (for PGLy(K)). To any edge
{v,w} € Ty, we attach two oriented edges (v — w) and (w — v).
The set of oriented edges is denoted by 7,°. We refer to an element of
To u T a simplex of 7.

For any oriented edge e = (v — w), we denote its reverse edge
(w — v) by —e, its origin v by o(e) and its terminus w by t(e). Then
the action o of the group GLy(K) on Vo, induces its action on g, and
also on 7° by vo (v — w) = (yov — yow). Then the actions on Ty
and 7,° are both transitive.

Lemma 2.3. Let A € Ty be any vertex of T represented by an Oy-
lattice M of Vi,. Let v € GLy(Ky). Then we have

X(M,yo M) =vye(det()), d(A,voA)=uvy(det(y)) mod 2.

Proof. Choose a basis e, ey of the O,-module M. Then there exist
integers a,b € Z such that 7%e;, m%e, form a basis of the O.,,-module
v o M. Since vy (det(y)) = a + b, we obtain the first equality and

d(A,yoA) =l]a—bl=a+b=uvy(det(y)) mod 2.

Definition 2.4. For any i € Z, put f; = (1,0), fo = (0,1) and

—i
T 0

w=10:00.1 v= (T ) ouw- 0 00.£]
Then v; and v; 1 are adjacent. Put
e; = (Vi = Vit1).

We call v; and e; the i-th standard vertex and edge.
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We can show
StabGLQ(Kw)(vo) = GL2<OOO)KO>87

2.2
(2.2) StabGL2(Km)(€o) = Ko(m0) K5,

where we put

Ko(mss) = {(‘i Z) e GLy(Ox)

Thus we obtain bijections [GN, (1.1)]

ce 7100(900} )

GL2(KOO)/GL2<OOO>KO>(<) g 767 v > 7Y © Vo,

2.3
(23) CLy(K ) Ko(ma)KE — TP, s oo,

Example 2.5. There are exactly ¢ + 1 vertices which are adjacent to
vp. Any such vertex is represented by the lattice which is the inverse
image of a line in F,f; @ F,fs. The inverse image of the line I, f,
represents vy. The other lines are F,(fi + Af2) with some A € F, and
thus the rest of the vertices are

T —A

[000<f1 + >‘f2) 6_>(/)OO7TOOJC2] = ( 0 1 ) © Vo ()\ € IFq)

Example 2.6. Put

J= (? _01> € SLy(F,).

Then J o vy = vg. On the other hand, we have

T O 0 1 Tw 0) 0 7 y
(0 1) (—1 0) (0 1) - <—7roo 0 ) € GL2(Ox) Koy,

which implies Jov; =v_; and Joey = —e_1.

Example 2.7. There are exactly ¢ + 1 edges whose origin is vy. One
of these edges is eg. By Example 2.5, we have

Ty —A (1 =)
0o 1)°%=\og 1 )°"

and the other ¢ edges are

((1) —1/\) o(—e1) = <(1) —1)\> Joey = (}\ (1)> oo (AcF,).
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2.3. Limit points. A half-line is a sequence {v;};>¢ of adjacent vertices
of T without backtracking. We say two half-lines {v;}i>0, {v}}i=0 are
equivalent if they are equal except finitely many vertices. An end of T
is an equivalence class of half-lines. The set of ends of T is denoted by
End(7), on which GLy(K) acts naturally via the action o.

Lemma 2.8 ([FvdP1], (V. 1.12)). Let {M}s=0 be a family of Oy-
lattices in Vy, such that
for any s. Then ﬂs>0 M, is a direct summand of the Oy -module M.

Proof. By the elementary divisor theorem, we can find a basis f7, f5 of
M satisfying
Mo = O f{ @ O f3, M= Oxmi [T @ O fs-

Moreover, we may assume
s+1 s s £s
(2.5) 2 _f2 e7noofl‘
Indeed, since f5t'e M, € M, we can write
s+1 _ __s s s
2 _7Tooxf1+yf27 mayeooo-

If y € My, then we have f5*! € 7, M, which contradicts (2.4). Thus
y € OF and replacing f5™' with y~!f5! shows the claim.
Since My < Vi, is closed, the sequence {fs5}s>0 converges to some

element f, € (1,2, Ms. Moreover (2.5) yields f3™' — f5 € mi M, and

s — f5 € m3, M, for any integer [ > 0. By taking the limit we obtain

(2.6) fo— f3emi My for any s.

In particular, Nakayama’s lemma implies that for any s > 0, the ele-
ments f7, fo form a basis of M, satistying

(2.7) M = Oyl fi @ O fo
We claim (1,5 Ms = Oy fo. Indeed, for any f € (),., M, we write
f=moxfi +ysfs, xs,ys € Ogp.

Then (2.6) gives f — ysfo € w5, My and thus ys — ys11 € 75, O for any
s > 0. This implies that {ys}s>0 converges to some y € O, satisfying
f = yfs, which concludes the proof of the lemma. O

Definition 2.9. Let H be a half-line in 7. Write H = {[M;]}s>0 with
lattices M, satisfying (2.4). By Lemma 2.8, the K-subspace

Wy, = Ky ®o, (ﬂ Ms> < Ve
=20
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is one-dimensional and depends only on the end b represented by H.
Now we define

lim(b) = lim(H) € P'(K)

as the element corresponding to the line W,. Then the map lim is
GLy(Ky)-equivariant.

Lemma 2.10 ([FvdP1], (V. 1.12)). The map lim defines a GLy(K)-
equivariant bijection

lim : End(7) — P'(Ky).

Proof. For any element z € P'(K,,) let W, be the corresponding line
in V.. Let My be a lattice in V,,. Then Ny = W, n M, is a di-
rect summand of M, of rank one. Put My = Ny + 75, My. Then
d([Mo], [Ms]) = s and {[M;]}s=0 defines a half-line. Let b, be the end
it defines.

Now lim(b,) is the element of P'(K,) that K, ®e, Ny defines,
namely z. Conversely, for any b € End(7) and z = lim(b), take a fam-
ily of lattices {M,}s>o satisfying (2.4) and defining a half-line which
represents b. Then z € P'(Ky) is defined by Ky ®o,, [yo Ms and
(2.7) yields b, = b. This concludes the proof. O

Definition 2.11. We say an end b € End(7) is rational if lim(b) €
P!(K). The subset of End(7) consisting of rational ends is denoted by
EndK(’T)

Example 2.12. Consider the half-line H = {v;};>0, where the standard
vertex v; is represented by the lattice M; = Oyum fi ® Oxfo. Then
Ni=o Mi = Oy fo and thus lim(H) = (0: 1) = oo.

=0 "7

3. ARITHMETIC SUBGROUPS AND CUSPS

3.1. Arithmetic subgroups.

Definition 3.1. We say an A-submodule Y of K? is an A-lattice of
K? if it is a finite projective A-module satisfying K ®, Y = K2

Let Y be any A-lattice of K2 and let n € A be any nonzero ideal.
Put

(YY) ={ye GLy(K) | yoY =Y}, T(Y,n)={yel(Y)]|~y=id mod nY}.
For Y = A? we have I'(Y) = GLy(A) and T'(Y,n) = I'(n), where

T'(n) = {7 e GLy(A) ‘ N = (é ?) mod n}.



NOTES ON DRINFELD MODULAR FORMS 11

Definition 3.2. We say a subgroup I' of GLy(K) is an arithmetic
subgroup (with respect to V') if there exist an A-lattice Y of K? and a
nonzero ideal n € A satisfying

FY,n)cT' cI'(Y).

Since I'(Y, n) is of finite index in I'(Y"), we see that the indices [['(Y) : ']
and [I": I'(Y,n)] are both finite. Moreover, we have

det(I') = F.

An arithmetic subgroup of GLy(K) with respect to Y = A? is called
a congruence subgroup.

Note that for any arithmetic subgroup I' and any v € GLy(K), the
conjugate v Iy is also an arithmetic subgroup associated with the A-
lattice y~1 o Y. Moreover, since A = F,[t] in our setting, any A-lattice
Y in K? is free as an A-module and thus any arithmetic subgroup is
conjugate to a congruence subgroup.

Lemma 3.3. Let Y, Y’ be any A-lattices of K? and let n be any nonzero
ideal of A. Then there exists a mnonzero ideal W' < n of A satisfying
LY w)cT'(Y,n).

Proof. Replacing Y’ by a scalar multiple, we may assume Y < Y’
Take any nonzero ideal m < n satisfying mY’ < Y. Then we have
m?Y’ € mY < nY. For any v € I'(Y/,m?) and y € Y < Y’, this yields
yoy—yem?Y’ < nY. In particular, this shows that Y is stable under
v and 7!, Hence we obtain v € I'(Y, n). O

Lemma 3.4 ([Boc], Proposition 3.14). Let I" be any subgroup of GLy(K).
Then T' is an arithmetic subgroup if and only if there exists a nonzero
ideal n of A such that I' contains I'(n) as a subgroup of finite indez.

Proof. Suppose that I' is an arithmetic subgroup. Take Y and n as in
Definition 3.2. By Lemma 3.3, for some nonzero ideals n’,n” of A we
have
Ly,nycT'(n)<cT(Y,n) = T.

Since [I'(Y,n) : T'(Y,n”)] is finite, the subgroup I'(n’) is also of finite
index in I'.

Conversely, suppose that I'(n) is a subgroup of I' of finite index for
some nonzero ideal n of A. Define

Y:ﬂ’yoAQ.

~yell

Since yo0 A% = A? for any v € I'(n), the A-module Y is the intersection
of subsets v o A? for finitely many v € I'. Thus Y is an A-lattice in K2
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satisfying I' € I'(Y'). By Lemma 3.3, we can find a nonzero ideal n’ of A
satisfying I'(Y,n') € I'(n) € I". Thus I is an arithmetic subgroup. [

Note that for any e € 7,°, we have
(3.1) Stabr(e) = Stabr(o(e)) n Stabr(t(e)) = Stabr(—e).

Moreover, for any g € GLy(K) and any vertex (resp. edge) s of T, we
have

(3.2) Stabyr,-1(g o s) = gStabr(s)g~".

Lemma 3.5. Let G be a subgroup of GLy(Ky) satisfying |det(g)| = 1
for any g € G. Let v € Ty and let M be an O -lattice representing v.
Then we have Stabg(v) = Stabg(M).

Proof. Since we have Stabg(v) 2 Stabg (M), it is enough to show the
reverse containment. Take any g € Stabg(v), so that go M = xM for
some z € K. Then Lemma 2.3 yields

20p0() = X(M,xM) = x(M, g o M) = v(g) = 0.
Hence z € O and go M = M. Il

Lemma 3.6. Let I be any arithmetic subgroup of GLy(K). For any
simplex s of T, the stabilizer subgroup Stabr(s) is finite.

Proof. By (3.1), we may assume s = v € Ty. Let M be an O-lattice in
K?, representing the vertex v. Since det(I') < F,, Lemma 3.5 implies
Stabr(v) = Stabp(M).

We claim that Stabp(M) is a bounded subset of GLy(K ). Indeed,
take any v € GLy(K) satisfying yo M = 0% and any m € Z satisfying
Ty, mmy ™ € My(Oy). Then, for any g € Stabp(M), we have g =
v~ thry with some h € GLy(Oy) and thus 72mg € My(0Oy). This yields
the claim.

Since A = F[t], we see that I is conjugate to a subgroup of GLy(A).
By the claim, Stabr(v) is in bijection with a bounded subset of GLy(A),
which is finite. This concludes the proof. O

Definition 3.7 ([Ser|, p. 131). An arithmetic subgroup I' of GLy(K)
is said to be p/-torsion free if any element of I' of finite order has a
p-power order. Note that if I" is p’-torsion free, then so is its conjugate.

3.2. Cusps of arithmetic subgroups and the quotient graph.
Definition 3.8. For any arithmetic subgroup I'; let

Cusps(I') := I'"P(K).
We refer to any element of Cusps(I') a cusp of T'.
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Lemma 3.9. Let v € GLy(Ky) be any element satisfying det(y) € F*.
Then the action of v on T is without inversion. Namely, for any e € T
we have yoe # —e.

Proof. Write e = (v — w). If yoe = —e, then we have yov = w
and d(v,yov) = 1. By Lemma 2.3, this contradicts the assumption
det(y) e F. O

Let I' be an arithmetic subgroup of GLy(K). Then we have det(I") <
Fx. By Lemma 3.9, the action of I on 7 is without inversion and thus
we can define the quotient graph I'\7. Indeed, we define the set of
vertices of I'\7 as

(T\T)o :=T\To
and the set of oriented edges as
(I\T)7 := IT\Ty".
For any [e] € I'\7;” which is represented by e € T,?, we define
o(le]) :=[oe)], t([e]) := [t(e)], —[e] := [—e].

Then the assumption of being without inversion implies —[e] # [e] for
any e € T, and thus I'\'7T is a graph.

Put G = GLy(A), which is an arithmetic subgroup of GLy(K). De-
fine its subgroups

Go = GLy(F,), G, = {(3 Z)

We describe the quotient graph G\T, following [Ser, Ch. II, §1.6].

a,deFy, deg(b) < n} (n>1).

Lemma 3.10. (1) For any n = 0 and m > 0, the vertices v, and
Unim are not equivalent modulo G.
(2) Stabg(v,) = G,.
(3) Gy acts transitively on the set {e € T | o(e) = vy}.
(4) For any n = 1, the group G, fizes e, and acts transitively on
the set {e € TP | o(e) = v }\{en}-

—1
Proof. Suppose that v = <CCL Z) € G satisfies v o v, = v,y With

some integer m > 0. Put M, = O,7l f1 ® O f2 representing the
vertex v,. Then we have v o M, = M,,,, 7" with some h € Z. By
Lemma 2.3, we have

0 = vp(det(y)) = x(M,,y o M,) =m —2h
and m = 2h.
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The condition v o M,, < Mn+2h7rgoh implies
7" (a,b), (c,d) e Ot (1,0) ® O, (0,1)
and thus we obtain
deg(a) < —h, deg(b) <n+h, deg(c)<-n—h, deg(d) <h.

For m > 0, we have h > 0 and a = ¢ = 0, which is a contradiction.
This shows (1).

For m = 0, we have h = 0 and this implies a,d € F,. Moreover, if
n = 0 then ¢,d € F,. For n > 1, we have ¢ = 0 and deg(b) < n. Thus
(2) follows.

Since the set of O -submodules of M of index ¢ is naturally identi-
fied with P*(F,), the group Gy acts transitively on it and (3) follows.

For (4), let n > 1. Since G,, < G,41, the assertion (2) implies that
the group G, fixes e,, = (v, — v,41). On the other hand, the action of
G, on M,/ M, factors through the homomorphism

a b a b,
Gin = GLy(Fy), <0 d)H(o d)

where b, is the coefficient in degree n of b. The image of this homo-
morphism is the subgroup B(FF,) of upper triangular matrices, and the
natural right action on P*(F,) of B(F,) fixes (0 : 1) and is transitive
on PYHF,)\{(0: 1)}. Thus we obtain (4). O

Lemma 3.10 also yields

Stabg(e0) = Go N G1 = B(F,) := (]Fél gg) ’
q

Stabg(e,) = G, " Gpe1 =G, (n=1).

(3.3)

Lemma 3.11. Let T be the path consisting of vertices {v,}n=0 and
edges {£en}ns=0. Then the quotient graph GLy(A)\T is represented by
T.

Proof. Let m : T — T' = GLy(A)\T be the natural projection. By
Lemma 3.10 (1), the map 7 defines an isomorphism of 7" onto a sub-
graph 7" of T’. Since 7 and 7' are connected, it is enough to show
that any edge € € T’ with o(é) € 7" is an edge of T".

Take any e € T satisfying m(e) = é. By assumption we have o(e) =
v ov with some v € T and v € G. Replacing e by v~ ! o e, we may
assume o(e) = v, with some integer n > 0. If n = 0, then Lemma 3.10
(3) implies that e is equivalent to ¢y modulo Gy and thus e € T". If
n > 1, then Lemma 3.10 (4) implies that e is equivalent to e,, or —e,,_y
and thus e € 7. This concludes the proof. 0
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Let I' be a congruence subgroup of G = GLy(A). Consider the
natural projection

7 : I\T - G\T,
which is a morphism of graphs. For any integer n > 0, let
Xo(M\T) ={ve (M\T)o | 7(v) = Gu,},
Y, (I\T) = {ee (T\T)] | w(e) = Ge,}.

An element of these sets is called a vertex or an edge of type n [GN,
§1.4]. By Lemma 3.10 and (3.3), we have bijections

NG/G, — X, (T\T), TgG, — Tgou,,

3.4
B GG Guir) = YaT\T), Tg(G s Ga) Ty o,

and thus they are finite sets. Since G, " G,,;1 = G, for any n > 1,
(3.4) yields a bijection

(3.5) on : Yo(\T) = X, (I\T), Tgoe, > Tgou,.

Lemma 3.12. Let I" be a congruence subgroup of G = GLy(A) con-
taining I'(n) with some n € A\F,. Let d = deg(n) = 1. Then the
natural map

(3.6) tn : Yo (NT) = X,ia(NT), Tgoe, = Tgouv,yy

is also a bijection for any n = d. In particular, the subgraph of T\T
consisting of the vertices and the edges of type = d is the union of
| Xa(D\T)| injective infinite paths.

Proof. Since I'\G = (I'(n)\I')\(I'(n)\G), the right action of G,, on I'\G

factors through the natural homomorphism
Pn i Gn > T(M\G > F SLy(A/(n)) & GLy(A/(n)).

Since p,(Gr) = Pni1(Gryq) for any n = d, the map t,, is a bijection for
any n = d. Combining it with (3.5), we see that the vertices and edges
of type = d form | X4(I'\T)| injective infinite paths. This concludes the
proof. O

Lemma 3.13. Let I' be an arithmetic subgroup of GLy(K). Then the
quotient graph T\T is the union of a finite graph and finitely many
injective infinite paths.

Proof. Replacing I' with its conjugate by an element of GLy(K), we
may assume that ' is a congruence subgroup. Then the lemma follows
from Lemma 3.12. 0
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Definition 3.14. Let I be a congruence subgroup of GLy(A) contain-
ing I'(n), where n € A and deg(n) = d > 0. We denote by Cusps(I'\T)
the finite set of injective infinite paths given in Lemma 3.12, so that
we have a natural identification

lim X, (I\7) — Cusps(I'\T), Tgow,+— {I'govn}n=q,

n=d
where the direct limit is taken with respect to the bijection
b o0, Xu(T\T) = Xt (V).

Lemma 3.15. Let I" be a congruence subgroup of GLs(A) containing
I'(n) with some n € A\F, of degree d > 0. Then there exists a natural
bijection

Cusps(I\7) - D\Endk(T), {Tgov,}tn=a— T[{g°vn}]nzo-

In particular, composing the map lim of Lemma 2.10 we obtain a nat-
ural bijection

Cusps(I'\7T) — I"\Endg (7)) ~ Cusps(T').

é= (6 4

Since the group GLy(A) acts transitively on P!(K), Lemma 2.10 and
Example 2.12 yield a bijection

GLy(A)/Gop — Endg(T), 9Go — [{g0Vn}nz0]-
Since the proof of Lemma 3.12 shows that the natural map
\GLy(A)/G,, — I'\GLy(A) /G

is bijective for any n > d, taking the direct limit yields the lemma. [J

Proof. Let
a,deFy, beA}.

3.3. Euler—Poincaré characteristic. Let ' be an arithmetic sub-
group of GLy(K). For any v € Ty and e € T°, by Lemma 3.6 we have
positive integers

|Stabp(v)|, [Stabr(e)].

By (3.1) and (3.2), these numbers satisfy
|Stabr(v)| = [Stabr(yowv)|, |Stabr(e)| = |Stabp(+y o e

for any v € I'. Thus we may consider the positive series

1 1
Xo(I') = 2 Stabr(0)] xi(l) = Z [Stabr(e)]

vel'\To eel\T?/{£1}
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For G = GLy(A), Lemma 3.11, Lemma 3.10 (2) and (3.3) yield
1 1
Xo(G) = + Z

(=Dl —q = (g—1)2gm"

XI(G>:;+Z !

alg—1)* A (g— 12"

which are both convergent.

(3.7)

Lemma 3.16. The series xo(I') and x1(I") are convergent.

Proof. By (3.2), replacing I" with its conjugate we may assume that I
is a congruence subgroup. Put G = GLy(A). Then we have natural
surjections

MNTo — G\To, T\T?/{£1} — G\T?/{£1}

whose fibers have at most [G : I'] elements. Moreover, for any simplex
s of T, we have Stabr(s) € Stabg(s) and
[Stabg(s) : Stabr(s)] = [Stabg(s) : I' n Stabg(s)]
= [['Stabg(s) : Stabg(s)] < [G : T,
which yields
1 _ [Stabg(s) : Stabr(s)] _ [G:T]

|Stabr(s)| |Stabg(s)| ~ |Stabg(s)|

Hence we obtain

Xi(D) < [G: TPxi(G)
and (3.7) implies the convergence for I'. O

Definition 3.17. We define
1 1
W= Y e Y
e |Stabr(v)| Iy |Stabr(e)]

and call it the Euler—Poincaré characteristic of I'. By Lemma 3.16, this
series is absolutely convergent and

X(I) = xo(I) — xa ().
By (3.7), we have
1
(¢—1)2(g+1)

Lemma 3.18. Let I be any arithmetic subgroup of GLy(K) which is
contained in I, so that I is of finite index in I". Then we have

Xi(1') = [I': Txa(1) (0= 0,1), x(I") = [T T']x(I).

(3.8) X(GLy(A)) = —
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Proof. 1t is enough to show the equality for y;. Replacing I' by its
conjugate, we may assume I' & GLy(A). By Lemma 3.4, for some
nonzero ideal n € A we have I := I'(n) < I". Then I'” are normal
both in I' and I". If the lemma holds for I'V < I and I'” < ", then we
have
[T T () = xa () = [ (1),

from which we obtain y;(I') = [[' : I']x;(I"). Hence we may assume
I"<T.

Put Xy = 7o and X; = T°/{£1}. Since I' acts on 7 without in-
version, for any e € 7 and its image [e] in X, we have Stabr(e) =
Stabr([e]).

Let A; be a complete set of representatives of '\ X;. For any 7,6 € I'
and s € X;, since IV < T" we have

[Mys=T"0s < TD'ysnl'ds# @ < §e~I'Stabr(s).

This yields a decomposition

X; = HFSZ H H [Mys,

seA; seN; veT'/T'Stabr(s)
where the subgroup I"Stabr(s) is also of finite index in I'. Thus we

have
=YY [stabeiys)|”

seA; vel'/TStabr (s)

» [Stabr(s)|
— 3 [Stabr(s)[ Y | TStabr(7s)]

seN; ~el'/TVStabr (s

Since (3.2) yields [Stabr (ys)| = [Stabr(s)], thls equals

B [Stabr(s)|
Z |Stabr(s)| 2 |Stabr/(8)|

- =) |Sta1o:€F;|F Slt[lb“ I"Stabr(s)][Stabr(s) : Stabr(s)]
:seﬁ Stabr(s)| 7! [" : I'Stabr(s)][Stabr(s) : I' A Stabp(s)]
- ZA] [Stabr(s)|~'[I" : I"Stabr(s)][T"Stabr (s) : I']
- [EFA '] EZAJ Stabr(s)| ™' = [T : I']xu(D).

This concludes the proof. O
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4. Discs AND THE BRUHAT-TITS TREE

4.1. Distinguished closed discs. Let L be a field equipped with a
complete non-Archimedean valuation | — | : L — Ryy. We denote by
Oy, the ring of integers of L and by mj the maximal ideal of Oy

Definition 4.1. For any a € L and p € |L*|, consider the following
subsets of P*(L).

Dy(a,p) ={z e L||r—a|l <p}, Di(a,p) ={reL]||r—a| > pluion}.
We refer to them closed discs in P*(L). Moreover, we put
Dila,p) ={zeL|lz—a|l <p}, Dila,p)={xelL]||r—al> p}ofn}.
We call them open discs in P*(L). We also put

Crla,p) ={ze L||r—al=p}

We refer to a as a center of there discs and the circle. When L = K,
we often drop the subscript L as D(a, p) or D'(a, p).
We also write

Dy, p) i= Di(0,p™),  Di(o0,p) i= D (0,p7).

P
Lemma 4.2. Let a,a’ € L and p,p' € |L*| satisfying p >

r
(1) Dp(a,p) n Dp(d',p') # & if and only if |a — a'| < p. In this
case, we have Dr(d’,p") < Dr(a,p).
(2) Di(a,p) n Dy(d,p') # & if and only if |a — d'| < p. In this
case, we have D (d',p") < D5 (a,p).

Proof. 1f |a—d'| < p, then o’ € Dy(a,p) nDy(d, p'). Moreover, for any
ze Dp(d,p), we have

|2 —al = [z —d + (a' — a)| <max{y,p} = p

and thus Dy (d’, p') € Dp(a, p). Conversely, if |a —a’| > p, then for any
ze Dp(d,p') we have

z—a|=]z—d +(d—a)|=]d —a|>p

and thus Dy (a,p) n Dr(d,p") # &, which shows (1). The assertion
(2) follows similarly. O

Lemma 4.3. Let a,a’ € L and p,p' € |L*|. If Dr(a,p) < Dp(d,p') or
D' (a,p) 2 Dy (d,p"), Then p < p'. In particular,

DL(a7 p) - DL(alup,) or DIL<aap) = D/L(al7pl> = pP= p/'
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Proof. Suppose Dy (a,p) € Dr(d',p) and p' < p. Take any = € L

satisfying |z — a] = p. Then |a — d'| < p' < p and x € Dr(a,p) <

Dp(d’,p'). Hence we have
przle—d=lzr—at(a—d)=lz—al=p,

which is a contradiction.

Suppose D’ (a,p) 2 D} (d',p') and p' < p. Taking the complement
we have Dj(a,p) < Dj(d',p'). Take any x € L satisfying | — a| = p/.
Then |a — d'| < p/ and z € D} (a,p) < Dj(d’,p'). Hence we have

prele—d=lr—a+(a—d)|=lr—al =7,
which is a contradiction. O
Definition 4.4. Let L € {K,,C.}. For any a € K, and p € |K}| =
q”, we refer to the closed discs in P1(L).
Di(a,p) ={x e L||z—a| < p}, Dila,p) ={xeL]||z—al = p}u{x}
as distinguished closed discs in P!(L).
The set of distinguished closed discs in P*(L) is denoted by DCD(L).

Lemma 4.5. For any a,d’ € Ko, and p, p' € ¢%, we have

D(a,p) = D(d’,p') < De,(a,p) < De,(d',p),
D'(a,p) = D'(d,p") <= Dg,(a,p) = De, (d,0).
Proof. Suppose D(a p) < D(d,p'). Then Lemma 4.3 yields p < p'.
Since |[a—a'| < p/, by Lemma 4.2 (1) we obtain D¢ (a,p) S D¢, (', p').
Suppose D'(a,p) < D'(d',p’) so that D°(a,p) = D°(d/,p’). Then
Lemma 4.3 yields p = p'. Since |a — d/| < p, by Lemma 4.2 (2) we
obtain D¢ (a,p) 2 D¢ (a',p') and D¢ _(a,p) € D¢, (d',p').
The other implications follow from
D(a,p) = Dcw(a,p) N ]P)l(KOO)’ D'(a,p) = D(/Coo(avp> N Pl(KOO)'
O

By Lemma 4.5, we have a well-defined bijection
DCD(KOO) - DCD<COO)7 D(CL, p) - D(Coo (CL,p), D/<a7 P) = Défgo (aa p)'

For any D € DCD(K,), we call its image in DCD(C,,) the extension
of D over Cg.

Lemma 4.6. Let Dy, Dy € DCD(Ky). Let Dyc, and Dy, be their
extensions over C,,. Then

DinDy=C < Dic,nDic,=.
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Proof. Suppose D1 n Dy = . Since o € D'(a, p), replacing D; and
D, if necessary we may assume

Dy = D(ar,p), Da€{D(ay, p2), D'(az,p2)}

with some a;,as € K., and py, ps € ¢~
Suppose Dy = D(ag, p2). Then we have |a; — az| > max{pi, po}. If
z e DL(Coo N DZ,(CO(N then

’al - a2| = ‘Z —ay — (Z - a2)‘ < maX{pl:p?};
which is a contradiction.
Suppose Dy = D'(ay, p2). Then ay ¢ D'(ag, p2) and |a; — as| < po. If
z€ Dyc, N Dyc,, then
pr=|z—al|=lz—as+ (a2 —a1)| = |z —as| = po

This forces py < p1. Take any w,, € K, satisfying |w,,| = p2. Then
2 = ay + w,, € Ky satisfies

|z—a1]=p2<p1, ’Z_a2’:’a1_a2+wp2’:p2

and thus z € Dy n Dy, which is a contradiction. Hence we obtain

Dic, nDac, = .
Since Dy n Dy € Dy ¢, N Dy, , the converse is clear. O

Consider the action of GLy(L) on P!(L) via the Mobius transforma-
tion as before.

a b

Lemma 4.7. Let p € |[L*| and v = (c d) € GLy(L). Let z € L.

Then we have

Cr (1), o) ez +d| > plel),

CL 2, = d—bc
Y(Cr(z:p)) o (2 l‘“cp ) ez +dl < plel).

ARV .
Proof. Write v~ = (CCL, b> =1 ( d b>.

d ad—bc \ —¢ g

First suppose |cz+d| > p|c|. Then we have cz+d # 0 and v(z) # .
For any x € L with |z — z| = p, it follows that

|(cx +d) — (cz + d)| = |c(x — 2)| = ple|, |ex+d| =]|cz+d| >0
and thus
ar+b az+b|l |ad—bc|lr -z |ad — bc|
cr+d cz+d‘ - lcz + dl|cx + d| N lcz + d|?
This yields

|z — z|.

2(Culep) < Cu (2l

\cz + dJ?
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Since v~ ! satisfies

lad — bc|

/ d/:
c(z) + iz v d Pzt dp

|y (2) + d'f =

1,

1
cz+d’

applying the containment above to v~! shows

7! (CL ('y( ), H)) < Cr(2p),

which yields the lemma for this case.
Next we suppose |cz + d| < p|c|. Since ad — be # 0, we have ¢ # 0
and y(—%) = o0 with

(4.1) ‘—d—z‘zw<

]
For any = € L with |x — z| = p, it follows that
((cx +d) = (cz + d)| = |e(z — 2)| = plc], |ex +d| = plc]

and
ar +b a

cx+d c

_|ad —be|  1lad — b
ellex +dl - p e

which gives

%@mm§@@ﬁw;@)

cp e

Since we have ¢/(2) + d’ = 0, applying this to 4" we have

a 1|ad—be d
(e (Gt = (o)
c'p | c

By (4.1), we have
d
CrL <_Eup> = CL(va)

and the reverse containment also follows. O

a b

Lemma 4.8. Let p € |[L*| and v = (c d) € GLy(L). Let z € L.

Then we have

ad—bc
(=), pf22d) (o= + d| > plel),
2, Ll (jez + dl < ple]).

A(Dy(z.p)) = Q
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In particular, for any z € L and any w, € L* satisfying |w,| = p, we
have

Duleu) =2(D20.0), 7= (7 7).
D) = /Ds0.0) 7 = (5 ).

Proof. First suppose |cz + d| > p|c|. Then v(z) # c0. By Lemma 4.7,
we have

V(Di(z0) = (v} v | ACulz0)

oe(0,p]N|L>|
lad — be]
N I e (wz), olad — bl
oe(OpnIL | ez + d|

lad — be]
=D (Wz%pm '

Next we suppose |cz + d| < p|c|. Since ad — be # 0, we have ¢ # 0
and 7(o0) = . Moreover, for any p < o, we have [cz + d| < o|c|. By
Lemma 4.7, we have

o€(p,+o0)n|L*|

~P o) ({4 o UWIOL (-g—'ﬁ C‘P”C')

o€(p,+0)

a 1|ad — bl
—PYI\De | = 11— 1
= (p ? )
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a b

Lemma 4.9. Let p € |L*| and v = (c d) € GLy(L). Let z € L.

Then we have

Dy, (v(2), pltd) ez + d) = ple)),
Dy (212 (jez + d] < plel).

E’p

Y(D(z,p) =

Proof. First we suppose |cz +d| = p|c|. Then cz+d # 0 and y(z) # 0.
Note that if p > o and |cz + d| = p|c|, then we have |cz + d| > o]
even when ¢ = 0. By Lemma 4.7, we have

YD (z,p)) = v (PL\D (2, p))

=y PO\ |y | Culzo)

oe(0,p)n| L]

=P\ | v (G 0)

oe(0,p)N| L]
o lad — be]
~Pen (e U (e i)
0€(0,p)n|LX]

- PN (26

lcz + d|?
ad — be
= DIL (’Y(Z%PW) .

Next suppose |cz + d| < p|c[. Then we have ¢ # 0 and y(0) = 2.
By Lemma 4.7, we have

’Y(D/L(%p)) =7 {OO} v U CL(ZvJ>

o€[p,+00)N|LX|

-2t U vCuzo

C
o€[p,+00)n|LX|

a a 1lad— b
:{E}U U CL(E’E yc|2>

o€[p,+00)n|LX|

a 1lad— be
p, (2 b
c’'p el
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Lemma 4.10. The group GLy(K ) acts transitively on DCD(L). More-
over, the extension map

DCD(K.,) — DCD(Cy), D+~ De,
is GLy(Ky)-equivariant.

Proof. Lemma 4.8 and Lemma 4.9 imply that the image of a distin-
guished closed disc by any element of GLy(K ) is again a distinguished
closed disc, and also the action is transitive. Since the formulas in these
lemmas are independent of the choice of L € {K,Cy}, the GLy (K )-
equivariance of the extension map follows. U

Lemma 4.11. The stabilizer in GLy(Ky) of Dp(0,1) is Ko(me) K.
The same holds for D' (0, q).

Proof. By Lemma 4.10, we may assume L = K.,. Since P}(K,) =
D(0,1) u D'(0,q), it is enough to show the assertion on D(0,1).

a4 2 € GLy(Ky). By Lemma 4.8 and Lemma 4.3,
we have v(D(0,1)) = D(0, 1) if and only if

lad — be|
ap

Take any v =

b
|d| > |c], 1 and ‘E‘ <1,

namely if v e Ko(m) K. O
Corollary 4.12. We have a GLy(Ky)-equivariant bijection
GLy(K)/Ko(mo) K — DCD(Kop), v = (D'(0,q)).

Lemma 4.13. The set DCD(K ) forms an open base of the topology
of PL(K).

Proof. Since the action on P! (K ) of GLy(K) is continuous, by Lemma
4.10 it is enough to consider an open neighborhood U of 0 = (1 : 0).
Let p: K2\{(0,0)} — P'(Ky) be the natural projection. Since p~!(U)
is an open neighborhood of (1,0) in K2\{(0,0)}, we can find positive
integers m, n satisfying

(1,0) € (1 + 7704y) x 720y < p~ (V).
Then we have 0 € {x € K, | |[x| < ¢ "} = U. O

Lemma 4.14. Let v,v' € Z and let a € K.

(1) Suppose v > —v'. If |a| = ¢¥, then D(a,q7") < .
(2) Suppose v/ > 1. If [a] < ¢, then D(a,q™) < D(0,¢" ).
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In particular, if V' = 1+ |v|, then there exists a finite subset A < Ko,
satisfying

(re Ky ¢ <lsl <’} = [ Dle
ael
Proof. Suppose v > —v" and |a| = ¢”. If x € K, satisfies || < ¢”, then
|z —a| = |a| = q > ¢ and z ¢ D(a q""). This shows (1).
Suppose v/ = 1 and |a| < ¢¥ ~*. For any z e D(a,q™""), we have
2| = |# —a +a] <max{¢™,¢" '} <q

which shows (2). If v/ > 1+|v|, then v/ > 1 and v/ > |v| = max{v, —v},
which yields v > —v/ and v/ > v. Thus the last assertion follows from

(1) and (2). O
Lemma 4.15. Let U be a compact open subset of P*(K.,). Then there
exist ay,...,a, € Ky and py, ..., pr, p € ¢* satisfying

U= { LL 1 D(ai, pi) (0 ¢ U),

LI;_, D{ai, pi) U D(e0,p) (2 € U).
Proof. By Lemma 4.13, we see that U is a finite union of elements of
DCD(Ky). If o ¢ U, then we have U = (J;_, D(a;, p;) with some
a; € Ky, and p; € ¢*. Then Lemma 4.2 implies that by taking a

subcovering we can make this union disjoint.

Suppose o € U. We can find a sufficiently large p € ¢ satisfying
D(w0,p) < U. Then U\D(w0,p) = U n D(0,q 'p™') is also compact,
and the lemma follows from the former part of the proof. O

Lemma 4.16. Let ay,...,a, and d}, ..., d. be elements of P'(K) and
let p1,...,pr and py,...,p. be elements of ¢*. Suppose that we have

the equality
U:= HD(CM,/%’) = HD(@},/)}).
j=1

i=1
Then there exists a finite covering
U= H D(ay, p)

AeA
consisting of distinguished closed discs in P'(Ky) such that it is a re-
finement of the two coverings above.
Proof. Take any p € ¢” satisfying p < min{p;, p; ', 0, (p5) 71, 1} for any
t,7. Then we have p < qip and

(4.2) be D(ai,pi;) = D(b,p) < D(ai, pi)
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even when b or a; is 0. If a; # o0, then we can choose a finite subset
A; € K, satisfying

D<ai7pi> = H D(a,p).

If a; = o0, then the choice of p implies that for any b € D(c0, p;)\D(0, p)
we have

zeD(b,p) = zeD(w,p)\D(0,p).
Thus we can find a finite A, € K, satisfying
D(ooapl) = D(OO,p) o ]_[ D(aap)
ael

In this case, we put A; = A} U {0},
Hence the covering

U=]]]]D(np)
=1 ael;

is a refinement of the first covering of U. For any ¢ = 1,...,r and
a € A, we have a € D(a},p}) with some j = 1,...,s. Then (4.2)
yields D(a, p) € D(aj},p}). Thus it is also a refinement of the second
covering. U

4.2. Distinguished closed discs and edges in the tree.

Definition 4.17. For any e € T, let H(e) be the set of half-lines
H in T such that H starts from o(e) and passes t(e). This means
H = {w,}n>0 with e = (wyg — wy). Define

Ule) = {lim(H) | H € H(e)}.
Since the map lim is GLy (K )-equivariant, we have
(4.3) v(U(e)) =U(yoe) forany v€ GLy(Ky).
From the definition, for any v € 7y we obtain

(4.4) P (Ky) =Ule) uU(—e), P'(K,) = [] Ule)
o(e)=v

Moreover, for any e € 7,° we have

(4.5) Ule) = U(e).

o(e')=t(e), e’#—e
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Lemma 4.18 ([FvdP1], (V.1.13)).
Uleo) = {(z1 : 22) € P (Ko) | | < |22}
Via the identification (2.1), this implies
Uleg) ={r e Ky | |z| > 1} U {oo} = D'(0,q).
Proof. Let fi = (1,0), fo = (0,1) be the standard basis of V,, and let
My =Oxfi®Oxfs, M = Oxms f1 @ O f2

be representatives of the vertices vy and vy, respectively, By the proof
of Lemma 2.8, an element of P!(K,) lies in U(ep) if and only if it
corresponds to the line Ko, ®p,, N with some direct summand N of the
Oy-module My which is contained also in M;. It is the same as saying
N = Ox(z1f1 + x2f2) with some 1 € my, and z9 € OF. This yields
the lemma. U

Note that Lemma 4.18 and (4.3) yield U(e) € DCD(K,) for any
eeTP.

Definition 4.19. We denote by U(e) € DCD(Cy) the extension of
U(e) over Co,. Namely,

[ {zeCyllz—d<p}  (U(e) = D(ap)).
Ue) = { (zeCu|lz—al = p}u {0} (U(e)=Dap)).

For any edges e, ¢’ € T, the definition of U(e) implies
(4.6) Ule) 2U(€), Ule)2U() if o(e') = t(e).
Moreover, by (4.3) and Lemma 4.10 we have
(4.7) Y(U(e)) =U(yoe) forany 7€ GLy(Ky).

Lemma 4.20. The map e — Ul(e) defines a GLy(Ky)-equivariant bi-
jgection T — DCD(Ky).

Proof. By Lemma 4.18; this map sends e to D’(0, q). Then the lemma
follows from (2.3) and Corollary 4.12. U

Example 4.21. By Example 2.7 and Lemma 4.18, the closed discs
corresponding to edges whose origin is vy are

Uleg) = {x e Ky | |2]| = ¢} U {0},

<(é ?) J) (Uleo)) ={z e K [ [z +A[ <q7'} (AR
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Example 4.22. For the edge e;, we have
Ule:) = <7T(O)O 1) (Uleo)) = {z € Koo | 2] = ¢""'} U {o0}.
This yields
U(—€;) = {z e K | 2] < ¢}

Lemma 4.23. Let H = {w;};>0 be a half-line in T and let €} = (w; —
wis1). Then we have
{lim(H)} = [ U(e).
i=0

Proof. By Lemma 2.10, translating by the action of GLy(Ky) we may
assume H = {v;};ez.,. Then we have lim(H) = oo by Example 2.12.
Now Example 4.22 yields

Ule)) = {z€ Cy | |2] = ¢} U {o0},
from which the lemma follows. O

Definition 4.24. For any e € 7° and a € K, define

_} » (Ule) = D(a,p)),
ole) = { o (U(e) = D'(a,p))

Note that when U(e) = D(o0, p) = D'(0, p~!) we have p(e) = p.
By Lemma 4.3, we see that p(e) depends only on e.

Lemma 4.25. Suppose that e, e’ € TP satisfy U(e) 2 U(e'). Let H =
{wptnso € H(e) and H = {w)},=0 € H(e') be half-lines satisfying
lim(H) = lim(H'). Then we have ¢ = (w, — Wpny1) with some
m = 0.

Proof. The assumption lim(H) = lim(H’) shows that H and H' agree
except finitely many vertices. On the other hand, let P” = {w/}"_,
be the unique path without backtracking which satisfies w{ = wy and
w! = wy. Since T has no circuit, we have either H' = {wy, }n>m, or m >
0 and H = {w) }n>m. In the former case, we have ¢ = (w,, — Wy+1).
In the latter case, any half-line which starts from wy(, and does not pass

w} defines an element of U(e')\U(e), which is a contradiction. O

Lemma 4.26. Suppose that e, e}, ... e. € T satisfy
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Then for any half-line H = {w,},>0 € H(e), there exists unique i =
i(H)e{l,...,r} such that e, = (w, — wp41) with some integer n = 0.
Moreover, the map

H(e)—>{1,...,r}, Hw—i(H)

18 surjective.

Proof. Take a unique i satisfying lim(H) € U(e}). By Lemma 4.25, we
see that H passes through e;.

Suppose that i,7 € {1,...,r} satisfy the condition of the lemma.
Then H passes through both of €] and €. Thus we obtain lim(H) €
Ule;) n U(¢)), which is a contradiction.

Take any ¢ € {1,...,r} and any = € U(e,). Let H € H(e) be the
half-line representing x € U(e). By Lemma 4.25, the half-line H passes
through e} and i(H) = 4. This concludes the proof of the lemma. [

4.3. Explicit description of U(e). For any integer n = 0, let
To(n) = {ve T [ d(vo,v) = n},
TP(n) ={ee T | ole) € To(n), t(e) € To(n + 1)}.
Then we have
(4.8) H Ule
e TP (n)
and by Example 4.22 the only disc appearing in this decomposition

and containing oo is Uf(e,).

Definition 4.27. For any local Oy -algebra R and a free R-module M
of rank two, we denote by P!(M) the set of direct summand of rank
one of the R-module M.

For the Oy -lattice My = Oy fi ® Oxfy in Vi, write PH(Oy) =
P (My).

Consider the natural reduction map
Pn - MO — Mo/’TFgLOM().

Note that for any integers a, b € [0,n], if |a —b| = n then (a,b) = (n,0)
or (0,n). Now the definition of the distance shows that the map

(4.9) P! (Mo/m Mo) = To(n), N = [p, " (N)]
is a GLy(Oy)-equivariant bijection, and this induces a bijection
(4.10) P! (Mo /w2t My) — T,°(n)

by sending N to the unique edge e € 7,°(n) satisfying t(e) = [p,1,(N)].
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Definition 4.28. Let L be K, or C,. For any rational number s > 0,
put My, = My ®op,, Or, and

7"57L . ]P)l(L) = Pl(OL) —> Pl(MO7L/mfsM07L).
We also write 1y = 75k, .

Definition 4.29. A subset A of P!(K,) is called a complete set of
representatives modulo 77 if the restriction to A of the natural map

T PHK ) = PYHOL) — P (My/7" M),
is a bijection.

Definition 4.30. Let n > 0 be an integer and let A be a complete
set of representatives modulo 77", We denote the composite of the

inverse maps of 7,41 and (4.10) by
ca s T (n) — A,
which is a bijection.

Lemma 4.31. Let n > 0 be any integer and let A be any complete set
of representatives modulo 5™, For any e € TP°(n), we have

ca(e) € Ule).

Proof. Write x := cp(e) = (z1 : x2) with max{|z1],|z2|} = 1. Let
fi = (1,0) and f = (0,1) be the standard basis of V,, and let N =
Oy (x1f1 + wof2), which is a direct summand of the Oy-module M.
By the definition of the map (4.10), if we write e = (v — w) then we
have w = [N + 72t My]. For any j = 0, put w; = [N + 75, M;]. Then
H = {wj};>¢ is the unique half-line in 7 starting from v, which satisfies
lim(H) = x. Since e is the unique element of 7,°(n) satisfying t(e) = w,
it follows that H passes through e. Since lim(H) = (z; : z2) = z, we
have z € Ufe). O

Definition 4.32. For any e € 7°(n), we denote by P(vg,e) = {w;}"
be the unique path from vy passing through e. This means that w; and
w;+1 are adjacent vertices for any i < n, wy = vy and e = (w,, — Wy41)-
We denote by i(e) the maximal integer ¢ < n + 1 satisfying w; = v;.

Lemma 4.33. Let n = 0 be any integer and let e € T°(n). Then we
have

2i(e)—n—1

_Jq (e # ey), ) max{0,log, |ca(e)|} (e # en),
ple) = { 1 (e—ey), o= { n+1 (c—cn)
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n+1

In particular, for any complete set of representatives A modulo 77},

we have
D(cp(e), @1 (e # e,),

ORI A
and |cp(e)| < q" if e # ep.

Proof. Since the case of e = e, follows from Example 4.22, we may
assume e # e,. Then we have i(e) < n. By Lemma 4.31 the last
assertion follows from the assertions on p(e) and i(e). It is enough to
show these assertions. For this we proceed by induction on n.

Suppose n = 0. Since e # ey, we have i(e) = 0. Example 4.21 shows
U(e) = D(A\, ¢') for some X € F, and p(e) = ¢~*. Lemma 4.31 yields
lca(e)| = 1 and the lemma follows for this case.

Assume that n > 1 and the lemma holds for any element of 7,°(n—1).
Write P(vg,e) = {w;}I) as above.

First suppose w, # v,. Then i(e) < n — 1 and the edge ¢
(wp—1 — wy) lies in 7°(n — 1) and is not equal to e,_;. Hence o
U(e') and i(e’) = i(e). By the induction hypothesis we have U(e’)
D(d’, ¢*~") with @’ = ¢, (¢') satisfying i(¢') = max{0, log, |a'|}. Then
(4.5) yields

U(G,) _ D(a/,q%(e)—n> _ H U(e”).

e”eTP(n), o(e")=wn

I |l

Namely, D(a’,¢*®~") is the disjoint union of ¢ distinguished closed
discs {D(az, p1)}i_, with some aq; € D(a’, ¢*(©~") and p, € ¢Z satisfying
o < ¢*©" This forces p, = ¢*©~"=1 for any .

By applying Lemma 4.31 to ¢” = e, we obtain U(e) = D(a, ¢*®
with a = cp(e). Since U(e) < U(€'), we have |a — a/| < g%,

If |[a'| < 1theni(e’) =i(e) = 0and a € D(a’,q"), which yields |a| <
1 and max{0,log, a|} = 0 =i(e). If [a/| > 1, then |a'| = ¢'©) = ¢'(©).
Since i(e) < n — 1, we have 2i(e) —n < i(e) and |a| = ¢'(©).

Next suppose w,, = v,, which implies e, 1 = (w,_1 — w,). Since
e # e,, we have i(e) = n and (4.5) shows

{re Ky |lz]=q"} = Ulena)\Ulen) = 1 U(e").

e”"eTP(n), o(e")=wn, €'#en

a1

Thus it is the disjoint union of ¢—1 distinguished closed discs { D(az, p1)}{=}
with some a; € K, and p; € ¢Z satisfying p; < ¢" = |a|. This forces
pr = ¢! for any [. Since cy(e) € U(e) by Lemma 4.31, we also obtain
lca(e)| = ¢* = ¢®. This concludes the proof of the lemma. O
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We give an example A,, of the complete set of representatives modulo
7ott For any integer i € [0, n] we define A;,, © K, by

A Fog+ Fomeo + -+ Femyy (1=0),
b Frmyt + Forn ™+ + Fgris® (i > 0)

)

and put

Lemma 4.34. For any integer n = 0, the subset A,, is a complete set
of representatives modulo 7%,

Proof. Put Oy i1 = O /T O. Since we have
[An| = [P (Mo/m " Mo)| = ¢" +q",
it is enough to show that the restriction to A, of the map
Tt PHKL) = PHOL) — P My/72 M),
is surjective. B

Let fi = (1,0) and f; = (0,1). Take any N € P!(My/7% My) and
11, 79 € Oy such that the image of 1 fi + 2 fo in My /7% My generates
N.

If |z1] = 1, then we may assume z; = 1 and x5 € A, which implies
that @y € Ay, satisfies r,1((1 : 29)) = N. If |:)51| < ¢!, then we
may assume (z1,22) = (0,1) and r,11(0) =

On the other hand, if |z1| € [¢7", ¢"'], we may assume x; = 7, with
some integer i € [1,n] and x5 € (’)X Note that for any a,b € O}
we have O, (7 f1 + afs) = O;7n+1(7réof1 + bfs) if and only if a €

b(1 + 717 Oy,), which means a = b mod 7" ~*. This shows that we
may assume s € ., A; , and thus r, 41 ((1: 7 2s)) = N. O

4.4. Description of U(e) via projectivized closed discs. Let L be
K, or Cq.

Definition 4.35. For any o € P!(L), its unimodular coordinate is
a = (o1 : ag) with max{|ay|, |as|} = 1.

Lemma 4.36. For any z € P1(C,,), the map
PYL) —» Rsg, aw |z,a| = |z100 — 2004|

is well-defined and continuous, where z = (21 : z3) and o = (ay : )
are unimodular coordinates.
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Proof. Since a unimodular coordinate is unique up to a scalar multiple
by Of, we see that |z, o] is well-defined.
For the continuity, consider the natural map

g+ L2\{(0,0)} — PX(L).

Since the translation by the action of L* on L*\{(0,0)} is a homeo-
morphism, the continuous map ¢ is open. Put

Ur = 0p x (0O\{0}), Uz =(0.L\{0}) x OF.
For any ¢« = 1,2, the map
w; U > Rep,  (aq,00) — |z100 — 2004
is continuous. For any open subset U < R, we have
|2, =7HU) = glwi ' (U)) v g(wy ' (V)),
which is open. O

Definition 4.37. Let L be K, or C,. For any o € P!(L) and any

peq let
Tl p) = {zeP(L) | |z, a] < p},
Fi(a,p) ={zePY(L) | |z,a| < p}.
We write Ik, (a, p) = Z(a, p) and D5 (a,p) = 2°(a, p).
Note that we have
a€ I (a,p) € Di(a, p).

Lemma 4.38. Let s = 0 be any rational number. Let o € PY(L) and
let p e ¢U.

(1) the disc D1(«, p) depends only on vy (a) if p = q

(2) the disc P} (v, p) depends only on rs(a) if p>q°
Proof. Take any «, 8 € P!(L) with unimodular coordinates a@ = (a :
ag) and = (fy : fa). Then ry (o) = 75 £(B) if and only if

Ors(anfi +asfa) = Ops(Bufi + Bafo).
This is the same as saying that there exists c € O] satisfying
cay = B1,  cay = By mod m7e.

From this it follows that for any unimodular coordinate z = (z1 : z2)
we have

2100 — mou[ < p e |ufo—mbil<p (¢ <p),
|z100 — 20001| < p = |zPe— b1 <p (¢° <p).

This concludes the proof. O
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Lemma 4.39. For any o € PY(L) and any positive rational number
s >0, we have

F(aq ") = {z € PUL) | ror(2) = rop(a)}.

Proof. By Lemma 4.38, if z € P*(L) satisfies 74 1(2) = rs () then we
have z € Z1(z,q7°) = Pr(a, q~*). Conversely, take any z € Zr(a, 7).
Let z = (21 : 22) and o = (@ : ag) be unimodular coordinates. Then
we have zjay — zoap € m7°. If |oy| = 1, then the assumption s > 0
implies |z1] = 1 and
Ops(zifi + 22f2) = Ops(anzifi + aaza fa)
= Ops(aizifi + agz1fa) = Op (o fi + aafa),

which shows 7, 1(2) = rsr(a). The case of |az| = 1 can be treated
similarly. U

Corollary 4.40. Let s > 0 be any positive rational number. For any
2,2, 2" € PY(L), we have
2,2, [£,2" | < ¢ = 52" < g
Proof. Since s > 0, Lemma 4.39 and the assumption show
Ts,L(Z) = TS,L(Z/) = Ts,L(Z”),
which yields |2/, 2"| < ¢*. O
Lemma 4.41. Let n = 0 be any integer and let pe q¥ n [¢g7" " ¢™).

For any integer i € [0,n] and any a € Ky, with i = max{0,log, |a|}, we
have

Di(a,q"p) = Zi(a,p), a=(1:a).
Moreover, for any p <1 we have Dr (o0, p) = Z1(0, p).

Proof. If i = 0, then @ = (1 : a) is a unimodular coordinate. Since
p<1,if z = (21 : z9) is a unimodular coordinate then
< p) .

Since |a| < 1, the condition |2 —a| < p implies [2| <1 and |z = 1.
This yields the lemma for this case.

If ¢ € [1,n], then |a] = ¢*. Hence a = (7%, 7’ a) is a unimodular
coordinate with |7¢ a] = 1 and for any unimodular coordinate z = (2; :
z9) we have

zZ9
— —a

210 — 2| <p < (\zl\zland

z .
=2 —a‘ < qz’p) :

aa(rh0) — m(ri) < p <|z1|=q—iand :
1
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In the latter condition |z| = ¢~ is superfluous, since |a| = ¢’ and
2 —a‘ < ¢*'p force |2] = ¢', which yields |z| = 1 and [2| = ¢7".
Thus the lemma follows also for this case.
Finally, for oo = (0 : 1) we have
] <p = <|22| = 1 and ‘é‘ < P) )
<2
which yields the last assertion. 0

Corollary 4.42. Let n = 0 be an integer and let A be a complete set
of representatives modulo %™, For any e € T°(n), we have

Ule) = P(eale),q "), Ule) = D (eale).q ).

Proof. Write cy(e) = (21 : x2) with a unimodular coordinate. As we
saw in the proof of Lemma 4.31, the direct summand N = Oy (x; f; +
xofa) of My corresponds to a half-line starting vy and passing through
e. In particular, we have t(e) = [N + 7% 1 Mp].

Then 2/ = (2} : 24) € PY(Ky) of unimodular coordinate lies in
U(e) if and only if the half-line starting from vy corresponding to the
direct summand N’ = Oy(2) f1 + 24 f2) passes through ¢(e), that is
N + 72 My = N’ + 7% My. This is the same as saying r,,1(x) =
Tny1(2'). By Lemma 4.39, this is equivalent to 2’ € Z(x, ¢ "'), and
we obtain the first equality of the corollary.

By Lemma 4.33 and Lemma 4.41, we see that Z(cy(e), ¢ ") is an
element of DCD(K ) and its extension over Cy, is Zc, (ca(e), ¢ t).
This yields the second equality. U

5. DRINFELD UPPER HALF PLANE

We call
Q =PHCL)\P(K,) = Cx\ Ko
the Drinfeld upper half plane.

5.1. Coverings of () associated with vertices.

Definition 5.1. For any v € 7, define
U) =P C)\ [] Ule).
o(e)=v

Example 5.2. By Example 4.21, we can write

U(vg) = P'(Cyp)\ (]_[ De,, (A, ¢7) u De, (0, q))

el

={zeCy|q <zl <q [z=A>q  forall xeF}}.
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By (4.7), we have
YUW)) =U(yowv) for any v € GLy(Ky).
Lemma 5.3.
{7 € GLy(Ko) [ 7(U(wo)) = U(wo)} = GLap(Ou) K.

Proof. Take any v € GLy(Ky). Then ~ stabilizes U(vy) if and only if
it stabilizes ]_[,\em, De,, (A g ") uDg_(0,q). Since v acts on DCD(C,,),
this is the same as saying that - stabilizes the subset S, of DCD(Cy)

consisting of these discs.

Let v\ = <i\ (1)> By Lemma 4.8, we have

De. v ) = (7 1) (Deal0.1)
(% D) (o 5) e 0.0) =m0z, 0.0,

By Corollary 4.12, we have the identification

SU() = <(H %\KO(WOO) L KO(WOO)) K;é) /KO(’]TOO)KC;(}‘

AelFy

Now the bijection

1
6L(0,) Kalme) = PE), 77 )
yields GLy(Ox) = [ [ep, 1 HKo(7e) L Ko(To) and we obtain
Sve = GLa(On) K5 Ko(m00) K 5.
Thus the stabilizer agrees with GLy(Oy) K. O
Lemma 5.4.
Uv) nPHEK,) = &.

Proof. Translating by the action of GLy(K), we may assume v = vy.
Take any z € U(vg) N P} (Ky). Then z € K. Since ¢7! < |z| < ¢, we
have |z| = 1. Write x = >}, a;m’, with a; € F, and ag # 0. Then we
have |z — ao| < ¢~', which is a contradiction. O

Lemma 5.5. Let a,a’ € K, and p,p' € ¢*.
(1) If D(a,p) 2 D(d', '), then |a —a'| < p and p = qp.
(2) If D'(a,p) 2 D(d', '), then |a — a'| = max{p, qp'}.
3) If D'(a,p) 2 D'(d, p'), then |a —d'| < ¢ tp' and p' = qp.
p
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Proof. For (1), the assumption yields |a — a'| < p and p > p, since
p < p' would imply D(a,p) < D(d’,p'). Since p,p’ € ¢%, this forces
p=qp.

For (2), the assumption means

D%(a,p) n D(d',p') = D(a,q"'p) n D(d',p') = &

and thus |a — a'| > max{q~'p, p'}, which forces |a — a/| = max{p, qp'}.

For (3), the assumption means D(a,q 'p) < D(d’,q¢'p') and (1)
concludes the proof. O

Lemma 5.6. If e, e’ € T satisfy U(e') < Ule), then we have

P (Coo)\U(—€) < Ule).

Proof. Suppose U(e) = D(a,p) and U(e') = D(d/, p') with some a,d’ €
Ky and p,p’ € ¢¢. Then Lemma 5.5 (1) yields |a —d| < pand p >
qp'. Since U(—¢') = D'(d’,qp'), for any 2z € P}(C,)\U(—¢') we have
|z —d'| < qp' and

|2 —a| = |z —d + (a' — a)| < max{gp’, p} = p

which gives z € U(e).

Suppose U(e) = D'(a,p) and U(e’) = D(d’, p’) with some a,a’ € Ky,
and p, p' € ¢¢. Then Lemma 5.5 (2) yields |a — a/| = max{p, ¢p'}. Since
U(—¢') = D'(d,qp'), for any z € P}(C.,)\U(—¢€') we have |z — d'| < qp’
and

[z —al = [z —d +(a' —a)| = |a' —a] = max{p, qp'} >

Hence z € U(e).

Suppose U e) = D'(a,p) and U(e') = D'(d’, p') with some a,a’ € Ky,
and p,p’ € ¢¢. Then Lemma 5.5 (3) yields |a — a'| < ¢7'p' and p/ >
qp. Since U(—¢') = D(da',q7'p'), for any z € P}(C.)\U(—¢€') we have
|z —d'| > ¢71p' and

z—al=|z—d +(d —a)|=|z=d|>q"p =p,
which gives z € U(e). This concludes the proof. U
Definition 5.7. For any e € 7,°, put

vy .o | Dela,a5p) (U(e) = D(a,p)),
Ule) = {D(&o(aq S0) (Ue) = D'(arp)).

Then we have U(e) < U*(e) and P (K ) nU*(e) = PYKy) nU(e).
Lemma 5.8. U*(e) is independent of the choice of a center a of U(e).
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Proof. Suppose U(e) = D(a, p) = D(b, p) with some a,be K, and p €
¢*, so that |a — b| < p. Then we have |a — b < ¢3p and Déw(a,q%p) =
D¢, (b,q3p).

Suppose U(e) = D'(a, p) = D'(b, p) with some a,b e K, and p € ¢%,
so that |a—b| < p and thus |a—b| < ¢~'p. Then we have |a—b| < ¢ 3p
and D¢ _(a, q_%p) = D¢ (b, q_%p). This concludes the proof. O

Lemma 5.9. If e, € TP satisfy U(e) n U(e') = &, then U*(e) N
Uue)=uo.
Proof. Since o € D'(a, p), we may assume U(e) = D(a, p) with some
a€ K, and p € ¢%.

Suppose U(e') = D(d', p') with some a' € K, and p' € ¢%. If U*(e) N
U*(e') # &, then for some z € C,, we have

z—al < qip, |z—d|<qip,

so that
ja —d| = |(z = ) = (= — a)| < g5 max{p, ).

Since a,a’ € Ky, it forces |a — d/| < max{p,p'} and thus D(a,p) N
D(d,p') # &, which is a contradiction.

Suppose U(e’) = D'(d/, p’) with some ' € K., and p’ € ¢%. Then the
assumption U(e) nU(e') = J yields

D(a,p) € D°(d,p') = D(d',q¢7"/'),

which implies |a — a’| < ¢~ 'p/. Moreover, for any w, € K, with
|,| = p, we have |@, + a — d/| < ¢7'p' and thus p < ¢~y

If z € C,, satisfies |z — a| < ¢3p, then we have

z—d|=|z—a+(a—d)| <max{gip g 'p'} <q 3,
which yields U*(e) nU*(¢’) = &. This concludes the proof. O
Lemma 5.10. Ife # ¢ € T satisfy U(e) 2 U(€'), thenU(e) 2 U*(€).

Proof. First suppose U(e) = D(a,p) and U(e') = D(d',p') for some
a,a’ € Ky and p, p' € ¢¢. Then Lemma 5.5 (1) yields |a — a/| < p and
p=qp. If z e Cy satisfies |z — d/| < g3 p/, then we have

2 —a| = |z —d + (d' — a)| < max{qip, p} = p

and the lemma follows for this case.

Suppose U(e) = D'(a,p) and U(e') = D(d’, p') for some a,a’ € Ky
and p,p € ¢%. Then Lemma 5.5 (2) yields |a — da/| = max{p,qp'}. If
z € Cy, satisfies |z — d/| < e P, then the inequality ¢3p’ < qp’ yields

=\

[z —al =]z =d +(a'—a)| = |a'—a| = p



40 SHIN HATTORI

and the lemma follows for this case.

Finally, suppose U(e) = D'(a,p) and U(e’) = D'(d,p’) for some
a,a’ € K, and p,p’ € ¢¢. Then Lemma 5.5 (3) yields |a — a'| < ¢~ *p/
and p' > qp. If z € C, satisfies |z — /| = ¢~3p/, then the inequality
gy < q%lp’ yields

z—al=|z—d + (@ —a) =z —d|>q3p = qp>p,
and the lemma also follows for this case. 0

Definition 5.11. For any v € 7y, we define

U (v) =PCO\ | [] Ue) ],

o(e)=

where the union on the right-hand side is disjoint by Lemma 5.9. By
Lemma 5.4, we have

(5.1) U () cUW), U (W) nPH Ky =UW)nP (K, =

Lemma 5.12.

Q= Ju@) = Ju (v

veTH veTH

Proof. By (5.1), it is enough to show Q < | .7, U*(v).

Take any z € ) and suppose z ¢ U*(v) for any v € Ty. This means
that for any v € Ty there exists e € T with o(e) = v satisfying z €
U*(e).

Fix wy € Ty. Then we can find e{) = (wy — wy) € T satistying
z € U*(ep). Similarly, we can find €] = (w; — wg) e T satisfying
z € U*(€}). Since Lemma 5.9 implies U*(ef) N U*(—ep) = &, we have
wy # wp. Repeating this, we can find a half-line H = {w;};s0 in T
satisfying z € U*(e}) with e, = (w; — w;41) for any i.

Since U(ef) 2 U(e}, ), Lemma 5.10 yields

Z/{( /) DU*( H—l) DU( z+1)

’L

for any ¢ > 0. By Lemma 4.23, we obtain

ze (\u(e) = [\Ule) = {lim(H)} < PH(K,),

=1 =0

which is a contradiction. O
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5.2. Annuli in P'(C,,) associated with edges.
Definition 5.13. For any e € 7,°, define
V(e) = Ulo(e)) nU(t(e)).
Note V(e) = V(—e). By (4.6) and Definition 5.1, we obtain
V(e) = PH(Cuo)\ (U(e) LU(—e)).

By (4.4), either of U(e) and U(—e) equals D(a, p) with some a € Ky,
and p € ¢%, and the other is its complement D'(a, ¢p) in P}(K,). Hence
we have

{U(e).u(~e)} = {De. (4. p). Dk, (0.40)}
Thus we obtain

V() =4{zeCyx|p<l|z—a| <qgp} =,
In particular, V(e) is an open annulus defined over K.
Example 5.14. By Example 4.22, we have

V(eg) ={z€Cyp |1 <|z] <q}.

Lemma 5.15. For any v,v' € Ty, we have

Uv)nUW) # T <  dv,d) <1,
in which case U(v) =UW') if v =v" andU(v) "U(V') = V(e) = V(—e)

with e = (v — V') otherwise.

Proof. 1t is enough to show U (v) nU(v') = & if d(v,v") = 2. Translat-
ing by the action of GLy(K), we may assume v = vy and v = v o vy
with some v € GLy(Ky). By the elementary divisor theorem and

m
7rOO
n
0 w3

z € U(vg) and y(z) € U(vyp), then we have
1

(2.2), we may assume y = with some integers m,n > 0. If

¢l <l|zl<q and ¢ '<|707"2] <q,

which occurs only if —1 < m —n < 1, namely d(v,v") < 1. This
concludes the proof. O

5.3. Irrational absolute value.

Definition 5.16. For any z € C,,, define the irrational absolute value
of z by
z]; = inf |z —al.
aeK
Note that for any z € C,, and a € K, we have

(5:2) ol >zl = |z —a| = la| > |2, o] < |z[ = |z —a] = |2].
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Lemma 5.17. For any z € Cy,, we have |z|; = |z—a| for some a € K.

Proof. From (5.2), it follows that |z|; is the infimum of |z — a| on the
compact set {a € Ky | |a| < |z|}, which is attained by some a in this
set. O

Lemma 5.18 ([DH], Proposition 5.2). Let z € Co.
(1) |z|; = 0 if and only if z € K.
(2) For any c € K, we have |cz|; = |c||z];.
(8) If |z| ¢ ¢”, then |z|; = |z].
(4) Suppose |z| = 1 and let z € F, be the residue class of z. Then
|z|; = |z| = 1 if and only if z ¢ F,.

Proof. The first assertion follows from Lemma 5.17, and the second
assertions is clear. For the third, if |z] ¢ ¢Z then |z| # |a| for any
a € Ky. Thus we have |z — a| = max{|z|, |a|} = |z| and the equality
holds for @ = 0. This implies |z|; = |z|. For the fourth, take any
a€ Ky. If |z| = |a|, then |z —a| < |z| = 1 if and only if Z = a € F,.
Combined with (5.2), this shows the fourth assertion. O
Definition 5.19. For any r,s € Q, let
Q. ={zeCy|lzlizq "}, Qs={2eQ ||z <}
Then Lemma 5.18 (1) shows Q,, < 2, € Q and
Qr: U Qr,57 0= U Qr: U Qr,s-
SEZ>0 r€l>0 r,S€EL>0
Lemma 5.20. For any rational numbers r, s with s = —r, there exists

a finite set J < K satisfying
P'(Ky) = D*(w0,q¢ ") u [ [ D°(a,q7"),

aeJ

Qs = PHCx)\ (Déoc (0,¢7°) b H De, (avq_r)) -
aed
Proof. Since ¢~V < ¢ < ¢*, for any a € D(0, ¢°) Lemma 4.2 yields
D(a,q~"*Y) < D(0,¢*). Thus we can find a finite set J < K, satisfy-
ing
P(K,) = D¥ (0,07 0 | [ D°(ag™).
aed

This means that for any b € K, we have |b] > ¢° or |a — b| < ¢”" for
some a € J.

Since the union in the first equality of the lemma is disjoint, we have
la| < ¢° and |a — /| = ¢7" for any a,a’ € J. Since s = —r, this implies
that the union in the second equality of the lemma is also disjoint.
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We show the latter equality in the lemma. It is clear that €, is
contained in the set on the right-hand side. Conversely, take any z € C,
satisfying |z| < ¢® and |z — a| = ¢ for any a € J. Suppose |z|; < ¢7".
Then we have |z — b| < ¢~ for some b € K.

If |b| > ¢°, then we have |z — b| = |b| > ¢° = ¢~", which contradicts
|z — bl < ¢7". Thus we obtain |a — b] < ¢~" for some a € J and
|z —a| < ¢", which is a contradiction. This shows |z|; = ¢~ and
z €. L]

5.4. Rigid analytic structure of ().

Lemma 5.21. Let o € PY(K,) and let Y be any affinoid variety over
Cy. Let ¢ : Y — P \{a} be any morphism of rigid analytic varieties
over Co,. Then we have

p(Y) € Pg, \De, (o, q7™)
for some integer m.

Proof. First suppose a = o0, so that
De,(a,q7™) ={z € Cx | 2| = ¢"} v {o0}.

Put A' = Spec(C,[T]) so that P¢_\{oo} is its analytification. By the
maximal modulus principle on Y for the function ¢*(T), there exists a
positive rational number s > 0 satisfying

S

lo(y)] < ¢° for any yeY.

Then any integer m satisfying s < m has the desired property.

Suppose o # o0. We can find v = (CCL Z

y(a) = . Then ca +d = 0. For any p € ¢V satisfying plac| < 1,
Lemma 4.8 yields

(De () = D, (4ot ) = D6, (005 ) = Des (raple).

¢’ plef? " plef?

) € SLy(K) satisfying

Applying the lemma for o = o0 to the morphism
vop:Y =P \{a} - Pg, \{oo},

we can find an integer m’ satisfying v(o(Y)) n D¢, (0,¢7™) = &.
Then the lemma holds for any integer m satisfying ¢ > max{q™ |c|?, |ac|}.

Lemma 5.22. For any r,s € Z, the subset €1, 5 is an admissible affi-
noid open subset of IP’}COO, and .. is an admissible open subset of IP)}COO.
Moreover, {Q,. s}sez is an admissible open covering of Q.
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Proof. Since Q,, < Q, < At and A{_ is an open subvariety of P¢_,
it is enough to show that €2, , and €2, are admissible open subsets of
At .

Note that {Dc, (0, ¢*)}sez-, is an admissible open covering of A}C’in
and Q., = Q. n D¢, (0,¢°). Since Q,, is a rational subdomain of
D¢, (0,q°), it is an affinoid variety over C,. The property (Gs) of
[BGR, §9.1.2] implies that €, is an admissible open subset of A¢_, and
thus so is €2, 5. The last assertion follows from [BGR, Definition 9.1.1/1
(iv)]. O
Lemma 5.23. Let Y be an affinoid variety over Co, and let ¢ 1 Y —

]P’(lCOC be any morphism of rigid analytic varieties over C,, satisfying
oY) € Q. Then ¢ factors through Q.. s with some integers r,s = 0.

Proof. By Lemma 5.21, for any b € P!(K,) we can find a positive
integer ny; satisfying

p(Y) < P, \De,, (b,g™™).
Since P!(K,,) is compact, there exists a finite subset I of P!(K,) sat-
isfying

P (Ky) = | JD(b,q™).

bel
In particular, we have o € I.
Let n = max{n, | be I} > 0 and let J,,,, be the finite subset of K,

as in Lemma 5.20 for (r,s) = (n,n). For any a € J,,, U {00}, we have
a € D(b,q ™) for some b e I. Then

la—0bl <q™, Dg_(a,q7") < Dc,(b,g™) (a,b # ),
la| = ¢**, Dg_(a,q7") € Dc,(0,¢7™)  (a# ©, b= ),
D¢, (0,¢7") < De,, (0,47") (a,b = ).
This yields
p(Y) < [ (PE,\De.. (b,47™)) S Qs

bel
which concludes the proof. O

Proposition 5.24. The subset ) is an admissible open subset of IP(%:OO.
Moreover,

{QT‘}TEZZ(M {Qr,s}r,seZ>0
are admissible open coverings of €.

Proof. The definition of P [BGR, Example 9.3.4/3] shows that
PL, = Sp(Ca()) U SP(Co(w)), w = 12

is an admissible open covering. Let D be one of these closed unit discs.
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To show the proposition, by combining [BGR, Definition 9.1.1/1
(iii) (iv)] with the properties (G;) and (G2) of [BGR, §9.1.2], it is enough
to show that D n Q is an admissible open subset of D and {D n
Q. s}rsez-, 18 an admissible open covering of D n 2. Note that D N,
is a rational subdomain of D.

For this, consider a morphism ¢ : Y — D of affinoid varieties over
Cy, satisfying o(Y) <€ D n Q. By Lemma 5.23, there exist integers
r,s = 0 such that p(Y) < D n Q, 5. Then [BGR, Proposition 9.1.4/2
(1)] implies that D n (2 is an admissible open subset of D, and combined
with this, [BGR, Proposition 9.1.4/2 (ii)] shows that {D n Q, s}, sez-,
is an admissible open covering of D n 2. O

Remark 5.25. Proposition 5.24 and the property (G2) of [BGR, §9.1.2]
imply that

{QT}T’EZJ {Qr,s}r,seZ

are also admissible open coverings of €2, since the coverings of the propo-
sition gives refinements of them.

Lemma 5.26. Let Q(X) be an element of Cy(X) without poles in 2.
Then the function

Q- Cyp, z—Q(2)

is an element of O(Q).

Proof. Let S be the set of poles of Q(X). Then S is finite and the
scheme Pg_\S is locally of finite type over Cy. From [Con, Theorem
5.2.1.1], we see that the analytification (P¢_\S)™ is an open subvari-
ety of (Pg, )™ which contains Q as an open subvariety. Since Q(z) is
a rational function on Pg \S, it defines a rigid analytic function on

(Pg, )™ and thus that on Q. O
Let v = <CCZ Z) € GLy(K,). Since the action of 7 on P}(Cy)
preserves P} (K ), we have a bijection
az +b
VR — .
7 C T et d

Corollary 5.27. The map v : Q2 — Q is a morphism of rigid analytic
varieties over Cg,.

Proof. Since the map 7 : P(Cy) — P!(Cy) is induced via (2.1) by the
morphism

Pe, > P, (z:y)— (do—cy:—bx+ay)
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of projective schemes over C, it is analytic. By Proposition 5.24, the
map v : 2 — € is the restriction of this map to an admissible open
subset and thus it is also analytic. O

5.5. Admissibility of the covering {U(v)},e7 -

Lemma 5.28. For any v € Ty, the subset U(v) < Q is an admissi-
ble open subset. Moreover, U*(v) S Q is an admissible affinoid open
subset.

Proof. Consider the admissible affinoid open covering {€2; s}, >0 of €.
For any r, s > 0, the subset €2, ; "nU(v) is obtained by omitting finitely
many distinguished closed discs from the affinoid variety €2, ;. Since
the centers of there discs do not lie in €2, 5, each of these closed discs is
defined by

{JZEQnSHf(:L‘Nél} or {JZEQT75||f(:L‘)|>1}

with some f € O(Q,,). Now [BGR, Proposition 9.1.4/5] implies that
Q.5 nU(v) is an admissible open subset of €, ,. Then [BGR, §9.1.2,
(G1)] yields the lemma for U (v).

For U*(v), by the same reason the subset ., N U*(v) is a rational
subdomain of €2, s, which implies that &*(v) is an admissible open
subset of Q. On the other hand, U*(v) is also obtained from a closed
disc in Ag_ by omitting finitely many open discs of type Dg_(a, p)
with a € K. This implies that &*(v) is a rational subdomain of a
closed disc, which is an affinoid variety. This concludes the proof of
the lemma. U

Lemma 5.29. For any non-negative integers r, s = 0, the set
{fveTo | UW) N Qs # T}
s finite.
Proof. By Lemma 5.20, we can find a finite subset J < K, satisfying
PU(K,) = Do, =) U ] [ D(arg™),

aeJ

Qs = P'(Cx)\ <Dé’:m(00, ¢ o] De, (a q_r)> :

aeJ

Write
D°(00,q7%) = D(oo,q_s_l) =Ulew), D°(a,q¢")=D(a,q" ") =Ule,)

with some ey, e, € T, and put A = {ex, e, (a € J)}.
Let v € Ty. Suppose that there exist e € A and a half-line H =
{wyptns0 € H(e) satisfying v = w,, for some integer m > 2. Put
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€ = (Wm—1 — Wy,). Since € # e = (wg — wy), we have U(é) < U(e).
Since o(—€) = v, Lemma 5.6 yields

U() S PHCL)\U(—E) SU(e) and U(W) N Q. = .

On the other hand, since we have

U(—ex) = [ [Ulea).

acJ

Lemma 4.26 implies that any half-line in H(—ey) meets e, for some
a € J. Let X be the set of vertices such that these half-lines pass
through up to t(e,). Then X is finite and we have U(v) N Q, , = & for
any v ¢ X. This concludes the proof. O

Proposition 5.30. The coverings
{UW)}ver, U (V) boes

of Lemma 5.12 are admussible open coverings of €).

Proof. By (5.1) and [BGR, §9.1.2, (G3)], it is enough to show the lemma
for {U*(v)}yery. By Proposition 5.24 combined with [BGR, Definition
9.1.1/1 (iii)] and [BGR, §9.1.2, (G2)], we are reduced to showing that
for any integers 7, s = 0, the covering

(5.3) {Qs " U (V) }oes

is an admissible open covering of the affinoid variety (2, ;.

For this, Lemma 5.29 and U*(v) < U(v) imply that the covering
(5.3) has a finite refinement. Since €, , N U*(v) is obtained from €,
by omitting finitely many open discs, it is a rational subdomain of
Q,.s. Thus the covering (5.3) has a refinement which is an admissible
open covering of €2, ;. Hence [BGR, §9.1.2, (G3)] implies that (5.3) is
admissible. 0

6. DRINFED MODULAR FORMS

6.1. Carlitz exponential.

Definition 6.1. We say an additive subgroup a of K is fractional
almost-ideal if it contains a fractional ideal b of A such that the index
[a : b] is finite [Boc, Definition 3.26]. When b can be chosen to be
nonzero, we say the fractional almost-ideal a is proper.

Lemma 6.2. Let a be any proper fractional almost-ideal of K. Then
there exists N, € 7 such that for any integer r < N,, we have

a+{zeCy ||zl <q¢ "} =Kypn+{zeCyx ||z <q¢ "}
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Proof. Replacing a by a nonzero fractional ideal it contains, we may
assume that a is a nonzero fractional ideal of A. Take any b # 0 € A
satisfying ba € A and any ¢ # 0 € ba. Put N, = deg(b) — deg(c). For
any integer r < Ny, we have —r 4 deg(b) — deg(c) = 0 and thus

A+{zeCyu |z < q*wdeg(b)*deg(C)} = Ko+{zeCy | |2 < qfrereg(b)fdeg(c)}.
Multiplying ¢, we obtain
A+ {zeCy||z| < g8} = K, + {z€Cy | |2| < ¢ "Hds®},
Since cA < ba, this yields
ba+{zeCy ||z < q—r+deg(b)} — Ko+ {zeCyx |z < q—r-‘rdeg(b)}‘
Then the lemma follows by multiplying b1. U

Definition 6.3. Let A < C, be an additive subgroup. We say A is
a lattice in C,, if it is discrete, namely for any p € R.g the subset
AN Dc, (0, p) is finite. We say an [F-subspace A < C, is an [ -lattice
if its underlying additive group is a lattice in C.

For any lattice A € Cy, and any p € Ro, let
ASP={AeA||N<p}, AP={NeA||\<p}
Then AS? < AS?" and A<* < A< for any p < p'.
Lemma 6.4. Any fractional almost-ideal a < K is a lattice in C,.

Proof. Let p € Roy. Take b # 0 € A satisfying ba € A. For any a € A

satisfying ¢ € a, we have § € a<* if and only if deg(a) < log,(p|b|),
which implies that aS? is a finite set. This concludes the proof. 0
For any lattice A € Cg, define
X
ean(X) =X H <1 - X) e C,[X].
AeA<a™\{0}
Definition 6.5. For any p € ¢©, put

T, = {Z an X" € C,[[X]]

n=0

lim |a,|p" = O} :
n—ao0
Then the Cy-algebra T}, is an affinoid algebra with the p-Gauss norm

f1, = max{la,|o" | n > 0}.

By [BGR, Proposition 6.1.5/2], the p-Gauss norm is a valuation on
T

pe
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Lemma 6.6. Let (G, |—|) be a normed group [BGR, Definition 1.1.3/1].
Then a sequence {a,}n=o0 in G is a Cauchy sequence if and only if

lim |a, — ap41]| = 0.
n—00

Proof. Suppose that {a,},>0 is Cauchy. Then for any ¢ > 0 there
exists N € Zxq such that for any n,m > N we have |a,, — a,,| < €. In
particular, for any n = N we have |a, — a,41]| < &, which means the
equality of the lemma.

Conversely, suppose that we have lim,, 4 |a, — an41| = 0. Then for
any € > 0, there exists N € Z-( such that for any n > N we have
\ay, — ant1| < €. In particular, for any m > n, this yields

|Cln - am‘ = ’(a'n - an+1> + (an+1 - an+2) +oeeet (a'm—l - a’m)| <eg,
which means that {a,},>0 is Cauchy. O

Lemma 6.7. For any lattice A € C,, and any p € ¢°, the sequence
{ean(X)}ns0 converges in the affinoid algebra T),.

Proof. We show that {ea ,(X)}n>0 is a Cauchy sequence. Fix a positive
integer d > log, p. For any \ e A\AS? | we have

X p z
el R ’1——’:1.
’ )\ ‘p |)\| )\ P
Thus for any positive integer n > d we have
X
a0 =leaaXl, [T 1=2| = leautX),
P

aeA<a™\A<q?

On the other hand, for any integers n,n’ satisfying n’ > n > d, we
have

ean(X) = ean(X, = fean0L| [T (1= )1

AeA<a \A<da"
< leaa(X)|og" ™.
Since lim,,_,o, ¢~ = 0, the lemma follows from Lemma 6.6. 0

Definition 6.8. For any lattice A € C,, and any p € ¢©, consider the
limit

li X

Jm ean(X)
in the affinoid algebra 7),. Since for any p < p’ the natural map 7, — 7},
is continuous, the limit is independent of the choice of p and defines an
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element
expp(X) € [T, = Co{{X}} = O(AL)),
peqQ
where C,{{X}} is the ring of entire series (that is, series of infinite
radius of convergence). We call exp,(X) the Carlitz exponential for
the lattice A.

Note that exp, (X) has the constant term zero and the linear term
X.
For any z € C,, satisfying |z| < p, the map

T, — Coy, f(X) = f(2)
is well-defined and continuous. This implies
expa(2) = lim ean().
Lemma 6.9. We have
expp (X +Y) = exp, (X) + exp, (V).
Moreover, if A is an F-lattice, then we also have
expy(cX) = cexpy(X)  for any ceF,

and exp, (X) can be written as

expy(X) = X + Z a, X7, a, € Cy.

n>0

Proof. Take any integer n > 0. Since ey ,(X) is separable and the set
of roots of ey ,(X) in Cy is the additive subgroup AS?" of Cy, [Gos2,
Theorem 1.2.1] implies that ey ,(X) is additive. Moreover, if A is an
F,-lattice, then AS?" < C, is an F -subspace and by [Gos2, Corollary
1.2.2] we see that ey ,(X) is F,-linear. Then the lemma follows by
taking the limit. O

Lemma 6.10. Let p € Q. Let f(X) € Cy[[X]] be a rigid analytic
function on D¢, (0, p) satisfying f(0) = 0. Let 0 = |f|sup, the supre-
mum norm on D¢, (0, p). Note that o € Qo by the maximum modulus
principle. Then we have

f(De(0,0)) = De,(0,0),  f(De,(0,p)) = De, (0,0).
Proof. By composing f with the isomorphism of rigid analytic varieties
D¢, (0,1) ~ D¢, (0,p), x+— wzx

with @ € Cy, satisfying |w| = p, we may assume p = 1.
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Let us show the first equality. Since |f(z)| < o for any x € D¢ (0, 1),
we have f(Dc, (0,1)) € D¢ (0,0). Conversely, take any y € D¢, (0, 0).

Write
X) = Z an X", a,€Cy,
n=1
and consider its Newton polygon. By [BGR, Corollary 5.1.4/6], we
have 0 = max{|a,| | n = 1}. Thus the Newton polygon of f(X) —y
has at least one segment of slope < 0, which corresponds to an element
x € D¢, (0,1) satisfying f(x) = y. This yields the first equality.

For the second equality, take any x € Dg_(0,1). Let b be the y-
intercept of the tangent line of the Newton polygon of slope —vy(z).
Then we have vy, (f(2)) = b, which implies f(Dg_(0,1)) < Dg_(0,0).
By inspecting the Newton polygon, it also follows that if |y| < o, then
any x € D¢, (0,1) with f(x) = y satisfies |z| < 1. This concludes the
proof. O

Definition 6.11. For any lattice A € C,, and any p € R., we put
= H
0¢aeA<P

Then we have oy, = p.

Lemma 6.12. For any lattice A € Co, and any p € ¢°, we have
on,p = sup{|exp,(2)| | z € De,, (0, p)}-

In particular, if p = p' then op, = op .

Proof. By [BGR, Proposition 6.1.5/5], the supremum norm of exp, (X)
on D¢, (0, p) coincides with | exp, (X)|,, which is equal to lim,,_, |ex »(X)],
by continuity.
Take any positive integer n > log, p. Note that |1 — %]p =1 for any
A € A\AS?. Since the p-Gauss norm is a valuation, we have

lean(X)]p =p 1_[

O£ eASP
X X
= 11— — 11— —
v 11 v 1l X\
0#NEA<P P XeA, |A|=p p
p
0#£ A eA<P

By taking the limit, the equality of the lemma follows. If p = p/, then
we have D¢ (0, p) 2 D¢, (0, p’), which yields the last assertion. O
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Corollary 6.13. For any lattice A € Cy, and any p € ¢°, we have
expy(De, (0, 0)) = De, (0,04,),  expp(De,, (0, p)) = De,, (0,04,).
Proof. This follows from Lemma 6.10 and Lemma 6.12. O

Lemma 6.14. For any lattice A < C,,, the sequence of additive groups

0 A Cow

expy

Co 0

18 exact.

Proof. First we show Ker(exp,) = A. For any A € A, we have ey ,(\) =
0 for all n > log,(|A|) and thus exp,(A) = 0. Conversely, for any
z € C,\A we have ep,(z) # 0 for all n. As in the proof of Lemma
6.7, we can show that the absolute value ey, (2)| is stable for any n
satisfying |z| < ¢". This yields exp,(z) # 0.

On the other hand, since op , = p we have lim, ,,, o5 , = 0. Thus

Corollary 6.13 implies that exp, is surjective. This concludes the proof.
O

Definition 6.15. Let G, = Spec(Cy[X]) be the additive group. We
denote by C' the Drinfeld module of rank one defined by the homomor-
phism of [F-algebras

dY: A - End(G,), t— (X —tX + X

and call it the Carlitz module. For any a € A, we write ®¢(X) :=
¢ (a)*(X).
Definition 6.16. We fix once and for all a (¢ — 1)-st root of —t in C,,

and put
7= ()t [ Ja—)

n=1
We call 7 the Carlitz period.
Note that 7A is an Fy-lattice in C,,. We define

ec(X) 1= expay(X) = Texpy (771 X).
Proposition 6.17. For any a € A, we have
Texp,(aX) = &F (7 exp (X))

in the ring Co,{{X}}.

Proof. By [Gos2, Proposition 3.3.1], we have

ec(aX) = ¢ (ec (X)),
from which we obtain
FexpalaX) = ec(arX) = 0% (c(7X)) = OY(7 expa(X)).
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6.2. Quotient by a discrete group action. Let K be a field equipped
with a complete non-Archimedean valuation | — | : K — Ryy. Let B
be an affinoid algebra over K and let G be a finite group which acts
on the K-affinoid variety Sp(B) from the left. Write the induced right
action of g € G on B as b +— b|,. We denote by

BY:={be B|b|l, =0 for any g € G}
the subring of G-invariants in B.

Lemma 6.18. (1) The ring BY is an affinoid algebra over K and
the map B¢ — B is finite.
(2) Let © : Sp(B) — Sp(B%) be the natural morphism of affinoid
varieties. Then it is a G-invariant surjection such that for any
x € Sp(B) the fiber 7Y (n(z)) agrees with the G-orbit of x.
(3) The map m induces a bijection

G\Sp(B) — Sp(BY).

(4) For any x € Sp(B) and y € Sp(BY), we denote by B} and
(BG)?? their complete local rings at x and y, respectively. Then
the natural map

B9, - (] B
m(2)=y

s an isomorphism of K-algebras.

(5) For any affinoid subdomain Sp(C) < Sp(B%), we have a natural
isomorphism C — (B®ga C)¢. In particular, the natural mor-
phism of sheaves Ogppay — (m4Osp(p)) ¢ is an isomorphism.

Proof. The assertion (1) follows from [BGR, Proposition 6.3.3/3]. Since
the map BY — B is a finite injection, we see that 7 is surjective. Then
[Sta, Lemma 15.110.8] yields (2), which implies (3).

Consider the exact sequence of B%-modules

(6.1) 0 BS B [T, B.

where the last map is given by b — (b|,—b),eq. For any flat B¢-algebra
C, this induces the exact sequence

0—=C—>B®p; C — 1l (B®s:C).
Hence we see that the natural map
C — (B®g, O)°
is an isomorphism. By [BGR, Proposition 7.2.2/1], this yields (5).



54 SHIN HATTORI

Moreover, for any y € Sp(BY), applying this to C' = (BG)yA we obtain
an isomorphism

(BS); — (B®s, (B);)°

Since B%-algebra B is finite, Hensel’s lemma gives a natural isomor-
phism of (B);-algebras

B®g, (B9, ~ |] B:
m(z)=y
from which (4) follows. This concludes the proof. O

Lemma 6.19 ([Dri], Proposition 6.4). Let Sp(C') < Sp(B) be an affi-
noid subdomain which is stable under the action of G. Then, via the
natural map Sp(CY) — Sp(BY), the affinoid variety Sp(CY) is an affi-
noid subdomain of Sp(B%).

Proof. Consider the natural commutative diagram of affinoid varieties

J

Sp(C) ——Sp(B)
X

where j is an open immersion. By [BGR, Corollary 8.2.1/4], it is
enough to show that j is an open immersion.

By Lemma 6.18 (3), on the underlying sets the map j can be identi-
fied with the natural map G\Sp(C') — G\Sp(B). Since Sp(C) < Sp(B)
is G-stable, it follows that j is injective.

On the other hand, let y € Sp(C%) and ¢ = j(y). By Lemma 6.18
(2), the injection j induces a bijection 75'(y) — 75'(y'). By [BGR,
Proposition 7.2.2/1 (ii)], this gives a G-equivariant isomorphism of K-

algebras
1_[ B/\ N 1_[ C/\
mp(z')=y mo(z)=y
Then Lemma 6.18 (4) shows that the natural map (BG);, — (CY))
is an isomorphism. Now [BGR, Proposition 7.3.3/5] concludes the

proof. O

Lemma 6.20 ([Dri|, §6, B). Let Z be a separated rigid analytic variety
over K and let ¢ : Sp(B) — Z be a morphism of rigid analytic varieties
over K which is G-invariant. Then there exists a unique morphism

Y : Sp(BY) — Z satisfying ¢ = o .
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Proof. Write X = Sp(B) and Y = Sp(B%). By Lemma 6.18, the
morphism 7 : X — Y is defined by a pair of a surjection between un-
derlying sets and an injection Oy — 7,Ox. This gives the uniqueness
of .

Let us show the existence of ¢. Let Z = | J,.; Z; be an admissible
affinoid open covering, so that X; := ¢1(Z;) is a G-stable admissible
open subset of X and {X;},c; forms an admissible open covering of
X. By [BGR, Proposition 9.1.4/2 (ii)], the latter covering has a finite
subcovering.

Since Z is separated, the diagonal map Ay : Z — Z x Z is a closed
immersion and the cartesian diagram

X6 X A

e -

XxZiC—>X><Zm>Z><Z

implies that X; is an affinoid variety on which G acts from the left.
Write X; = Sp(B;). Consider the natural finite surjection

T X; = Sp(B;) — Sp(BY) =: Y;.

Since X; is an affinoid subdomain of X, Lemma 6.19 implies that Y; is
an affinoid subdomain of ¥ and we have a commutative diagram

TP(Bz') —Y; = Sp(Bf)

Sp(B)
Since X; is G-stable, Lemma 6.18 (2) gives X; = 7 *(Y;). Since the
covering { X, };c; of X has a finite subcovering, we see that {Y;},c; covers
Y and has a finite subcovering. In particular, the latter covering is an
admissible open covering of Y.

Since ¢ is G-invariant, the map ¢* : O(Z;) — B; factors through
the subring BY and thus we have a morphism ; : Y; — Z; satisfying
Plx;, = iom;.

Now we claim 9;|y,~y, = ¥j|v,~y; for any i, j € I. Note that ¥; n'Y;
is an affinoid subdomain of Y. By Lemma 6.18 (5), the morphism
7 1(Y; nY;) = YinY; is identified with the quotient of the affinoid

variety 7 1(Y; n'Y;) by G. Since the map on their affinoid algebras is
injective, it is an epimorphism in the category of K-affinoid varieties.

(6.2) X;
X
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Moreover, the commutative diagram (6.2) and X; = 7= (Y;) yield
m (YinY;) =7 (YinY)) = 7 (Yin Y)).
Thus we obtain
Vi

Since 7|r-1(v;ny;) 7 1Y; nY;) > Y; nY; is an epimorphism of K-
affinoid varieties, the claim follows.

Therefore, by [BGR, Proposition 9.3.3/1] we can glue the morphisms
1; to obtain a morphism of rigid analytic varieties ¢ : Y — Z satisfying
¢ = 1 om. This concludes the proof of the lemma. U

Yint; © Tla-1(vinyy) = Gla-1(vinyy) = Yilviay; © Tlevinyy).

Definition 6.21. Let X be a separated rigid analytic variety over K.
Let I' be a group which acts on X from the left. We say that the
action of I' on X is discrete if there exist an admissible affinoid open
covering X = | J,.; X; and an action of I" on [ satisfying the following
conditions.

el

(1) For any v € I' and i € I, we have v(X;) = X ).
(2) For any i € I, the subgroup

Iy ={vel|v(X;) = X;} = Stabr(i)

is finite.
(b) For any i,j € I, the subset

Lij={vel'| Xinv(X;) # I}

is finite.
(4) For any i € I, the subset

rx; == | Jv(X)
~yel’
is an admissible open subset of X, and the covering {7(X;)} er

is its admissible open covering.

Let X, T and {X;}; satisfy the conditions of Definition 6.21. Then
for any 7, j € I, we have

(6.3) Lji={y"|vely}

Moreover, the group I'; acts on I'; ; from the left, and the group I'; acts
on I'; ; from the right.

Let 7 : X — Y := I'\X be the quotient map. We will give Y a
structure of a rigid analytic variety over K.
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Lemma 6.22. For any t,j € I, the natural map © : X — Y induces
bijections

Proof. Let x,2" € X;. If v € I satisfies y(x) = ', then 2’ € X; n X,
and thus v € I';. This concludes the proof. O

Write X; = Sp(B;). Define a structure of an affinoid variety over K
on Y; := 7(X;) via the bijection

pi - SP(Bi*) = T\Sp(By) = [\X; & m(X;) = Y

where the first arrow is the natural bijection of Lemma 6.18 (3). Then
the natural map X; — 7(X;) is identified with the underlying map of
the affinoid morphism associated with the natural inclusion B} * — B;.
Note that the rigid analytic structure on 7(X;) depends on the choice
ofiel.

On the other hand, since X is assumed to be separated, for any
i, 7,k € I we see that X; n X; and X; n X; n X, are affinoid subdomains
of X;. Write

X; N Xj = Sp(Bm‘), XN Xj N Xy = Sp<Bi,jJ€)7

so that B;; = Bj;. Note that the affinoid subdomain X; n X; < X;
is stable under the action of I'; n I';. Then we have a commutative
diagram of affinoid varieties

F,L' ij
(6.4) Sp(Bij) —=Sp(B;; )

i?j

N

Sp(B;) —— Sp(B;").
Lemma 6.23. The map v;; : Sp(Bz;ﬁFj) — Sp(B) is an open im-
mersion.
Proof. By Lemma 6.22, the map ¢; ; is injective. Take any y € Sp(BzéﬁFj)
and write z = ¢; j(y). Choose z € X;nX; € X, lying over y. By Lemma
6.18 (4), we have natural isomorphisms between complete local rings

I
(Bfi)%(ﬂ Biéw) B - [T Bhw

wel';z we(l;nlj)z

Fiﬁl—‘j

By [BGR, Proposition 7.3.3/5], it is enough to show that the natural

i\ A Fiﬁl—\j Al . .
map (B; ), — (B;; ’); is an isomorphism.
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Put I'y(x) := Stabr,(z) and (I'; n I';)(x) := Stabr,~r,(7). Then we
have a commutative diagram of complete local rings

(Bi)" (Maers i)

l |

e N Fiml"j
(BZ-J’I)(FZ F])( ) _— (Hwe(FlmFJ)x Bi,j,ﬂ)) 9

where horizontal arrows are isomorphisms. Since Sp(B; ;) is an affinoid
subdomain of Sp(B;), the natural map B}, — B/, is an isomorphism.
Thus we are reduced to showing I';(z) = (I n I';) ().

Since (I'; n I'j)(z) < T'(x), it is enough to show the reverse con-
tainment. Let v € I'; satisfy () = z. Since x € X, and z = y(z) €
X; N X,(j), Definition 6.21 (3) yields y e I'; and v € (I n I';)(x). This
concludes the proof. O

Consider the natural bijection

Z‘)j
so that p; ; = p;;. We have a commutative diagram of sets

inT; Pi,j
(6.5) Sp(B;;) —= Sp(B;"?) > 7(Xi n X))

R

Sp(B;) Sp(B}") —=—= (X)),

where the composites of horizontal arrows are 7 and the right vertical
arrow is the natural inclusion. Then Lemma 6.23 and [BGR, Corollary
8.2.1/4] imply that 7(X; n X;) is an affinoid subdomain of 7 (X;) via
the affinoid map ¢; ;.

For any 7 € I, define an equivalence relation ~; on I by

j’VZk <= W(XiﬁXj):ﬂ'(XiﬁXk).

Though the rigid analytic structure on m(X; n X;) depends on the
choice of a representative of the class of j, the universality of affi-
noid subdomains implies that it is unique up to a unique isomorphism.
Namely, for any j, k € I satisfying 7 ~; k, we have a unique isomor-

phism 7; ;5 : Sp(BE;ij) — Sp(BZ;?F’“) which makes the following
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diagram commutative.

Sp(B; ")~ Sp(BLY)

,J
Migk |
Lik

Fiml“
Sp(Bi,k *)
By the uniqueness, for any j, k,[ in the same class, we have

(6.6) Mijk = Milk © Mijl-

Thus we may fix one of these mutually compatible rigid analytic struc-
tures. For this, fix a complete set of representatives I(7) of the quotient
set [/~;. For any j € I, let j; € I(i) be the unique element satisfying
J ~i Ji- We consider m(X; n X;) as an affinoid variety via ¢, j,, so that
the affinoid ring of m(X; N Xj;) is Bg ;TF“ Then it follows that the map
pij can be extended to an isomorphism of affinoid varieties satisfying
the commutative diagram

I‘imI‘ji pi,ji

Sp(Bi,ji ) ——=7m(Xi n Xj)

”i,ji,jik
Pij

Sp<BF,ﬂF7 ) )

,L‘?j

By (6.6), this shows that for any j, k € I satisfying j ~; k, we also have
the commutative diagram

(6.7) sp(B{ ;‘.“Ff) L r (XA X))
ni,j,kiz
Pik
Sp(BZ inley,

Lemma 6.24. For any i, j,k € I, the subset 7(X; n X; n Xj) is an
affinoid subdomain of m(X;) such that all affinoid maps into 7(X;nX;n

X}) are represented by an open immersion Sp(Bz;;ijFk) — Sp(Bl).
Proof. This follows similarly to Lemma 6.23. O

As before, by choosing one of the mutually compatible rigid analytic
structures on m(X; N X; N Xj) as an affinoid subdomain of 7(X;), we
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obtain a commutative diagram of affinoid varieties

(6.8) Sp(BL M) P (X A X A X

1,5,k

|

Sp(Bl M) — > 7(X; n X),

4, Pi,j

where the left vertical arrow is induced by the natural map Bg ;mrj —

B;J(;F’ "% and the underlying map of the right vertical arrow is the

natural inclusion.
Lemma 6.25. For any i,j € I, we have
Yij=m(X)nn(X) = ] #(XnX0)
Yeli\l'i, /T
In particular, Y; ; is an affinoid subdomain of Y; = w(X;).
Proof. First note that

T(Xi) nw(X)) = 7(X;nTX)) = | 7n(Xin X)) = | m(XinXy).

vyell ’YEFZ’J‘

Moreover, for any v € I'; ;, the set 7(X; n X,(;)) depends only on the
image of v in I';\I'; ;/T';.

Let v,0 € I'; ;. If m(X; n X)) 0 m(Xi 0 X)) # &, then we can
find x € X; n X, jy, @’ € X; n X5y and p € I satisfying pu(z) = 2.
Then 2’ € X; n X5) N X)) 0 Xpuy(), so that g e I'; and py € 0T
This yields v € I';0I'; and thus 7(X; n X, ;) = 7(X; n X5¢)). Hence
we obtain the claimed decomposition. The last assertion follows from
[BGR, Proposition 7.2.2/9]. O

For any ¢,j € I and v € I';;, consider the isomorphism of affinoid
varieties

’7_1 X 0 X)) — X0 X
Since I'y-1(; = 7 'I'yy and T'y;) = 777!, this induces an isomor-

phism of affinoid varieties

_ Tinl s Tjnl 1,
7 SP(B ) ) = Sp(ByLgy ).

Hence, there exists a unique isomorphism of affinoid varieties

Gm-ﬁ : 7T(Xz M X,y(])) — 7T(Xj M X,Yfl(i)>
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that makes the following diagram commutative:

0;
(Xi 0 X)) =2 71X 0 X))

Py (5) T? ZTf’m—l(i)

I‘iml“ ) F]‘FWF ,1(1,)
Sp(Bisg) ") =g SP(Bj -1y -

Then the uniqueness yields

(69) 01-_7]%,}/ == 9]',2'7771.
Since the composite of p; ,(;) with the natural map Sp(B; ;) — Sp(B

is 7, it follows that 6; ; , = id on the level of underlylng sets

Lemma 6.26. For any i,5 € [ and v € ', the following diagram is
commutative.

Sp(BL) ——=Sp(B,7,")

Liy(4) T%lam

Tinl s —1¢; j
Sp(Bm(j)v(]))*>7 Sp(B 71(;)) J)

In particular, for any v € T; we have j ~; v(j) and n;iy; =7

W(J))

Proof. Since the natural map Sp(B;(j)) — Sp( ( ) is an epimor-

phism in the category of affinoid varieties, by (6. 4) the lemma follows
from the commutative diagram

Sp(B;) (By-11))

J J

Sp(Bi ) - Sp(B,-133),5)-

U

Lemma 6.27. For any i,j € I, the morphism 0, ;. depends only on
the class of v in the coset space I'\I'; ;/T';.

Fi NI
i,7(5)

W(j))
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Proof. Take any yeI';;, pel'; and v e I';. Put 6 = pyv. By Lemma
6.26 and (6.7), we have the commutative diagram of affinoid varieties

T(Xi 0 X)) m(Xj 0 Xs1(i))
Pi,6(5) ijﬁ*l(i)
;s 51 Ljnls—1,
Pi~N(j) Sp(Bi’é(j) 60)) E— Sp(Bj’;,1(i) B )) Piy=1(i)
pl Tlll
Linly () Lol -1
SP(Bis)") — 1 SP(Bjpaty )
This y1€1dS 91'73'75 = Hz-,m. ]

Since the set I'; ; is finite, the disjoint union of Lemma 6.25 is an
admissible open covering of the affinoid variety Y;;. Hence, by (6.3)
and Lemma 6.27 we obtain an isomorphism of affinoid varieties

Oj= |1 e Yis— Vi
e\l 4/T;
For any 14, 7,k € I, the intersection Y; ;1 := Y;; n Y, of two affinoid
subdomains of Y; is an affinoid subdomain of Y; ;.

Lemma 6.28. The system {0; ;}i jer of isomorphisms satisfies the con-
ditions of [BGR, Proposition 9.3.2/1]. Namely,
(1) 6,5086;; =1id, 6;,; = id.
(2) The map 0;; induces isomorphisms 0; ;. = Y; jx — Yjir satisfy-
ing 0; ik = 0kjio0ik;.

Proof. Note that {id} is a complete set of representatives of the coset
space I';\I'; ;/I";. Moreover, for any complete set of representatives I; ;
of the coset space I';\I'; ;/T;, (6.3) implies that {y~' | v € I, ;} is a
complete set of representatives of I';\I';;/I;. Then Lemma 6.27 and
(6.9) yield (1).

Let us prove (2). Since §; ; = id on underlying sets, we have 6; ;(Y; jx) =
(X)) nm(X;)nm(Xg) = Y r Henceit follows that 6; ;5 : Y ik — Yiik
is an isomorphism.

Let v e I'; ;. Then we have a covering

T(X; 0 X)) 0 (X)) = (7 (X0 0 X6 0 Xow)-
o6el’
Note that 7(X; n X,y n Xswy) # & only if 6 € I';, and thus this

covering has a finite subcovering. Moreover, Lemma 6.24 implies that
this is an admissible open covering of the affinoid subdomain 7 (X; N
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X)) nm(Xy) = 7(X; n X)) nYi of Vi, By Lemma 6.25, it is enough
to show the cocycle condition on each local piece 7(X; N X,y N Xswy)-
By Lemma 6.27, this is the same as showing that the composite

9k7j75—1,y 9] Qi,k,g . 71'()(z M X,y(j) M Xg(k)) — W(Xk N X(;—l(i) M X5_1'y(j)>
- 7T(Xj M wal(i) M X,yf15(k,))

agrees with 6; ;.
By (6.8), we have the commutative diagram

035,y
m(Xi 0 Xy 0 X)) —=7(X 0 Xy 0 Xymt50m)

Piy(4),6(k) TZ Zij,'y_l(i),'y_lts(k)
FimFW(]-)mF(;(M Fjﬁr,y_l(i)ﬁr,y_lé(k)
Sp(Bi ety ) SP(Binmiiatise) )

Since the composite
((5_1’7)_1 od 1 X; N X,y(j) N X(g(k) — XN Xg—l(i) N X(g—l,y(j)
= Xj 0 Xy 0 X150
agrees with 77!, we also have the commutative diagram

FmF ( -)ﬁra(k)
Sp(B;.; ).6)

kafa_l(i)mF6_1

671
) = SP(Bis1(5).5-140)

’y\ l(dl,y)l

Lyl 10l -1
YT H(4) vy~ 1a(k)
SP(Bj -1y sy )

’Y(j))

Hence we obtain 0y j s-1, 0 0; x5 = 6;~ on m(X; N X,y N Xsy). This
concludes the proof. O

Lemma 6.29. Let f : Sp(S) — Sp(R) be a finite morphism of K-
affinoid varieties. Suppose that f is a monomorphism in the category
of K-affinoid varieties, in the sense that for any morphisms gi,go :
Z — Sp(S) of K-affinoid varieties, the equality f o g1 = f o go yields
g1 = g2. Then f is a closed immersion.

Proof. Since R-algebra S is finite, it follows that S ®g S is an affinoid
algebra over K. The assumption implies that for any affinoid algebra C'
over K, any homomorphism S®gz S — C' of K-algebras factors through
the natural map p : S®zS — S defined by p(a®b) = ab. In particular,
we can find a homomorphism S — S ®r S of K-algebras which makes
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the following diagram commutative:

S®pS L8

S®rS.

Since p is surjective, this shows that p is an isomorphism. Now [Sta,
Lemma 10.107.1] implies that the finite map R — S is an epimorphism
in the category of rings. By [Sta, Lemma 10.107.6], the map R — S is
surjective. This concludes the proof. U

Proposition 6.30. Let X be a separated rigid analytic variety over K
equipped with a discrete action of a group I'. Then there exists a sep-
arated rigid analytic variety T\X over K and a I'-invariant morphism
m: X — I\X which satisfies the following universal property: for any
separated rigid analytic variety Z over K and a I'-invariant morphism
¢ : X — Z, there exists a unique morphism ¢ : T\X — Z satisfying
¢ = om. In particular, such a pair (T\X, ) is unique up to a unique
1somorphism.

Proof. Let Y be the quotient set I'\X and let 7 : X — Y = I'\X be
the quotient map. Put Y; = n(X;) and Y;; = Y; nY] as before. By
Lemma 6.28 and [BGR, Proposition 9.3.2/1], there exists a structure
of a rigid analytic variety on Y such that Y = [ J,_; Y; is an admissible
open covering with an isomorphism Sp(B}*) ~ Y;. Since we have a
commutative diagram of affinoid varieties

Xi M Xj E—— 7T(Xz M XJ)

lei,j,id:id

Xj M Xl —— 7T(Xj M Xz)7
[BGR, Proposition 9.3.3/1] implies that the natural maps
Xi = Sp(Bi) — Sp(B;*) ™ m(X;)

glue to define a morphism 7 : X — Y of rigid analytic varieties over K
whose underlying map is the quotient map.
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For any ¢ € I and v € I', we have I',;); = 7I'; and B{;’”Fi = BZFZ
Thus we have the commutative diagram of affinoid varieties

| S P (i)
Xy —=Sp(B,)) — m( X))

vll vll levmm

Sp(B;") —5— 7(Xi).

By the construction of Y, this means that 7 is [-invariant.

Let us show the universality. Since {Y;};s is an admissible open cov-
ering, by [BGR, Proposition 9.3.3/1] the uniqueness of the morphism
1 can be checked on Y;, and in this case it follows from Lemma 6.20.
For the existence, by Lemma 6.20 there exists a morphism ¢; : ¥; — Z
satisfying ¢|x, = ¢ o m|x,. For any i,j € I and v € I';;, we have

Plxinx, ) = ¢|X].ﬁxfl<i) o~y ~! and this induces a commutative diagram
Fimr'y<j) c wi|Yiyj
S <Bm(j) ) bJ
I'.n" — 1/
Sp(B.7 |17 )¢ Y,
p( JA—16) ) LT
Thus we obtain |y, , = ¥jly;, © 05; and we can find a morphism

VY — Z by gluing.

Finally, we show that Y is separated over K. For this, it is enough to
show that for any 7, j € I, the natural map ¥;nY; — Y; xx Y/ is a closed
immersion. By Lemma 6.25, we see that ¥; nY; =Y, ; is affinoid. Since
this map is a monomorphism of affinoid varieties over K, by Lemma
6.29 we reduce ourselves to showing that this map is finite. Moreover,
by Lemma 6.25 and the definition of 0; ;, this map is defined, up to a
unique isomorphism, by the ring homomorphism

A T Iinl s A
BrewBy’ - || By 0@ (i bil)s,

i,7(4)
veli\ls 4/T;

where the map b +— b[,-1 is the one induced by the affinoid map v~ :

X,(j) — Xj. Thus it is enough to show that for any i,j € I and v € I'; ;,
the ring homomorphism Bir i®KBJrj — Bf;g.l;”“ ) on each factor is finite.
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Note that we have a commutative diagram of affinoid algebras

Bi®x B; Bi )

| J

T T I'inD
B’L Z®KBJJ — B ‘

i,7(4)

~v(5)

Since the assumption that X is separated implies that the map

1 -1
Xin Xy = Xixx Xo) = Xixi X;
is a closed immersion, the upper horizontal arrow of the diagram is
surjective. Moreover, the map B} i®KBij — B;®xB;j is finite. Since

iF,;((\jl;W(j) is a subring of B; ;) and the affinoid algebra BZ-F i®KBij is
Noetherian, we see that the BZ-F i®KBij -algebra Bip%gw ) is finite. This

concludes the proof of the proposition. 0

6.3. Carlitz exponential as a uniformizer at co. For any r, s € Q,
consider admissible open subsets €2, and 2, ; of IP)}COO as in Definition
5.19.

Lemma 6.31. For any fractional almost-ideal a = K, the action of a
on §,. given by

ax Q. — Q. (a,z)—z+a
defines a discrete action of a on the separated rigid analytic space €,
with respect to the admissible affinoid open covering

{a+Q,|(s,a) € Z x a}.
In particular, for any (s,a) € Z x a, the subset
Asa) = {b€albta+Q,=0a+Q,,}
is equal to the finite group a<? .

Proof. Note that z — z + a defines an automorphism of the rigid an-
alytic variety A}c’:‘on. Since |z + al; = |z|; for any z € Cy, and a € a, it
defines an automorphism on the open subvariety €2,.. Hence the subset
a+ €, s is an admissible affinoid open subset of €2,. Moreover, Lemma
5.22 implies that the covering of the lemma is admissible.

To show that the action is discrete, we need to check the conditions
of Definition 6.21. The condition (1) follows from the definition. For
(2), take any s € Z. Since a(s4) = a(s), we may assume a = 0. Suppose
b€ ai,0). Then for any z € Q, ;, we have |z+b| < ¢°. Since |z| < ¢, this
yields [b| < ¢® and b € aS?. Conversely, if b € aS? | then for any z € (2,
we have |z +b|; = |2, = ¢"" and |z + b] < ¢*. Thus b+ Q,., < Q, ;.
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Since —b € a<?", this also yields the reverse containment and b € a(s,0)-
Hence we obtain a, o) = a<? which is finite by Lemma 6.4.

For the condition (3), first suppose that b € a satisfies (b+a+, ) N
(@ + Q) # &. Then for some z € Q,; we have b + z € Q, 5, which
yields |b| < ¢® and b€ a<?" = a(y4). Next for any (s,a), (s',a') € Z x a,
suppose that b € a satisfies (a + Q,.5) N (b+d' + Q) # &. Then for
some z € Q, and 2’ € , ¢ we have a + z = b+ o’ + 2/. This shows
that b + a’ — a € a satisfies |b + o’ — a| < ¢*° with sy = max{s, s’} and
thus b lies in the finite set a — @’ + a<.

Finally, let us check the condition (4). Take any (s,a) € Z x a. We
need to show that the family

{b+a+Q,.5|bea}

forms an admissible covering of an admissible open subset of €2,.. Since
the map z — 2z + a defines an automorphism on €2,, we may assume
a = 0. By Lemma 5.22, it is enough to show that for any s’ € Z, the
family

{Qon(b+Q5)|bea}

forms an admissible covering of an admissible open subset of €2, . By
the condition (3), this covering has a finite subcovering. Since the
subset

Qo n(b+ Q) ={2€Qy||z—0b <¢°}

is a rational subdomain of the affinoid variety €2, s, the family above
has the desired property. 0

Since €2, is separated, Proposition 6.30 and Lemma 6.31 allow us to
define a structure of a separated rigid analytic variety over C,, on the
set-theoretic quotient a\{2, such that the natural surjection 7 : Q, —
a\€2, is a morphism of rigid analytic varieties over C,. By construction,

<q°

we have 7(€,.5) ~ Sp(O(Q2,.5)* " ) and the covering

a\Q, = | J7(s)
SEZ
is an admissible affinoid open covering.

Since €2, is reduced, the ring O(Qm)agqs is reduced and a\2, is also
reduced. Moreover, the universal property of Proposition 6.30 shows
that any rigid analytic function f on €2, which is fixed by the action of
a defines a rigid analytic function f on a\Q), satisfying 7*f = f. Thus
we obtain a morphism of rigid analytic varieties over Cy,

— 1
exp, : A\, — A(C’in.
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Lemma 6.32. Let a be any proper fractional almost-ideal of K and let
Ny € Z be as in Lemma 6.2. Let r € Z be any integer satisfying r < Nj.
For the map exp, : Cy, — Cy,, we have

Q. =exp,'({z€Cq | |2| = Tagr})

Proof. By Corollary 6.13, we have exp,(Dg_(0,¢7")) = Dg_(0,0q4-).
Since exp, is additive and Ker(exp,) = a, this yields

exp, ' (Dg, (0,004-+)) = a+ D¢, (0,¢7")

= JDe, (a,q7")

aea
= | J pe (g,
reK o

where the last equality follows from Lemma 6.2. By Lemma 5.17, the
latter set is Q2\(2, and by taking the complement the lemma follows. [

Lemma 6.32 implies that for any proper fractional almost-ideal a of
K and any r € Zgy,, the morphism exp, factors through the open
subvariety

D¢, (0,044-)" ={2€Cyx | |2] = 0qq}
and the resulting morphism exp, : a\Q2, — D¢_ (0, 0q4-+)* is bijective.
We also have the commutative diagram of rigid analytic varieties

Q,

| e

a\QT % D(E:oo (O7 O'a7q—r> x .

Lemma 6.33. Let a be any proper fractional almost-ideal of K. For
any r € Z<n,, the morphism exp, : a\Q, — Dg¢_(0,044-+)* is quasi-
compact.

Proof. By Lemma 6.12, the function r +— o, , is decreasing. For any
teZ.,, put
Ac, (0, [0gg-r,0agt]) = {2 € Cx | Oag—r < |2] < 0ggt}.

Then {Ac, (0, [0aq—r,0aq—t])} ez, is an admissible open covering of
Dt (0,004-)".

It is enough to show that exp,'(Ac, (0, [0aqr,0aq-t])) is affinoid.
By Corollary 6.13 and Lemma 6.32, we have
eXpCTl(A(Coo (0, [Ua,q*” Ua,q*t])) = eXpa_l(DCoo (0, Tagt) N D(,COO (0, Ja,q*"’)x)

= (a+ Dc, (0,g7%)) n Q.
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Since 7 is surjective, we obtain
(expa (ACoo( [Uu T Uu,q*t]»)
((a+ D, (0,47)) n Q)
7(De, (0,¢7%) n Q,)
= 7(Qt) = Spw(ﬂr,_t)““ ),
which is affinoid. O

@;1(14@@(0, [Cag—r)0ag—t]) =T

I
3

Lemma 6.34. For any proper fractional almost-ideal a of K and any
r € Zgn,, the morphism exp, : a\Q, — D _(0,044-+) is a locally
closed immersion [BGR, §7.3.3].

Proof. Take any z € €2,.. By [BGR, Proposition 7.3.3/4], it is enough
to show that exp, defines an isomorphism between the complete local
rings at 7(z) and exp,(z). Note that 7 is given locally by taking the
quotient of an affinoid variety by a finite group. Since the action of a
on €, is fixed point free, the map 7 is etale by [Sta, Lemma 58.12.4].
Since Cy is algebraically closed, each complete local ring of a\(2, is
strictly Henselian and 7 defines an isomorphism between the complete
local rings. Thus we are reduced to showing that exp, is a locally closed
immersion.

Let w = exp,(z). Then exp, defines a homomorphism of C.,-algebras

exp, : @A}Cg“,w ~ Co[[X —w]] — @A}C;“,z ~ Co[[X = 2]]
which is given by exp}(X) = exp,(X). Hence we have
expg (X —w) = expg(X) — w = exp,y(X) — exp,(2) = expy(X — z).

Since the linear term of exp,(X) is nonzero, the map exp¥ is an iso-
morphism. 0

Proposition 6.35. For any proper fractional almost-ideal a of K and
any r € Zgy,, the morphism exp, : a\Q, — D¢ (0,04,+)" is an
1somorphism.

Proof. We know that the map exp, is a bijection. By Lemma 6.33 and
Lemma 6.34, it is also a quasi-compact locally closed immersion. Then
[BGR, Proposition 9.5.3/5] implies that it is a closed immersion. Since
it is bijective and the target is reduced, it is an isomorphism. 0

Definition 6.36. For any proper fractional almost-ideal a of K and
any z € {2, we define
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By Proposition 6.35, for any r € Z<y, it defines an isomorphism of
rigid analytic varieties

(6.10) a\Q, — D¢, (0,7 Lo 1 \{0}, 2+ uq(2).

a,q—"
Lemma 6.37. Let a # 0 € A and let m = deg(a). Write
X)) =coX + a1 X4+, X1, e A

Then deg(c;) = (m —i)q'.
Proof. We proceed by induction on m. If m = 0, then a € F; and
®Y(X) = aX, from which the lemma follows for this case.

Suppose that the lemma holds for some m > 0 and a € A has degree
m + 1. For any A € F, we have ®§,(X) = A®Y(X) and thus we may

assume that a is monic. Write a = tb + A\, where b € A has degree m
and A € [F,. By the induction hypothesis, we can write

PI(X) = coX + a1 X+ -+, X", deg(c;) = (m — i)'
Then we have
PY(X) = AX +co(tX + XU) + 1 (X + XD+ - + ¢, (tX + X"
— (A +tc)X + (co+ 7)) X+ -+ (cig + ¢t )XT + - 4 X
Since deg(ci—1) = (m —i+1)¢"' < (m—i+ 1)¢" = deg(c;t?"), the
degree of the coefficient of X9 is (m — i + 1)¢'. This concludes the
proof. U

Definition 6.38. Let a # 0 € A and let m = deg(a). Write
PC(X)=aX +a X'+ 4+ X, cneFy
Then we define

FulX) =~ = .
‘ - (I)g (%) a cm + Cm—qum_qm_l + v + a/qu_l.

m

Lemma 6.39. For any a # 0 € A, we have
ualaz) = fo(ua(z)) for any z € Q.
Proof. Proposition 6.17 yields

(a2) 1 1 1
A Texpales) ~ BEEeal)  ag (1)
a ua(z
1
= Cm, Cm—1 a
GO T et T T ae
ua(z)”"

Cm + C1ua(2)7" 0" 4 auy(2)77 L
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O

Lemma 6.40. Let a # 0 € A and let m = deg(a). Let p be an element
of q© satisfying p < ¢~*. Consider the closed disc

Do, (0,) = {ue Cun | Ju < p).
Then fq(u) € u?" O(Dc,, (0, p)) and

% =1 for anyue D¢ (0,p).
u

Proof. Write

PT(X) =X + a1 X+ + e X7

and p = ¢" with some r € Q. For any u € D¢, (0, p) and i < m, Lemma
6.37 implies

m—1

< gmaH@m =) o o < g

(6.11)  |eud" 7

Let f(z) = 72, so that f/(x) = CU_HBD=L 1f ¢ > 3, then f'(z) <0

for any x > 1 and
max{f(z) |z € Zz1} = f(1) = 1
If g =2, then f'(x) <0 for any z > 2 and

max{f(z) | z € Zz1} = max{f(1), f(2)} = 1.

Therefore, if r < —1 then the condition (6.11) is satisfied for any
integers m > 0 and ¢ < m. By the maximum modulus principle, we
obtain

m—1

lCpu? ™ 4t au? Ty <1 on Dey (0, p).

Since ¢, € F, the lemma follows. 0

6.4. Uniformizers at cusps.

Definition 6.41. Let I" be any arithmetic subgroup of GLy(K) and

v - {5 X))

I'y, = Stabp(), Ty =I'nU(K), bre= {meK' <(1) 910) EFOC}

e — <é bF{D) .

so that we have
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Lemma 6.42. Let " be any arithmetic subgroup of GLy(K). Then we
have
a b
Ty {(o d) e GLy(K)

Proof. Take any v = <(Z

c=0.

On the other hand, by Lemma 3.4 there exists a nonzero ideal n of A
such that I'(n) < I' is a subgroup of finite index. Then 4" € I'(n)nT'y, =
['(n), for some positive integer n. Then a" and d” lie in A* = F.
Since F, is algebraically closed in K, this yields a,d € F. O

a,deIFqX}.

Z) € I'y,. The condition y(0) = oo implies

Definition 6.43. Let I' be an arithmetic subgroup of GLy(K). By
Lemma 6.42, we have the homomorphism

Stn  Top — F7, (8 Z) o ad)

We denote by w(I') the order of Im(dr o).

Lemma 6.44. Let ' be any arithmetic subgroup of GLo(K). Then
br o s a proper fractional almost-ideal of K which is stable under the
multiplication of any element of Im(dr ) S Fy.

. 1 =z 1y (1 z+y .
Proof. Since (O 1> <O 1) = (0 1 ), we see that bro is an

additive subgroup of K. By Lemma 3.4, for some nonzero ideal n of A
the arithmetic subgroup I' contains I'(n) as a subgroup of finite index.

Since we have brg) e, = n and for UK) = {(é [1()} the natural

map
FnUK)/T(n)nU(K) - T'/T'(n)
is injective, we see that n is a subgroup of finite index of br 4, and thus

the latter is a proper fractional almost-ideal.
Finally, the equality

<a b) <1 x) (a b) ! _ (1 ad_lx>
0 d/\0 1 0 d 0 1
implies that br 4 is stable under Im(dr o). O
Lemma 6.45. We have
Ker(ér) = (Z(F,) n Iy,
where Z(FF,) is the center of GLy(A).
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Proof. The group on the right-hand side lies in Ker(dr o). Conversely,

take any v € Ker(dr), which can be written as v = (8 C;b) =

a 0\ (1 b a 0
wi x 4 —
<0 a) (0 1) ith some a € F; and b € K. Then v (O a) €

Z(F,) T and thus ylme = (1 b

0 1) e I't . This concludes the proof. [

Corollary 6.46. Let I' be an arithmetic subgroup of GLo(K). Let
b="br, and w =w(l'). For any r € Z<y,, we have isomorphisms of
rigid analytic varieties

Lo\ — Dey, (0,7 og - \O}, 2 up(2),

LA = De, (0,7 0, L \0}, 2 = ()"

Proof. Note that we have I'“\Q, = b\(2, and the first isomorphism
follows from (6.10).

By Lemma 6.45, the group Ker(dr) acts trivially on I'\2, and
thus the rigid analytic variety ', \(2, is the quotient of T'%\(2, by the
action of Im(dr ). The latter group is the unique cyclic subgroup of
F; of order w and by Lemma 6.44 it stabilizes b. Then the definition
of ep(X) yields

up(cX) = ¢ tup(X) for any c € Im(dp o)

and the isomorphism (6.10) induces the action of Im(dr ) on D¢, (0, o ;_T)\{O}
given by z +— ¢ 'z. Thus the quotient by this action is given by

De (0,71 oy - N0} = Do, (0, 7] o, £ )\0}, = 2
This yields the second isomorphism. 0

Definition 6.47. Let v € GLy(K) and let I' be an arithmetic subgroup
of GLy(K). Consider the proper fractional almost-ideal b, -1, o for the
arithmetic subgroup v~!'I'v. Define

UF’V(Z) - ubu—ll“u,oo (Z)’ ﬂn,,(z) = UF,V(Z)w(Vilry).

Lemma 6.48. Let I' be an arithmetic subgroup of GLy(K). Let & =

(161 g) € GLy(K). Then we have

be-1re0 = A7 Dbr,  w(E7'TE) = w(I),
UF7§(Z) = AD_I’LLFVid<AD_IZ), ﬂp’g(z) = (AD_I)w(F)fLF7id(AD_IZ).
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Proof. Since £(0) = w0, we have (£71T€),, = 71T, Moreover, from
the equality

A B\ 'fa b\ (A B\ [(a A (a—d)B+bD)
0 D 0 d 0 D) \0 d ’
we obtain bg-1r¢ oo = A Db o, Im(dg-11¢.00) = Im(Or,00) and w(E7'TE) =

w(I"). The first equality yields
(z) = AD 'uy,.  (AD™'2),

Wo—1re o

from which the lemma follows. U
Lemma 6.49. Let ' be an arithmetic subgroup of GLy(K). Let £ €

GLy(K) with & = (61 g) Put x = AD™ and y = BD™*. Write

|z| = ¢ and
b = b]“7oo, b/ == bfflrf,oo-
Moreover, for any integer r, write

1
q "’

1

b= Aot = IA o

Then, for any sufficiently small r, we have the commutative diagram
of isomorphisms of rigid analytic varieties

be1re.o0\ Q0 ——— De., (0, p)\{0}

{ |«

bF,OO\Qrfm m) D(Coo (07 pT*m)\{O}?

where g¢ 1s the restriction of the isomorphism

x’lu

- D 0 / — D 0 r—m ) = '
9¢ - D (0, p7) = Dey (0, prom),  u 1 + 7 expy(u)r—tu

Proof. By Lemma 6.48, we have b’ = 2716 and the isomorphism
Q= Qe 2 &(2)

induces the left vertical arrow.
For any p € ¢, this also yields

bexz—1b, 0<|b|<p beb, 0<|b|<p|z|

-r 1 G =l
beb, 0<|b|<pl|z|
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This implies p. = |z|p,—m and we have an isomorphism

D(Cm (Oap;) - D(Coo (0’ pT’—m)v u—z .

Hence, if r is sufficiently small so that p,_,, |7 exp,(y)| < 1, then we
have an isomorphism
v

1+ Texpy(y)v

D(Coo (O, pr—m) - D(Coo (07 pr—m)a v =

and we obtain the isomorphism

gf : D(Cso (07p;") - D(Coo (O7p1"—m)

preserving the origin.
Now Lemma 6.48 yields ur¢(z) = zurq(zz) and thus

ur;ia(§(2)) = uria(rz + y)
1 1

Texpy(rz +y) Texpy(rz) + Texpy(y)
1 1

uI‘,ic}(xz) * ﬁepr(y) - :Eflui’g(z) + 77—epr<y)
x  ur ¢(2)
= ’ = ge(ure(2)).
1 4+ 7expy(y)xtur ¢(2) 9e(ure(2))

This concludes the proof. O

Lemma 6.50. Let I' be an arithmetic subgroup of GLy(K) which is
P -torsion free. Then we have w(T'") = 1.

Proof. Take any v = (
If a # d, then we have

a b\  [a? bla®r+at2d+ -+ dT)
0 d/ \0O d?
_ (o b(E=F) Y (e
—\0 d ~\0 d
and thus 47! = id, which contradicts the assumption that I' is p'-
torsion free. Hence we obtain a = d and Im(dr o) = {1}. O

8 2) € 'y, so that a,d € F by Lemma 6.42.

6.5. Definition of Drinfeld modular forms.

Definition 6.51. Let f : 2 — C, be a function on . For any
€ € GLy(K) and k,m € Z, define functions f|x & and f[x£ on Q by

(Flem€)(2) = det(€)™(ez + d) *f(E(2)), €= (Z Z)
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and f| = fler—& We call f — flpn€ and f — f[i€ the slash
operators.

Lemma 6.52. Let &1,& be elements of GLy(K). Then we have
(f‘k,mfl)‘k,méé = f|k,m£152-

a; bz
C; dz
(Flem€)lemé2) () = det (&)™ (coz + do) ™ (fle.mér)(€2(2))

- det(6)" (s 4 ) * (@222 1 d) (6@

= det(£162) ™ ((cras + dica)z + (crby + didy)) " f((£262)(2))

Proof. Write &; = ( > Then we have

= (f|k,m§1§2)(z)
and the lemma follows. ]
Lemma 6.53. For any k,meZ, f € O(Q) and £ € GLy(K), we have
Flimé € O(9).

Proof. By Corollary 5.27, the function
Q- Co, 2z f(£(2))

is analytic. On the other hand, write £ = <Z Z) Then the function
z +— cz+d is analytic and nowhere vanishing on Q. Thus cz+d € O(2)*
and the lemma follows. U

Let I be an arithmetic subgroup of GLy(K) and k,m € Z. Let
f:Q — C, be a rigid analytic function on 2 satisfying

F(E) = det(r) ez 4 () forany = (& f) e

Let v € GLy(K). Then Lemma 6.53 yields flx v € O(£2). For any

ne (v 'Tv)Y, we have
(flem)(1(2)) = (flrmrn)(2) = (flemv)(2)-
By Corollary 6.46, we can write
(6.12) (Flemi)(2) = Y a(fv)urs(2)'s  ci(f,v) € Co,
1€Z

where >, ¢;(f,v) X" converges on a punctured closed disc of some
positive radius centered at the origin.
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Definition 6.54. Let f and v be as above. We refer to (6.12) as the
Fourier expansion of f for v. By abuse of language, we also call it the
Fourier expansion at the cusp [v(o0)] represented by v(c0), though it
depends on the choice of v.

We say f is regular (resp. vanishes resp. vanishes twice) at the cusp
[v(o0)] if ¢;(f,v) =0 for any ¢ < 0 (resp. i < 0 resp. i < 1).

Definition 6.55. Let I" be an arithmetic subgroup of GLy(K) and
k,meZ. Let f:Q — Cy be a rigid analytic function on 2. We say f
is a Drinfeld modular form (resp. cuspform resp. double cuspform) of
level I', weight k and type m if f satisfies f|p,,y = f, namely

(6.13)  f(v(2)) = det(y) ™ (cz + d)*f(z) for any v = <CCL Z) el

and f is regular (resp. vanishes resp. vanishes twice) at the cusp [v(o0)]
for any v € GLy(K).

Lemma 6.56. For any f € O(Q) satisfying (6.13) and any v € GLy(K),
the validity of each condition on c;(f,v) for v in Definition 6.55 de-
pends only on [v(0)] e T\P(K).

Proof. 1t is enough to show that if the condition holds for v, then it

A B .
0 D> € GLy(K). Since

(19€)T(1€) = (vE)'T(vE) and [lgmy = f, we may assume 7 = id.
Replacing f by f|mv and T' by v~'Tv, we may assume v = id.

Consider the isomorphism g of Lemma 6.49. Since we have (f|x,£)(2) =
(AD)™D7*f(&(2)) and g preserves the vanishing order at the origin,
the lemma follows from the commutative diagram of Lemma 6.49. [

holds for yv¢ with any v € I" and & =

The C,-vector spaces of Drinfeld modular forms (resp. cuspforms
resp. double cuspforms) of level I', weight k& and type m are denoted
by

Mim(D),  Sem(D), St (D).
When m = k — 1, we say a Drinfeld modular form is of level I' and
weight k, and we drop m from the subscripts of the spaces above.

Lemma 6.57. Let ' be an arithmetic subgroup of GLy(K) and k,m €
Z. Then we have My ,,(I') = 0 if k # 2m mod |Z(F,) n T|.

Proof. Take any v = (g

2) € Z(F,) nT'and f € Mg,,(I"). Then we

have
f(2) = f(4(2)) = a" 2" f(2),

from which the lemma follows. O
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Lemma 6.58. Let p € ¢© and a € C,,. Let f € O(Dc,(a,p)\{a}).
Then f is bounded on D¢, (a,p)\{a} if and only if f uniquely extends
to an element of O(Dc,,(a,p)).

Proof. We may assume a = 0 and p = 1. By the maximal modulus
principle, the “if” part is clear.

Let us consider the “only if” part. Since O(D¢, (0,1)) = Co(x) is a
PID, its element with infinitely many zeroes is zero. This implies the
uniqueness of the extension of f.

For the existence, write f = > _, a,2" with a, € C,. Let P be the
Newton polygon of f in the z-y plane and put

Py =P n{(z,y) e R?| 2 <0}

Let 3 be the set of slopes of P<y and let s; € Q be the [-th largest
element of . Taking any o, € Q N (8741, ;) for [ < |¥| and 0, € Q N
(=00, 55|) otherwise, we can find a sequence {0;};> in Q\X satisfying
lim; ., 0; = —o0. In particular, there exists L > 1 satisfying o; < 0 for
any [ > L.

Note that, if z € C} satisfies t = v,(2) = 0 and —¢ is not a slope of
P, then vy, (f(2)) agrees with the y-intercept of the tangent line of P of
slope —t. By assumption, there exists M € R satisfying v, (f(2)) = M
for any z € C5 with v,(z) = 0. Then for any [ > L, the polygon P«
lies above the line y = o;z + M. Since lim; ., 0; = —o0, this forces
a, = 0 for any n < 0 and thus f € Cy(x). O

Lemma 6.59. Let p € q¥ and a € Cy,. Let f € O(Dc,(a,p)). Then
f(a) =0 if and only if
lim sup |f(2)| =0.

o—0 z€Dc, (a,0)\{a}

Proof. We may assume a = 0 and p = 1. Write
f= 2 apz”, a,€ Cy

n=0
with lim, o |a,| = 0. If f(0) = 0, then ay = 0 and we can write f = xg
with g € C,{(z). Let |g|sup be the supremum norm of ¢ for C.(x). For
any o € ¢¢ n (0,1] we have
sup — [f(2)] < olglsup
z€Dcy, (a,0)\{a}
and thus the value on the left-hand side goes to zero.

Conversely, suppose that f satisfies the limit condition of the lemma
and ag # 0. Then we have |ag| > |f(2) — ag| for any z # 0 € C,, with
sufficiently small |z|. This implies | f(2)| = |ao| > 0, which contradicts
the assumption. O
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Lemma 6.60. Let I" be an arithmetic subgroup of GLy(K), k,m € Z,
ve GLy(K) and s = v(0). Let f e O(Q) satisfying (6.13).

(1) [ is reqular at the cusp [s] if and only if
sup |(f|emv)(2)] < +o0

2eQ),
for some sufficiently small integer r.
(2) f vanishes at the cusp [s] if and only if

i sup (g ) (2)] = 0.

2EQ
Proof. Let b = b,-1p, o, and let r be any integer satisfying r» < NN,. Put
p= |7’r|_10;;,r.
By Corollary 6.46 we have an isomorphism
(v T\ — De,. (0,p)\{0}, 2 — u=ur,(2).

Put F' = flimv. Let F be the rigid analytic function on (v~1T'v)4\Q,
that F induces. Since the natural map 7 : Q, — (v ~'Tv)%\Q, is sur-

jective and F' = 7*(F’), we have
sup |[F(z)] = sup  |F(2)].

2€Qp 26(v—1Tv)L\Q,

Then the assertion (1) follows from Lemma 6.58.

Moreover, the inequality oy, ,— = ¢~ of Definition 6.11 implies p — 0
when r — —oo. Then the assertion (2) follows from (1) and Lemma
6.59. U

Lemma 6.61. Let IV < T" be arithmetic subgroups of GLy(K). Then
we have

Mk7m(r) c Mk’m(F’), Sk,m(l”) c Shm(rl).

Proof. If f e O(Q) satisfies f|rmy = f for any v € I, then it holds for
any v € ['. Then the lemma follows from Lemma 6.60. U

Lemma 6.62. Let ' be an arithmetic subgroup of GLy(K) and let
ve GLy(K). Then the map f — f|pmV induces isomorphisms

My (D) = My (v 'TV),  Spn(T) = Spm (v Tv).
Proof. For any f € M ("), the function g = f|x v satisfies

glem(@ ) =g for any v eT.

Moreover, Lemma 6.60 shows that for any £ € GLy(K), the function g
is regular (resp. vanishes) at the cusp [£(o0)] if and only if

sup |(Fli€) () < +o0 resp. limsup |(Fls)(2)] = 0

2€Q, 2€Q,
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if and only if f is regular (resp. vanishes) at the cusp [v€(c0)]. This
concludes the proof. O

Lemma 6.63. Let IV < T' be arithmetic subgroups of GLy(K). Then
the group I'/T" acts on the Cy-vector spaces My, (1) and Si.m (1) by

f = f|k,m’77 Y e I

Moreover, we have
My (T) = Mg (YT Sppn(T) = S (T

Proof. For any f € O(2), we have fli,y = f for any v € I' if and only
if it holds for any v € IV and f is fixed by the action of I'/I". Moreover,
for any v € I' we have yGLy(K) = GLy(K), and Lemma 6.60 shows
that for any v € GLy(K), the function f|g ., is regular (resp. vanishes)
at the cusp [v(o0)] if and only if

sup [(flkmyv)(2)| < +o0 resp. lmsup |(flgmyv)(2)] =0

2, —® z2eQ),

if and only if f is regular (resp. vanishes) at the cusp [yv(o0)]. This
concludes the proof. O

7. OPERATORS ACTING ON DRINFELD MODULAR FORMS
7.1. Double coset operators.

Lemma 7.1. Let 'y, T'y be congruence subgroups of GLy(A). Let & €
GLy(K). Put T3 = £7'T1& nTy. Then the map

[3\['y — I1\['1€Ty,  Tzyp = [iéye
is a bijection. Moreover, the coset space I'1\I'1&Dy is finite.

Proof. The map of the lemma is well-defined and surjective. For the
injectivity, suppose that elements vo,75 € I'y satisfy 1§y = T'1€75.
Then v, = £ 1v&7 with some 7, € T'y. Then we have £1v,£ € T'y and
Y5 € I'37a.

Moreover, by Lemma 3.4 there exist nonzero ideals ny,n, A satis-
fylng F(nl) - f’lflf and F(ng) c I'y. Then F(nl mng) cI'sc GLQ(A)
and thus [’y : I's] < 400, which yields the latter assertion of the
lemma. 0

Lemma 7.2. Let T'y, Ty be congruence subgroups of GLy(A). Let & €
GLy(K). Let k,m be integers. Write

Pyl = [ [Taée
=1
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Then we have a Cy-linear map
Mym(Ly) = My (L), f = flem[T1€D:] = Z fleméi

which induces a map Skm(I'1) = Skm(L2).

Proof. Note that the map of the lemma is independent of the choice of
&. For any vy € 'y, we have

iy n iy = (1 #7), Thély = L[Flfﬂz

and the set {&;2}; is also a complete set of representatives of the coset
space I'|\I'1£['y. Thus we have

(Z f|k,m§i)\k,m’72 = Z f’k,mfi’h = Z f’kmfz

Now the lemma follows from Lemma 6.60. O
7.2. Hecke operators.

Definition 7.3. Let n be a nonzero monic element of A and let © be
a subgroup of (A/(n))*. Define

rd(n) = {,y € SLy(A) ’ vmodne (? (i)> } :

For © = (A/(n))* or © = {1}, we denote it by

Po(w) := 6" (), Taw) =3 (w),
so that we have

I (n) €T (n) < To(n).
Since they contain I'(n), they are congruence subgroups of GLy(A). In
particular, for n = 1 we have I'g(n) = I';(n) = SLy(A).
Note that the natural map SLy(A) — SLy(A/(n)) is surjective.

Lemma 7.4. Letn e A, be a nonzero element and let Q € A\F, be any
monic irreducible polynomial. Put Fo = A/(Q). Let J(n,Q) < I'1(n)
be any subset such that the map

PFQN\{(0: 1)} (@) .
J(naQ)_’{ Igl(IFQ) Q1) }7 v (1:0)y

15 bijective. Then we have

5w (o o) 18m = [T rfme 1@ = (g o) Q)

¢el(n,Q)
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Proof. Put I = T'§(n). Then

-1
r’:=rm<é g) r(é g)Z{VZ(Z Z)eF‘szmon}.

When @ | n, we have natural bijections
, a QA/MA a A/mnA
F\F—’{(O Qazl )‘GEG}\{(O CL/_l) CLGG)}
where the last map is given by (1:0) — (1 :0)y. On the other hand,

— PH(Fo)\{(0: 1)},
when @ 1 n, we have natural bijections

= { (0 0) DstalEe) - PEe), v 1:0,

Thus Lemma 7.2 concludes the proof. U

Example 7.5. Let ne A, and let Q € A\F, be any monic irreducible
polynomial. For any € A, put

e (b v o= -6 )

When @ tn, we choose R, S € A satisfying RQ) —nS = 1 and put

e (19 ) erimn o 9)oen (2 2) (3 )

Then the set

_ {&s | deg(B) < deg(Q)} (Q[n),
1(n,Q) = { (65 | deg(B) < deg(Q)} U {6} (QFm)

gives an example of the set I(n, Q) of Lemma 7.4.
Let k,m € Z. Since 'S (n) < SLy(A), we have
My (TE(W)) = Mi(TE(1)),  Seon(TE(w) = ScTE(w),
Definition 7.6. Let £k € Z and let ) # 0 € A be a monic irreducible

polynomial. Define

To : Mp(TG(n)) — Mp(TE (), f> ) f

15w (5 ) r5e)

We call it the Hecke operator at ). When @ | n, we also write Uy for
To.
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By Lemma 7.4, the definition of T is independent of © and thus for
any subgroups © < ©’ of (A/(n))* we have commutative diagrams

Mi(T () —2= My(T' () Si(T () —2= S (T (n)

| | | |

MG () —= Mp(TF (), ST (1)) ——= Si(IF(n)),

where the vertical arrows are natural inclusions.

Lemma 7.7. Let Q, Q' € A\F, be monic irreducible polynomials which
are coprime to each other. Then

| e 1 0 e
TQ 0] TQ/ = lro (n) <O QQ’ PO (n) .
In particular, we have Ty o Ty = Ty o Tg.
Proof. For T' = I'§ (n) and any nonzero R € A, put

-1
1 0 1 0
- (3 9) (5 8) o

I =]]Tqm, T =]]Ten,

el jed

Write

By Example 7.5, we may assume 7;,7; € I'i(n). Put

(1 o\ /1 0
ni,Q = 0 Q Uh 0 Q)

We claim that 7); can be chosen to satisfy 7; - € I'1(n), 7;,¢r = id mod
Q" and the set {n; o | i € I} forms a complete set of representatives of
I'o\I'. Indeed, when @ | n the choice of Example 7.5 suffices. When
Q1 n, we can find R, S € A satisfying RQ —n(Q’)*>S = 1 and replacing
N in Example 7.5 by (nig%g f) shows the claim.

With such a choice of 7n;, we have
]_ O ) 1 0 /o ]- 0 . /
ur (0 Q) G (0 Q’) = U P(o QQ’> el
i€l, jeJ wel, jeJ

Suppose that we have yn;, qnj, = mi, 1), With some vy € T'qqy, 11,12 € I
and 71,72 € J. By Lemma 7.4, if j; # j5 then the set

{771'1,6277;'17771'276277;‘2777; (] i j17j2)}
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forms a complete set of representatives of I'o/\I'. Since I'ggy < I'ey,
this yields v = id, j; = j» and i; = i5. By Lemma 7.1 these unions are
disjoint, from which the lemma follows. U

7.3. Diamond operators. Let n be a nonzero element and let © <
(A/(n))* be a subgroup. For any d € A which is coprime to n, we can

find ny € T'o(n) satistying ny = (z Z) Then we have

(7.1) 17 T (n)ia = TG (n).

Lemma 7.8. Let d € A be an element which is coprime to n. Then
f = flena defines endomorphisms

(D) : M(TG (n)) — My(LG (1),  {d)n: Si(T5(n)) — Su(T5 (),
which depend only on d mod n and satisfy
(dyn 0 {d D = {dd )y = {d' ) 0 {dn.

Proof. Since the map

To(n) — (A/(n)", (Z Z) s dmod n

is a group homomorphism with kernel I';(n), if d and d’ are elements
of A which are coprime to n and satisfy d = d’ mod n, then with any
choices of 1g and 1y we have ny € T'y(n)ng < I'S(n)ng. Thus the lemma
follows from Lemma 6.62 and (7.1). O

Definition 7.9. The operator {d), is called the diamond operator of
level I'§ (n).

Since the definition of (d), is independent of O, for any subgroups
O < O of (A/(n))* we have commutative diagrams

My(T® (0) “2% M(DE' (n))  Sp(T€' (n)) ~2 S4(T¥' (n)

| | | |

MTE() ——= My(TE (W), Su(T§(n)) ——= SeTE(w),

where the vertical arrows are natural inclusions.

Lemma 7.10. Let © be a subgroup of (A/(n))*. Then f e Mg(I'i(n))
lies in My(T§(n)) if and only if {d)of = f for any d € A satisfying
dmodn e ©.
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Proof. The group I'§ (n) is generated by its subgroup I'y(n) and
{na|de A, dmodne 6},
from which the equivalence follows. O

Lemma 7.11. For any monic irreducible polynomial Q € A\F, and
any d € A coprime to n, we have

5w (5 ) 180 = 5w (5 o) mrso.

Proof. Write ny = (Z b) € I'g(n). Then

d

4 (1 0 ~ (ad—0bcQ bd(l—-Q)
Na\og @)= ac(Q — 1) ad@Q —bc |-
Suppose @ 1 a. We can find § € A satisfying deg(3) < deg(Q) and
afl = bmod ). Then we have

ad —bc@ bd(1—Q)\ (1 B\

ac(@Q —1) ad@ —bc ) \0 Q

1 fad—beQ bA(1—Q)\ (Q —8

T Q\ac(@—1) adQ—bc)\0 1
~(ad—=bcQ b —bd+dQ (b —ap)
S \ac(Q—-1) —acf+ad+cQ HaB —0) )’

which lies in I'y (n) since ad —bc =1 and n | c.
Suppose @ | a. Since ad — be = 1, it forces @ t n. We can find
R, S € A satisfying RQ) —nS = 1. Then we have

ad —beQ bd(1-Q)\ (RQ S\
ac(@Q — 1) ad@ — be nQ Q

1 fad—beQ b(1-Q)\[ Q -8

T Q \ac(Q@—1) adQ —bc ) \—nQ RQ

(ad—=bc@Q —nbd(1 - Q) —S(Q tad —bc) + bdR(1 — Q)
~\ac(Q —1) —n(adQ —be) —SQtac(Q — 1) + R(adQ — bc)) ’

which again lies in I';(n).
By Example 7.5, this implies

o (5 ) s =rsm (; 4)rom.
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Since 77;1 = <_dc _ab>, the containment above for 7, gives

I8 (n)na <(1) g) 03T (n) < T (n) ((1) g) re(n).
By (7.1), this yields

1 0 4(1 0
5w (5 o) rom =g (g ¢) mrs
and the lemma follows. U

Lemma 7.12. For any monic irreducible polynomial Q@ € A\F, and
any d € A coprime to n, we have

Tgoldy, ={dywoTy on M(LF(n)).
Proof. By Lemma 7.11 and (7.1), we have

5w (3 ) 8= (o ) mrdon)
=I5 (W)nang* ((1) g) nal'g (n)

Combining this with (7.1), we obtain

[T 00ména= [] nlomé= ] T8®mmae,

£el(n,Q) £el(n,Q) £el(n,Q)

from which the lemma follows. U

Remark 7.13. For any character x : (4/(n))* — CZ, we denote by
M;.(To(n), x) the subspace of M (I'1(n)) on which {(d), = x(d)id for
any d € (A/(n))*. Contrary to the case of elliptic modular forms,
the Cy-vector space M(I';(n)) is not necessarily the direct sum of
M;(Tg(n), x). This is because the order of (A/(n))* may be divisible
by p = char(C,) and a representation of (A/(n))* over Cy is not
necessarily semi-simple. Instead, for any subgroup © < (A/(n))* of
index prime to p, we do have a decomposition

M(Tyi(n (—DMk (T (n

where the sum runs over the set of characters (4/(n))*/© — CX.
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7.4. Type operators.

Definition 7.14. For any nonzero monic polynomial n € A, let
1 0
GT(n) = <O qu) 'Y (n).

When © = (A/(n))* or {1}, we write it as GI'o(n) or GT';(n). When
n =1, we have GT'y(n) = GT';(n) = GLy(A).

Definition 7.15. For any A € F, the element 7, = (é ())\) satisfies

(7.2) ' Te () = I (n).
By Lemma 6.62, the map f — f|x7)\ give endomorphisms

A} My(TE (n)) — My(TG(m)),  {A} = Se(T5 (n)) — Sk(IG (n),
which we call the type operators.

Since the definition of {A} is independent of ©, for any subgroups
O < O of (A/(n))* we have commutative diagrams

My(P® (0) — 2 Mu(D' (n))  Sp(1€' (n)) — - S4(T' (n)

| | | |

MTE() —= My(TE (W), SuT§(m) —= SeTE (),

where the vertical arrows are natural inclusions.
For any integer n, we denote by

M(TG (m){n},  Sp(TG (n){n}

the subspaces of M (T'§(n)) and Sy,(I'§ (n)) on which {\} acts by A" for
any A € F, respectively.

Lemma 7.16. For any integer m, we have
M (GG (n)) = My (LG (n) {k—m—1}, Sy (G (n)) = Si(T5 () {k—m—1}.
Proof. For any f € My(I'$(n)), we have
({IAN(2) = AT (A 12).
On the other hand, My ,,(GT'§(n)) is the subspace of M(T'§(n))

consisting of f satisfying f|,,7» = f for any A € [y . Then the lemma
follows from

(flemm)(2) = A" FF(A T 2) = XA (2).
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Lemma 7.17. For any monic irreducible polynomial ) € A\F,, any
d € A coprime ton and any A € F, we have

Too{A\} ={AoTy, (dnof{r}={A}oldn.
In particular, for any m € Z, the operators T and (d)y, for My(T§(n))
induce endomorphisms

Tq + Min(GTG (0)) = My (GTG (n)),
(dyn + Min(GTG (1)) — M (GTG (1))
which stabilize Sy (G (n)).
Proof. By (7.2), we have

5w (5 o) r8mn =18 (5 o) e

-3 o g) 5w = s (5 ) 8,
This and (7.2) give

[] T0men = [] TEmms,

&el(n,Q) cel(n,Q)
which yields the first equality of the lemma. For the second, the element

Ng = <CCL 2) € ['p(n) satisfies

_ bA
0\ lndT)\ = (C)\al d) e Lo(n).

Thus the element 75 'ny7y also acts on M, (I'§ (n)) as (d), and we obtain
the second equality. The last assertion follows from Lemma 7.16. [

Example 7.18. Let Q € A\F, be a monic irreducible polynomial.
Then the element ng := (? g) in Example 7.5 acts on M (T'§ (n))
as the diamond operator (Q),. Thus, for any f € My(I'S(n)) we have

5 estr-aeai) £ () + QHQuQ2) (Q 1),
& Zocer<aesc) | () (@ [ ).

For © = (A/(n))*, by Lemma 7.10 the action of (@), on My(Iy(n)) is
trivial. Hence, for any f € My(Ig(n)) we have

5 St | (52) + Q11(Q2) (@1,
& Sasaesiar | () (@ [ m).

(Tof)(2) =

(To)(z) =
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Remark 7.19. In the literature, there are different normalizations
of Hecke operators. We adopt the one in [Béc, Example 6.13] which
is parallel to the case of elliptic modular forms as [DS, Proposition
5.2.1]. On the other hand, as [Gosl, Remark 3.6] and [Gek2, (7.1)], the
operator Q7 in our notation is sometimes called the Hecke operator

at Q.

7.5. Hecke operators for non-irreducible polynomials. As in the
classical case [Miy, §4.5], when the level is T'g(n) there is a standard
way to define Hecke operators at () even when (@) is not irreducible. For
this, let n € A be a nonzero element and

Ao(n) = {(‘CL Z) e My(A)

Lemma 7.20 ([Miy|, Lemma 4.5.2). For any { € Ag(n), there exist
unique Q1, Qs € A, such that Qy | Qs, (Q1,m) = (1) and

[y(n)€Ty(n) = To(n) (%1 52) Fo(n).
Proof. Put

() e, 212

on which My(A) acts via the left multiplication. Note that we have
ELy < Ly.
For any free A-submodules L; 2 Ly of rank two of A2, write

[L1 . LQ] = AIIIIA </2\ Ll//2\L2> .

For any L; 2 Ly 2 L3, we have [L; : L3] = [Ly : Lo][Ls : Ls].
Let D = det(&). Then
[L:&Lo] = [L : EL][EL = ELo] = (D).
Thus we can find a basis wy, wy of the A-module L satisfying
ELy = A(aw,) ® A(bws), al|b, ab= Dn

with some a,be A,.

Since the (1, 1)-entry of £ is coprime to n, we have {Ly & tL for any
non-constant divisor ¢ of n. This yields (a,n) = (1) and n | b. Since the
A-module L/Ly is isomorphic to A/(n), the image of Ly by the natural
map

(7.3) L— L/¢Ly~ A/(a)w, @ A/(D)ws

c=0modn, (a,n)= (1), ad—bceA+}.

u,veA},
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equals A/(a)w; @ (n)/(b)ws. Thus we obtain
LO = Aw1 &) A(l’lwg).
Put

b
L' = A(aw;) ® A(ng),

so that Lo < L'. Since the image of £¢L by the map (7.3) is killed by n
and (a,n) = (1), we have £L < L. By the equalities [{L : £Lg] = [L :
Lo] = ¢%&™ = [L' : £Lg], we obtain £L = L.

Now we define 71,72 € GLy(A) by

= (- () (0)€) - (o)

so that
¢ = a 0
- 71 O g Y2-

By replacing w; with its multiple by F, we may assume det(y1) = 1.
Since det(§), n, a, b are all monic, we also have det(v,) = 1. Since

wy € Lo and & ((1) € £Lg, we have 7; € T'yg(n) for i = 1,2. Hence we

obtain the equality of the lemma with (Q1,Q2) = (a, 2).
If we have two pairs (@1, Q2) and (@}, Q%) as in the lemma, then we
have

GLo(A) (%1 682) Glo(A) = GL(A) <%’1 68'2 > GLo(A).

By the theory of Smith normal forms, it forces @Q); = @} and Q3 = Q5.

This concludes the proof of the lemma. 0

Definition 7.21. For any monic polynomials @, @1, Q2 € A satisfying
Q1| Q2 and (Qq,n) = (1), we define

1@ = [row) (4 )1,
TQ) = ), T(Q:,Q),

Q1Q2=Q

where the sum runs over the set of pairs (@1, Q2) satisfying

Q17Q2 € A-i-a QlQZ = Q7 Ql | QQ? (len) = (1)

When @ is irreducible, we see that T'(Q)) agrees with Ty as an endo-
morphism of My (T'o(n)).
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Remark 7.22. As in the proof of [Miy, Lemma 4.5.7], we can show

T(QT(Q) = T(Q)

for any @, since our Hecke operators act on vector spaces over C,, which
has characteristic p. That is, Hecke operators acting on Mg (I'g(n)) are
multiplicative. This indicates that the Galois representation attached
to a Drinfeld eigenform is one-dimensional, as Bockle proved in [Boc].

8. EXAMPLES OF DRINFELD MODULAR FORMS

8.1. Goss polynomials.

Lemma 8.1. Let n > 1 be an integer and let tq,...,t, be indeterma-
nates. Write

n n

FX) =X =t) =Y a X", aieZlt,... 1.
i=1 i=0
For any integer k =1, let S, = Y. t*. Then we have

i=1"1

Sk+alsk71+"'+ak,151+kak =0 (kén),
S+ a1Sk—1+ 4+ @p_1Sk—ns1 + @ Sk—n =0 (k > n)

Proof. We have
F1(X) =D (n—i)a X"
i=0

On the other hand, if we embed Q(¢4, ..., t,)(X) into Q(t1, ..., ,)((1/X))
naturally, we have

Multiplying f(X), we obtain

f’(X) = Z aiX"_i Z % — Z Z aiSan_i_k_l,
i=0

k=0 k=01i=0

Comparing two expressions of f'(X) yields the lemma. 0
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For any IF,-subspace A of Cy, of finite dimension, put m = dimg, (A)

and
X w i
ex(X) =X |] (1 - —> = Y X7 e Cu[X],
0£\EA A i=0
1
X) = (X)),
UNX) = 5 € ColX)
1
Sak(X) = ————— € Cy(X).
; (X + )P
Then o = 1.

Lemma 8.2. Let A be any F,-subspace of Cy, of finite dimension
and let k = 1 be any integer. Then there exists a monic polynomial
Gar(X) € Cy[X] of degree k with Ga (0) = 0 satisfying

Sak(X) = Gar(Ua(X)).
Moreover, for k = 2 we have
(8.1) Gru(X) =X > aGrpg(X).
0<i<|log, (k)]
Proof. For k =1, we have €/,(X) = 1 and

1 el (X) _ Z 1

SX+A

eA(X) BA(X)

Hence the polynomial G 1(X) = X satisfies the condition.
Let k > 2. Put m = dimg,(A). For an indeterminate Z, consider
the polynomial

FX) =X —2)= (X~ 2) [] (1 _X Z) e Cu(2)[X],

0#XeA A

which we can write as
F(X) = en(X) —en(Z) = Y. i X7 — ea(2).
i=0
Then we have deg(f(X)) = ¢ and the set of roots of f(X)is {Z + \ |

Ae AL
We denote the reciprocal polynomial of f(X) by

f(X) = X" f(X7Y) = iaixq’"qi —ea(2)X7" e C(2)[X],
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whose set of roots is {(Z + A\)~' | A € A}. For k < ¢™, the coefficient
of X7"7% in f(X) is zero unless k = ¢' with some 7 > 0, and thus the
term ka; in Lemma 8.1 vanishes. Now Lemma 8.1 implies

(6%
SAJC(Z) + 0 SA’k_l(Z) +

—GA(Z)

—GA(Z)

Sak—q(Z) +--- =0,

which yields
(8.2) SAJC(Z) = UA(Z)(SA,k_l(Z)+C¥15A7k_q(Z)+Oé25A,k_q2(Z)+' .- )

Hence the polynomial G x(X) defined inductively by (8.1) satisfies the
condition of the lemma. t

Let A < C,, be an F -lattice. For any positive rational number p, the
subset AS” is an F-subspace of Cy, of finite dimension and Sy<s x(X)
is a rigid analytic function on €2 for any integer k£ > 1.

Lemma 8.3. Let A be any Fy-lattice of Cy, and let k = 1 an integer.
For any non-negative integers r, s, the sequence

{Sazam 1 (X) }nezz

converges in O(Q,5) and its limit Sy x(X) is a rigid analytic function
on €.

Proof. Since (1, ; is a reduced affinoid variety, it is enough to show
the convergence with respect to the supremum norm. For any integer
n=s, Ae A\AS?" and z € Q, ;, we have

lz4+ A = |\ > ¢"
and thus for any integers m > n > s we obtain
|SA<qn,k(X) - SA<qm,k(X)|sup < q_nk

on (), ;. Thus the sequence of the lemma is Cauchy. The last assertion
follows from the continuity of restriction maps. 0

Proposition 8.4 ([Gek2], Proposition (3.4)). Let A be any F,-lattice
of Cy and let k = 1 be any integer. Write

[0 0]
exp, (X) = Zaiqu, a; € Cy.
i=0

Then there exists a monic polynomial Gp(X) € Cy[X] of degree k
with G ;(0) = 0 satisfying

Spr(X) = Gar(Fua(X)) = Car (ﬁ) .
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Moreover, for k = 2 we have

(8.3) Gar(X) =X Y aGppq(X).
o<i<|log, (k)]
Proof. Since Sp<qn 1(X) = Up<en(X), taking the limit we see that
Ga1(X) = X satisfies the condition.
Suppose k > 2. Note that the convergence

expy (X) = nh_{lolo expp<qn (X)

of Lemma 6.7 with respect to the p-Gauss norm implies that each
coefficient of exp,<. (X) also converges to that of exp,(X). Taking
the limit of (8.2) for AS?" shows that the same equality holds for A
in O(Q,,) and also in O(Q2). Hence the polynomial G, x(X) defined
inductively by (8.3) satisfies the condition of the proposition. O

Definition 8.5. We call G, ;(X) the k-th Goss polynomial for A.
8.2. Eisenstein series for GLy(A).

Lemma 8.6. Let w = 0 be an integer. Let P(X) # 0 € C[X] be a
polynomial satisfying P(0) = 0. Suppose that for any z € €, the series

f(z) = ), a"Plua(az))

CLEA+

converges in Cy. Then for any sufficiently small integer r, the series

F(u) = ), a"P(fa(u))

CLEA+

1
q"

F(ua(z)) = f(2) for any z € Q,.

Proof. By Lemma 6.12, the function r — p, is increasing. Since
Oaq—r = q ", we have lim,_,_, p, = 0.

Write
P(X)=pX' +pr X7 Xt pieCy, 0<1<d

satisfying p; # 0 and py; # 0. Take any integer r < N, such that
pr < ¢ ' and |p| > |pi|p. for any i > [. Then, Lemma 6.40 implies
that for any j € [1,d — ], any a € A, with deg(a) = m and any
ue€ D¢, (0, p,), we have

converges in O(D(0, p,)) with p, = ||~ o, -, and satisfies

j+l| _ J+hg™ lg™

= [pufa(u)'|

[pjfalu) [y < [pjadl[ul T < Ipillu

and thus |P(fo(uw))] = [po[u'"".
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For the supremum norm on D¢ (0, p,), this yields

m

@ P(fo())|sup < ¢ 0| o4 < |pilg™ 1"

Since [ > 0, we have lim,, o | P(f,(u))|sup = 0 and the series F'(u)
converges to define an element of O(Dc_ (0, p,)).

By (6.10), for any z € Q, we have ua(z) € D¢, (0, p.). Hence Lemma
6.39 yields

Flua()) = 3] a"P(fu(ua(2)) = 3] a"Plua(az)) = f(2).

acAy acAy

This concludes the proof. U

Lemma 8.7. Let p € ¢© and let f € O(Dc, (0, p)\{0}). Suppose f(z) =
0 for any z € D¢ (0, p)\{0}. Then f = 0.

Proof. For any o € ¢© satisfying o € (0, p], put
Ac,lo,pl ={z€Cx | o < |2] < p},

which is an admissible affinoid open subset of D¢, (0, p)\{0}. We have
O(De., (0, p)\{0}) = No<pe, O(Ac, [0, p]). Since Ac, [0, p] is reduced,
the assumption implies that the restriction of f to this annulus is zero.
Thus f itself is also zero. O

Lemma 8.8. Let k > 1 be any integer. For any integers r,s = 0, the
nfinite sum
1
Ey(X) = —_
(X) 2 (eX + d)F

(0,0)%(c,d)e A2

converges in the affinoid algebra O(Q,.). In particular, Ex(X) defines
a rigid analytic function on Q.

Proof. Since €, 5 is reduced, [BGR, Theorem 6.2.4/1] implies that the
Banach topology on O(£,s) is defined by the supremum norm. For
any z € 2,5, we have |z|; = ¢”" and

1 — deg(d) -
< qr—de () (C 0)’
cz+d g el (e #0).

(8.4)

This implies
1
cX +d sup

in O(Q,. ). Thus the infinite sum converges to Ex(X) € O(Q,.5). Since
the restriction map is continuous, the rigid analytic function Ej(X) is
independent of r, s and it defines an element of O(2). O

— 0 (deg(c) + deg(d) — +x)
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Proposition 8.9. Let k > 1 be any integer. Then Ey, € My o(GLy(A)).
Moreover, we have

{ E,=0 (k# 0mod g — 1),
Ek ¢ Sk;,O(GLQ(A)) (k? = (0 mod q — 1).

In particular, we have Ej # 0 if k = 0 mod g — 1.

Proof. First we show (6.13). Let v = (CCL Z

(C, D) € A%\{(0,0)}, we have
(Cy(2) + D)™ = (cz + d)*((aC + eD)z + (bC + dD))™".
Note that the map
A2\{(0,0)} — A7{(0,0)}, (C,D)+> (aC + ¢D,bC + dD) = (C, D)y
is a bijection and thus

> ((aC+eD)z+(bC+dD)) ™ = > (Cz+D)™* = Ex(2).
(C,D)eA%\{(0,0)} (C,D)eAA{(0,0)}

) € GLy(A). For any

This yields (6.13). In particular, as in the proof of Lemma 6.57 we
have F) = 0 unless k = 0 mod ¢ — 1.

Next we assume k£ = 0 mod ¢ — 1 and show that Ej is regular at
cusps. Note that GLy(A) has the unique cusp, which is represented by
0. Consider the Fourier expansion at oo for v = id. Then Proposition

8.4 yields
Ey(z)= >, d*+ > Yz +d)™"
0#deA ceA; deA
(8.5)
= Z d_k+ Z GA,k(ﬁUA(CZ)).
04deA cEAs

By Lemma 8.6, for any sufficiently small integer r, there exists F' €
O(Dc,, (0, p,)) such that the series (8.5) agrees with F'(u(z)) for any
z € .. On the other hand, the Fourier expansion at oo of Fj yields
a rigid analytic function G € O(Dc¢, (0, p,)\{0}) such that the series
(8.5) agrees with G(ua(z)) for any z € €,.. By (6.10) and Lemma 8.7,
we obtain F' = GG, which shows that FEj is regular at oo and

(F) = 3} d™ o = 0.

0#deA
Suppose k = 0 mod ¢ — 1. To show Ej ¢ Sy o(GL2(A)), it is enough

to show
Z d* +0.
0#deA
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For this, the assumption on k yields

3t -

deFy

Since |d*| = g7*9e@) < 1 for any d € A\F,, we obtain | Y, . d | =
1. This concludes the proof of the proposition. 0

Lemma 8.10. Let QQ € A\F, be a monic irreducible polynomial and let
c e A be an element which is coprime to (). Then the map

Ax{BeAldeg(B) <deg(Q)} — A, (d,B)—dQ+ Bc
1 a biyjection.
Proof. 1f (d, B) and (d', ') satisfies dQ+ ¢ = d'Q+f'c, then (6—)c =
(d' — d)Q and the assumption @ { ¢ yields § = 3/ and d' = d.

For the surjectivity, we can find a,b € A satisfying a@ + bc = 1. For
any f € A, we have afQ+bfc = f. Write bf = RQ+ [ with some R € A
and [ € A satisfying deg(5) < deg(®). Then (af + cR)Q + fc = f and
the lemma follows. l
Lemma 8.11. Let Q) € A\F, be a monic irreducible polynomial. Then

ToEr = Q" 'Ey.

Proof. By Example 7.18, we have

1 1 . 1
Tl =5 3 % PO D arraR

deg(8)=deg(Q) (c.d) 2(0.0) (c (%) + d) (ed)2(0,0)
Qkfl Qkfl
- + =~
Z (cz + (dQ + pe))* (cQz + d)F

deg(8)<deg(Q) (c,d)#(0,0) (¢,d)#(0,0)

For @ 1 ¢ in the former sum, we have ¢ # 0. By Lemma 8.10, we
obtain

Qk:l Qk—l
2 X @@ BF 2 G

deg(B)<deg(Q) Qfc, deA Qfe, deA



98 SHIN HATTORI

On the other hand, for @ | ¢ in the former sum, write ¢ = QC' and

we have
Z Z Qkfl
k
deg(51den(@) (et ), Qle (¢ T (dQ + fc))

B Qkfl
T 2  (QCz +(dQ + BQO))*

deg(f)<deg(Q) (C,d)#(0,0

Q—l
= 2, (Cz+(d+ BO)F

deg(8)<deg(Q) (C,d)#(0,0

Since the map
AN{(0,0)} — A7{(0,0)},  (C,d) — (C,d + BC)
is a bijection, the sum equals
1 —1
S X gt Y gt
des(8) <de(@) (C.d)#(0.0) \~° (CdZ(00) 7

Hence we obtain

Z Qk—l Z Qk—l b1
(ToEk)(2) = — g = Q" Ei(2).
Qfe, deA (cz + d) (c,d)#(0,0) (cQz +d)
This concludes the proof. O
8.3. Poincaré series.

b

d
J(& 2) =cz +d.

Lemma 8.12. For any & = (i ) € GLy(K) and z € Q, put

Then we have

(€, 2) = §(€,€°(2))i(€, ) for any &, € GLy(K).

Proof. Put & = (ZL’ Z,) Then the lemma follows from

(& €(2))i (¢, 2) = cld'z + V) + d(c'z + d') = j(£¢', 2).

H = {(0 1)} < GLy(A).

Note that we have a bijection
H\GLy(A) — {(c,d) € A’ | cA+dA = A}, ~~ (0,1)y.



NOTES ON DRINFELD MODULAR FORMS 99

Lemma 8.13. Let k,m be integers satisfying k = 1. For any v €
GLy(A), the element

det ()™ "
J(, X)F
depends only on the class of v in H\GLy(A).

(v(X))™ e O(Q)

Proof. Since () is reduced, we may check the independence pointwise.

Take any z € Q and v € GLy(A). Put h = (8 11)) with a € FY and

be A. Then we have

expa(hy(2)) = expa(ay(2)+b) = aexpy(y(2))+expy(b) = aexpa(v(2))-
On the other hand, Lemma 8.12 yields

](h’% Z) = j(ha 7(2))](77 Z) = ]('7, Z)'

Since det(h) = a, the lemma follows. O
Lemma 8.14. For any integers k, m satisfying k = 1, the infinite sum
det(y)™ "
(8.6) Z W“A(V(X))
sem\GLy(a) I\

converges and defines an element Py ., (X) € O(Q).

Proof. Let r, s be any positive integers. By Corollary 6.46, the supre-
mum norm on the affinoid variety €2, s satisfies

k

det(y)™ m ‘ 1 -1_-1
L uAlY X X |~ T T, .
‘J(V? X)k ( ( )) sup ](77 X) sup ’ ’ A’q
Then (8.4) implies that the infinite sum converges in O(£2,.5). O

Lemma 8.15. For any integers k,m satisfying k > 1 and m % 0 mod
q— 1, we have

Pim € Sk.m(GL2(A)).
Proof. For any § € GLy(A), Lemma 8.12 yields
(Prmliem®)(2) = det(8)™(8, 2) ™ Pryu(8(2))

— det(6)™(8, 2)7* Mu 2))™
— det(8)™}(5, 2) yeg\;wﬂ@"s(z))k 4(76(2)))

S O s = Bun()

y k
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and the condition (6.13) follows. By (8.4), we see that | Py |sup o0 €2,
is bounded independently of s. This implies that it is bounded on 2,
and thus it is regular at oo.

To show that P, vanishes at the cusp oo, write its Fourier expansion
at oo as

Py (X) = ag + aqua(X) + aguA(X)2 +--, a;€Cq,.

For any ¢ € F, the action of the matrix <(C) (1)> yields Py, (cX) =
¢ "™ Py.m(X), which forces a¢ = 0.

We can prove the following non-vanishing result of P, as in the
proof of [GvdP, Proposition 10.15.2].

Proposition 8.16. Let k, m be integers. Suppose k =1, k = 2m mod
g—1and0<m<k/(g+1). Then Py,, # 0.

Proof. Tt is enough to show P ,,(v/t) # 0. For this, we divide the sum

b> € H\GLy(A) satisfying the

(8.6) into three partial sums of v = (CCL d

following conditions:
(A) c=0and de .
(B) ceFy and d € I,
(C) deg(c) + deg(d) > 1.
Let S, be the corresponding partial sum for e € {A, B, C'}.
Note that for any ¢ € F) we have ua(cX) = ¢ 'ua(X). For the case

~1
d 0> . Then the assumption

(A), for any d € F) we may take v = < 0 d

k = 2m mod g — 1 implies
1
Sa= ), %UA(d_Q\/i)m = > @ Fug (V™ = —ua(VE)™ £ 0.
deF deFy

For any a # 0 € A we have |%Z| = ¢z~ and thus |%%| > 1 if and
only if a € Fy. This yields

lexpa(VO)l = V1| | ]

X
aelf;

1—\/5’ = [Vt

and we obtain
1

8.7 Sal = ——.
0 54l = gt
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o1
For the case (B), for any (c, d) € F x[F, we may take y = <(c) il >

By the assumption k£ = 2m mod ¢ — 1, we have

Se= ), (Cx/%1+d)kuA (c&f;ld)m

(c,d)eFy xFq

- 2 “>ﬁ ()

(c,d)eFg xFy
1 m
ceIFX = \/ t+ d)* Vit+d

:(—1)m+1d(§q (\/%+d)kuA <\/%1+d)m.

For any d € F, and a # 0 € A, we have [y + d| = ¢2 and

. I

1
a(Vt+d) ‘
This yields

1 1
epr( ) - (1+4), |6 <1

Vi+d) Vt+d
and thus

1 1 , ,

A (ﬁm) = %(\/i+d)(1+6), 0'] < 1.
Since |d| < [v/t|, with some §” € C,, satisfying
" 1 1

. N R  VE
we have

m+1 1 \m
Sp = (~1) d;q (ﬁw)k_mﬁm(ua)

_ (_1)m+1 Z _1 + 5// _ 5//'

k—m _
deIE‘q ViR

Now the assumption m < = 7 +1 yields ¢gm < k —m and

k—m ‘1qm

Vi

<

wARE

‘ 1

which shows |Sp| < |S4l.
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Let us consider the case C. For any (c, d) € A? satisfying cA+dA = A
Z € SLy(A) such that
deg(a) < deg(c) and deg(b) < deg(d). Indeed, given a,b € A satisfying
ad — be = 1, write a = sc + r with r, s € A with deg(r) < deg(c). Then
we have rd — (b — sd)c = 1 and replacing a with r we may assume
deg(a) < deg(c). Note that the inequality deg(c) + deg(d) > 1 yields
cd # 0. Since we have ad — bc = 1, if a = 0 then bc = —1 and we may
take any d € A\F, so that deg(b) < deg(d). Similarly, if b6 = 0 then
ad = 1, and in this case the inequality deg(b) < deg(d) holds. If ab # 0,
then we have deg(ad) = deg(bc) and thus we obtain deg(b) < deg(d).

Then we have |a| < |c|¢™! and |b] < |d|g~!. Note that the equality
lav/t| = |b| never holds since it would imply a = b = 0. Thus we have
lav/t + b| = max{|alq?, |b|} and

and deg(c) + deg(d) = 1, we may take vy =

avi + b‘ _ max{lalg?, o} _ max{lclg= |dlg}
Vi+d max(lelghdl} T max{egb ) 0
Hence we obtain
eXpA(a\/Zer)‘: avt+b uA(a\/ﬂb)‘: leV/t + d|
eVt +d eVt+d|’ eVt +d |7||av/t + b
and thus
Se| < !

e/t + d|Fm|an/t + bR
Now we have |ay/f + b| = max{|alq2,|b|]} > 1 and the assumption
deg(c) + deg(d) = 1 yields |ev/ + d| = max{|c|qz, |d|} > ¢z = [V1|. By
the assumption 0 < m < k/(g + 1), we obtain
1 1
S —— =54,
RV i KO VA R

1Sc| <

which yields
|Pk,m(\/%)| = |SA + S+ Sc| = |SA| # 0.
This concludes the proof of the proposition. O

Definition 8.17. By Proposition 8.16, it follows that h := P11 is a
nonzero element of S,;11(GL2(A)). We call it Gekeler’s h-function.

8.4. Petrov’s family. Let Fy;(z) be the classical Eisenstein series of
weight 2k. It has the Lambert expansion

2 n
2 n%’llq—, q = exp(2mv/—12).
_ qn

Egk(Z) =1 + Mn>1
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Put ¢, = ¢" and G(x) = —%. Then the expansion above is written as

11—z
2

_ e 2%k—1
E2k(2)—1+g(1_2k ;ln G(qn).

Petrov [Pet] gave a family of Drinfeld cuspforms of level GLy(A) ad-
mitting an expansion in a similar spirit, which is called A-expansion.
In this subsection we explain his construction.

Let v, be the p-adic additive valuation normalized as v,(p) = 1. For
any integer d, put

A_g={ae A|deg(a) < d}.

Let 7 be the Carlitz period we fixed in Definition 6.16. For any
positive integer n, let G 4,,(X) be the n-th Goss polynomial for A and
put

Gn(X) =7 "Gan(7X).
By Proposition 8.4, we have

Z+0J

(8.9) Gn(ua(z)) = T "Gan(expy(z Z
acA

Proposition 8.18. Let k,n be positive integers satisfying k — 2n €
(¢ — 1)Z=y and n < p*»*~™ so that k > 2n. Then the series

fem(2) = ), d""Gr(ua(az))

(lGAJr

converges to define an element of Sy m(GL2(A)).

Proof. First note that the condition n < p**~") implies that (7' — 1)"
divides (7%~ — 1) in the polynomial ring F,[T]. Thus we may define

k—2n

F(T) := 2 T, & €T,
Note that if k& = 2n, then the inequality n < p** ™ < k—n =n
implies that n = k — n is a p-power integer and F(T') = 1.

Lemma 8.19. For any integers d > 2 and j € [1,d — 1], we have

Zajz Z a’ = 0.

a€A g a#0eA g4
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Proof. Note that A_;is an IFj-vector space of dimension d. Let a4, ..., aq
be its basis. Write

Saj = Z Z(cla1+---+cdad)j

c1€F, cq€Fq
o j' i1 id
aPIRED DY W(Clal) ++ (Cata)
c1€Fq  cqeFqir+etig=j 1 d:
= X X (aa)” e ()
i1+ +ig=j c1€Fy cde]Fq
Since j < d, for any (iy,...,iq) € Zso satisfying i; + -+ +ig = j we
have i,, = 0 with some m € [1,d]. Thus the sum over ¢, of the term
of (i1,...,1q) is zero, which yields the lemma. O

Lemma 8.20. Let z€ ). Ifd >k —2n + 1, then

Z (v2)"™ — U

vz —u)"
(u,v)#(0,0)e42 ( )

)kn k—n

Proof. Put f(u,v,z) = &
Lemma 8.19 yields

Z f(O,U, Z) _ Zk72n Z kaZn _ Zk72nsd,k72n _ 07

. Since k >2n and d = k — 2n + 1,

(vz—u)™

v#0EA g v#0eA g
Dof,0,2) = ()" Y wF T = (—1)" Sy g, = 0.
u#0€A g4 u#0€A g

Note that if u # 0 and v # 0, then we have
vz\k—n __ 1
flu,v,2) = uk_Q”—( “Z =y <%> :

This implies

YX Jwea= X N e ()

u#0€A g v#£0eEA 4 u#0€A g v#£0EA 4
k—2n
_ Z Z 2 fiuk_%_i(vz)i
u#0EA g v#£0eA_yg =0
k—2n

_ Z Z fiukizniizisd,i

u#0eA_q =0
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Since d = k —2n + 1, Lemma 8.19 yields S;; = 0 for any i € [1, k — 2n]

and

S = Z EouF S0 = €084.0Sak-2n = 0.

u#0€eA g4
This concludes the proof. O

Lemma 8.21. Suppose d = k — 2n + 1. Then, for any (a,b) €
t1A%\{(0,0)}, we have

)k—n

Z (a + u)k=" Z (bu — av
n k—n n’
oy ((a+u)z+b+v) ()OO AL, (az + b)k"((a + u)z + b+ v)

Proof. Suppose (u,v) # (0,0). By the equality

X
Xk—n _ Yk—n _ (X _ Y)nyk—ZnF (7) ’

the difference

(bu — av)™" (a + u)k="

(az+b)F"((a+u)z+b+v)" ((a+u)z+b+v)"

equals

(8.10)

(bu — av)k=" — ((a + u)(az + b))F™
(az +b)F((a +u)z + b+ v)"

((bu — Cw) — (a + U)(az + b))” k—2n

e ar s by & Sl e @t ues £y

Since (bu —av) — (a+wu)(az +b) = —a((a+u)z +b+wv), (8.10) is equal
to

( CL)n k—2n

2, &lbu —av)((a+ u)(az + b))

(az + b)F—n pry
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For i € [1,k — 2n], Lemma 8.19 yields
Z (bu — av)i(a + )2

(u,v)#(0,0)eAid

= Z (bu)(a + u)F=21 4 Z (—av)iah=2—i

’U,?éOEA<d ’U#OEA<d

+ > Z()buw (—av)’(a + u)k=2~

u#0eAq v#£0eA 4 7=0

= > (wia+w) 4 (<1) Sy,

’U,?éOEA<d
+ Z Z ( > (bu)" ™ (—a) (a + u)" 218,
u#0€A 4 7=0
= D wia+w) T Y (bu)(a+w) TS,
’U,?éOEA<d ’U,#OEA<d

dO u

u#0eAyq 7=0

k—2n—1 kE—9n —
7=0

For i = 0, we have

S (ot w)az + )

k—n
(u,v)#(0,0)eA% , (CLZ + b)

_ (_a)n n&) Z (CL + u)k—2n

(az +b) (u,0)#(0,0)e A2,

:(a<z+b (Z Sa+uwf+ Y a )

u#0eA 4 vEA, v#0EA g4
(—a)"

_ m&)(_ak—%l).
Since T#*" — 1 = (T — 1)"F(T), we have & = F(0) = (—1)""! and
(_a)n k—2n\ __ ak—n
T DA A L

which agrees with the term on the left-hand side of the lemma for
(u,v) = (0,0). This concludes the proof. O
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Now choose any integer d > k — 2n + 1 and define
(8.11)

On(2) = Y -

uz +v)"
(u,0)#(0,0)e42 ( )

k—n

)k:—n

(bu — av
" Z Z (az + D)k ((a +u)z + b+ v)"

u,v)#(0,0)eA2 | (a,b)#(0,0)et? A2
<d

Lemma 8.22. For any z € €, the series (8.11) converges and defines
an element ¢y, € O(L2).

Proof. Take any non-negative integers r,s. For any (u,v) # (0,0) €

A%, and any integer m > d, put

bu — av)F"

fu,v,a,b<z> = k(— ) )
(az +b)k"((a +u)z + b+ v)"

¢m(2) = 2 fu,v,a,b('z)‘

(a,b)#(0,0)etdA2

Then Lemma 5.26 implies ¢, € O(f2). By Proposition 5.24, it is enough
to show that the sequence {¢,, }m~q is Cauchy with respect to the supre-

mum norm | — |y of the reduced affinoid variety €, .
Note that we have
gbm-‘rl(z) - ¢m(2’) = Z fu,v,a,b(z)

(a’b)EtdAim-%—l—d\tdAim—d

and (a,b) e t?A2__, liesin t?A2 ., \t?A%2 _ exactly when one of
<m+1—d <m+1—d <m—d Yy

the following condition holds:
(1) deg(a) = m = deg(b).
(2) deg(a) < deg(b) = m.
For the case (1), we have a # 0 and a + u # 0. Since z € Q, 5, we
have

b+
jaz+b] = Ja] |z + —| > ", |(atu)z+bio] = |atul |2 + | > g™,
a a+u
Thus
(d—14+m)(k—n)
q —mn+(d— —n)+r
(8.12) | Fumap(2)|sup < ——— = g~ AT Dk

q(mfr)k

For the case (2), we have |b+ v| = |[b] = ¢". If |az + b] = |b|, then
laz+b| = ¢™. If |az+b| < |b], then a # 0 and |az| = |b|. Since z € Q,,
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we have ¢7" < |z| < ¢* and thus |a| = |b||z|™' = ¢™ %. This yields

b
laz + bl =la| |z + —| = ¢"°".
a

Similar estimates hold for |(a + u)z + b + v|, which implies
min{|az + b, [(a + u)z + b + 2|} = min{g™,¢"™ "}

Hence we obtain

(8.13)
q(d—1+m)(k—n)

—mn+(d—1)(k—n)—k min{0,—r—s} )
min{qm’ qusfr}k

|fu,v,a,b(z)|sup < =4dq

By (8.12) and (8.13), there exists a constant C' which is independent
of m satisfying

|¢m+1(z) - ¢m<z)|sup < q—mn-&-C‘

Since n > 0, we have
rrlLl—Igo |¢m+l(z) - ¢m(z)’sup =0
and the lemma follows. ]

Lemma 8.23.

Proof. We have
-1 uk:—nzn
w(T)= B G

2F(bu — av)Fm
" Z Z (bz —a)f=((b+v)z — (a+u))

(u,0)#(0,0)eA2 ; (a,b)#(0,0)et? A2

By Lemma 8.20, this equals

Uk—nzk

2 i

(%
(’M,’U)?& (070)€A2<d

2F(bu — av)Fm
Y D e L= (RS AT

(u,v)#(0,0)€A% ; (a,b)#(0,0)etd A2
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Replacing u by —u and a by —a, we see that this equals
kanzk
Z (vz +u)"

(u,v)+# (0,0)€A2<d

N Z Z ZFav — bu)Fn
(bz + a)k=((b+v)z + (a +u))™

(u,v)#(0,0)€A% , (a,b)#(0,0)etd A2

Since (u,v) +— (v,u) and (a,b) — (b,a) give bijections on the index
sets of the sums, this agrees with zF¢y (). O

Lemma 8.24.
Grn(2) = 7 ) " "G (ualaz)).
aceA
In particular, the function ¢, (2) is independent of the choice of d.

Proof. By dividing the double summation defining ¢y, into the sum
for a = 0 and a # 0, we can write

k—n

(u,v) #(0,0)6A2<d

(bu)k—n
* Z Z b= (uz + b+ v)"

(u,0)#(0,0)€A2 ; b#0etd A

)k—n

(bu — av
" Z Z 2 —l—bk”(a—i-u)z—kb—i-v)”'

(u,v)#(0,0)€A2 | a£0etd A betdA

For the first and second partial sums, since we have
by (8.9) the sum of these partial sums equals

(8.14) > Z e M a TG (ua(az)).

u#0€A g vEA a#0eA g4

By Lemma 8.21, the third partial sum equals

—n

a—i—u
Z Z Z ((a+u)z+b+ov)

(u,v)eAZ ; a#0et? A bet? A

Since we have

Acg +19A{0} = A\Ay, Ay + 1A = A,
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(8.9) implies that the sum equals

(8.15) 3 Z(aj%b)n:ﬂ" N aF G (ualaz)).

acA\A_4 beA acA\A_q
Now the lemma follows from (8.14) and (8.15). O

Lemma 8.25. For any v € GLy(A), we have ¢k plkny = Pron-

Proof. Note that by the theory of Smith normal forms, the group
GLy(A) is generated by the elements

((1) —01> (é 11)) (be A), (S ?) (ceF).

For the first one, the equality of the lemma follows from Lemma 8.23.
Since

expy(a(z + b)) = expy(az) + expy(ab) = expy(az) for any a,be A,

Lemma 8.24 yields the case of elements of the second kind. For the
third one, since (u,v) — (cu,v) and (a,b) — (ca,b) give permutations
on A2 \{(0,0)} and (t¢A)*\{(0,0)}, by the definition of ¢, and the
assumption k — 2n € (¢ — 1)Z~o we have

Prn(cz) = " Fpn(2) = ¢ "Prn(2).
This concludes the proof. O

By Lemma 8.6 and Lemma 8.24, for any sufficiently small integer
r, there exists F' € O(Dc, (0, p,)) satisfying F(0) = 0 and ¢y ,(2) =
F(ua(z)) for any z € Q,. On the other hand, the Fourier expansion
at oo yields a rigid analytic function G' € O(D¢, (0, p.)\{0}) such that
Orn(z) = G(ua(z)) for any z € Q,. By (6.10) and Lemma 8.7, we obtain
F = G, which shows that ¢y, vanishes at o0 and ¢y, € Sg.,(GL2(A)).
Then Proposition 8.18 follows by putting

fk,n = __k¢k,n-

Lemma 8.26.
fk,n # 0.
Proof. As we have seen in the last paragraph of the proof of Proposition

8.18, Lemma 8.6 and Lemma 8.7 imply that the Fourier expansion
frm(u) of f, at co is given by the limit of the series

D, a Gl fulw)

acAy
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in O(Dc,, (0, p)) with some p. By Proposition 8.4, we can write as
Gn<X):ngm++gn_1X7’b—1+Xn’ giE(COO7 gm7é0

with some integer m € [1,n]. By Lemma 6.40, for any a € A, with
deg(a) > 0, we have

fa(u) € w'Cq[u]],  Gn(fa(u)) € u™Co[[u]]

Since G, (f1(u)) = Gn(u) € gnu™ + u™ 1 Cyp[u], this yields
fem(w) = gmu™ mod u™ M Cyp[[u]].

Hence f,, has a nontrivial m-th coefficient in its Fourier expansion at
o and the lemma follows. O

Lemma 8.27. Let k,n be positive integers satisfying k—2n € (q—1)Z=q
and n < pr* = Let fi., € Spn(GLy(A)) be the Drinfeld cuspform of
Proposition 8.18. Let Q@ € A\F, be a monic irreducible polynomial.
Then

Tka;,n = Qn_lfk,n'
Proof. By Lemma 7.17 and Example 7.18, we have

(Tofia)®) =Q7 3, ) d"G, (“ (%))

deg(B)<deg(Q) acA+

+ Q1 Y d G (ua(Qaz)).

(LEA+

For the former sum, (8.9) yields

" BB (550)

deg(B)<deg(Q) acAy

sGNNI YO W e v

deg(B)<deg(Q) acA+ beA

When @ 1 a, by Lemma 8.10 the map

Ax{BeAldeg(f) <deg(Q)} — A, (b,) — Qb+ap
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is a bijection. Thus by (8.9) we obtain

knn
@™ 2 2 ) z+ﬂc—21—Qb)

dos(3) <des(@) acA e Qla e |

. . k: nQn
= (7Q) Z Z (az + b)"

acA4, Qfa beA

= Q! Z a" "G (ua(az)).

acAy, Qta
When Q | a, write a = QC' and we have
. o k nQn
= (@) 2 2 2 a(z + B) + Qb)"

deg(B)<deg(Q) acA+, Qla beA

. . Qck nQn
- Q) 2 ZZ (QO) (= + B) + Qb)"

deg(B)<deg(Q) CeAy beA
oy~ (QC)F
@™ > 22 -
deg(8)<deg(Q) CEA, beA (Cz+CB+b)
For any 5 € A with deg(f) < deg(Q) and C € A, , the map
A— A, b—>CB+b

is a bijection. Thus the sum equals
C k—n
@™ 2 ) ((C'Qz +> D
deg(B)<deg(Q) CeA beA

Hence we obtain

(Tofen)(2) = Q"' 3 a""Guluaaz)) + Q¥ Y} " 7"Gu(ua(Qaz))

acAdy, Qla acA
=Q"! Z a" "G (uaaz)) + Q! Z a* "G (ua(az))
acAy, Qa acAy, Qla
= Q" frn(2).
This concludes the proof. 0

Remark 8.28. Fix a positive integer n. For any positive integer m,
put k =n+¢"(n+ (¢ —1)m). Then

k—2 m—1
q—ln = (nqq—l +q”m) € Z~o, vp(k_n)>n'
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Thus Lemma 8.27 shows that {1 ¢ (n+(g—1)m)n}mez-, gives an infi-
nite family of nonzero Drinfeld cuspforms of level SLy(A) and differ-
ent weights such that each member of the family has the same Hecke
eigenvalue for any monic irreducible polynomial () € A. In particular,
a Drinfeld eigenform is not determined by its Hecke eigenvalues even
up to a scalar multiple.

9. HARMONIC COCYCLES

9.1. Definition of harmonic cocycles.

Definition 9.1. Let M be an additive group and let T be the Bruhat—
Tits tree. A map ¢ : T,° — M is called a harmonic cocycle if the
following conditions hold.

(1) For any v € 7y, we have
2 c(e) = 0.
TP, t(e)=v

(2) For any e € T°, we have c¢(—e) = —c(e).
The condition (1) is referred to as the harmonicity of c.
Definition 9.2. Let V(Cy) = C2 be the set of row vectors with entries
in Cy. Let I" be an arithmetic subgroup of GLy(K) and put

H; 5(Cy) = Sym" ?(Home, (V(Cy),Cy)),
Vi(Cyp) = Home, (Hg—2(Cy), Cyp).

They are endowed with natural left actions of I' induced by its left

action o on V' (C,), which are also denoted by o. Forany P € H;(Cy) =
Homg, (V(Cy),Cy) and v € V(Cy), this means

(yo P)(v) = P(y'ow).

The action of v = b) € GLy(K) on Hi_5(Cy) and V4(Cy) is

d
described as follows. Let f; = (1,0) and fo = (0,1) be the standard
basis of V(Cy). Let X = f)Y and Y = f’ be the dual basis of H;(Cy).
Then we have

’Yo(fl, fQ) = (f17 f2)t7_17 ’}/O(X, Y) = (Xa Y)’)/ = (aX+CY7 bX+dY)
We identify Hjy_2(Cy) with the C,-subspace of the polynomial ring
Co[X,Y] consisting of polynomials of total degree k — 2. Then, for
any w € Vi(Cy), the action of ~ is given by
(9.1)
('Y o w)(Xiyk—Z—i) _ w(v‘l o Xiyk—2—i)
= det(7)* Fw((dX — cY) (=bX + aY )27,
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Definition 9.3. Let ' be an arithmetic subgroup of GLy(K) and let
k = 2 be an integer. A harmonic cocycle ¢ : T, — V;(Cy) which is
[-equivariant is called a harmonic cocycle of level I' and weight k. The
condition of being I'-equivariant means

(voc)(e) =c(yoe) foranyyel, ee T
The Cy-vector space of harmonic cocycles of level I' and weight £ is
denoted by Cha (I, Cy,) or Cp2r(T).
Definition 9.4. For any c € C'*(T') and v € GLy(K), let
e T — Vi(Cy), Tele) =voc(ytoe).
Then ¢ € CPar(yTy~1). We have % = ¢ for any y € I

Proposition 9.5. Let I' be an arithmetic subgroup of GLy(K) and
let k = 2 be an integer. Then any element ¢ € CP(T) is cuspidal.
Namely, there exists a finite subset S of '\T such that c(e) = 0 if the
['-equivalence class of e does not lie in S.

Proof. Take any v € GLy(K) satisfying vI'v™! € GLy(A). By replacing
" by vI'v~! and ¢ by “, we may assume that I" is a congruence subgroup
of GLy(A). Moreover, by Lemma 3.12 and Lemma 3.15 it is enough to
show that for any g € GLs(A), we have c¢(goe,) = 0 for any sufficiently
large integer n, where e, is the standard edge of Definition 2.4. Again
replacing ¢ by ¢ ¢ and T’ by ¢~ 'T'g, we may assume g = id.

For this, by Lemma 3.4 there exists a nonzero element n € A of
degree d > 0 such that I'(n) is a subgroup of finite index of I'. Since
Char(T) < Char(T'(n)), we may assume I' = I'(n).

Put

U = Stabry () = (é “{4) ,

U; = Staby (e;) = {((1) Zl))

where that last equality follows from (3.3). Then we have
Ui S U (i2d), U=|]U.

i>d

benA, deg(bh) < z} (i=1),

Moreover, for any i > d the quotient group U;,1/U; is isomorphic to
the additive group FF,.

Write M = V,(Cy). For any i > d, let M; = MY be the fixed part
of M by the action o of U;. Since M;,; < M; for any i > d and M
is finite-dimensional, there exists an integer 7o > d such that for any
1 =19 we have M; = M.
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Take any integer j > iy + 1. Since U; fixes e; and v;, we have an
injection
Uj/Uj-r = {e e T [ t(e) = v;)\{—e;},  v—v0e€.

By comparing the cardinality we see that it is a bijection. Since c is
I'-equivariant, for any v € U;_; we have

yoc(ej1) =c(yoej1) = clej1)

and thus c(ej_1) € M;_y = M;. Then the harmonicity of ¢ yields

clej) = Y clyoeia)= D yocle)

veU;/Uj 1 veU;/Uj—1
= Z c(ej—1) = qc(ej—1) = 0.
V€U;/Uj-1
This concludes the proof. 0

9.2. Integration of polynomials via a harmonic cocycle. Let I"
be an arithmetic subgroup of GLy(K) and let k& > 2 be an integer.
Let ¢ € CP*(T") be any harmonic cocycle of weight k& and level T'. We
denote by P the C.-subspace of the polynomial ring Cy[x] consisting
of polynomials of degree < k — 2.

For any e € 7,° and any integer 0 < i < k — 2, define

(9.2) fU( ):piduc(x) = (=1)e(e)(XF27y ),

where Ul(e) is the distinguished closed disc in P*(K ) associated with
the edge e as in Definition 4.17. By linearity, we obtain a C-linear
map

PooCpy flz) = L( )

For any P(X,Y) € Hy_2(Cy), the equality (9.2) yields
NPT = [ POl
U(e

Lemma 9.6. Suppose that e, e, ... el € T satisfy
Ule) = [ JU(€).
i=1

Then we have

T

(9.3) cle) = ) c(e)).

=1
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In particular, for any f(x) € P, we have

f f(@)dpe(a Zf x)dpe(x

Proof. By Lemma 4.26, for any half-line H € H(e) there exist a unique
i€ {l,...,r} such that H passes though €;. Then the harmonicity of ¢
yields (9.3). The second assertion of the lemma follows from (9.2). [

Let U be a compact open subset of P!(K,). By Lemma 4.13 and
Lemma 4.2, we can write

with some e; € T°. For any f(x) € Py, we put

f f(x)dpe(x Zf z)dpe (v

It is independent of the choice of a decomposition of U into the disjoint
union of distinguished closed discs in P'(Ky,). Indeed, by Lemma 4.16
we are reduced to the case of U = U(e) with some e € T,°, which follows
from Lemma 9.6.

Lemma 9.7. (1) For any f(z) € Py, e € T and v = (Z b) ©

d
GLy(K), we have

L( )f(xmc(x):f det(1)2* f (4(2)) (cx + D) 2dpe(x).

Ule)

(2) For any f(x) € Py, we have

f f(2)duo(z) = 0.
P (Kow)
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Proof. Note that f(v(z))(cx +d)*2 € P,. By linearity, we may assume
f(z) = 2% with some 0 < i < k — 2. Then we have

L( @) = (1)l (XY
i oK)
1)¢det(7)? *e(e)((dX — cY)27H(—=bX + aY)?)

(=
(=
JU( ) det(7)**(d + cx)* 27 (—b — ax)'du.(z)

b
f det(y (GI +d) (cx + d)*2dp.(x).
Ule)

cxT +

This proves (1).

For (2), since P'(K ) is compact we may compute the integral using
the covering P*(K ) = U(e) u U(—e) for any e € T°. Then Definition
9.1 (2) yields (2). O
CCL Z) € GLy(K) and let e € TP satisfying
w ¢ Ule) and o ¢ U(yoe). Then |cx+d| is constant for any x € U(e).

Lemma 9.8. Let v =

Proof. Since the lemma is trivial for ¢ = 0, we may assume ¢ # 0. Since
w ¢ Ule), we can write U( ) = D(a, p) with some a € K., and p € ¢%.
The assumption yields —¢ = v~ 1(o0) ¢ U(e) and thus

d
r (-9
On the other hand, for any x,y € U(e) we have
|(cz +d) = (cy + d)| = |c[|z —y[ < [elp,
which yields |cx + d| = |cy + d|. O

Lemma 9.9. Let v = (CCL Z) € GLy(K) and let e € TP satisfying

w¢ Ule) and o ¢ U(yoe). Then we have
p(yoe) = ple)lcx +d| 7| det(y)|  for any z € Ue).

Proof. Since w0 ¢ U(e), we have U(e) = D(z,p(e)) for any x € Ule).
Since oo ¢ U(yoe) = y(U(e)), Lemma 4.8 concludes the proof. O

“ Z € GLy(K) and let e € T satisfying

w ¢ U(e) and 0 € U(yoe). Then we have
c#0, p(yoe) = ple)lc/*] det(v)| ™

lcx +d| = || > |c|p for any z € Ufe).

Lemma 9.10. Let v =
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Proof. By assumption, we have —% = y~!(c0) € U(e). Thus ¢ # 0 and

[[r+4]<sta.

Z+ =
c

Ule) = {z € Ky
Then Lemma 4.8 yields

Ulyoe) = {ze Ky || = 2| = |det)llel2ple) ™ | v {0},

from which the lemma follows. O

Lemma 9.11. Let e € TP be any edge satisfying oo ¢ U(e) and let
r e Ue). For any v = (CCL Z) e T satisfying v~ 1(r) # oo and any

integer 0 <1 < k — 2, we have

L(e) (& = r)idpuo()

N (e P IR

i=0 J

~ f (& — 77 ()M dpe(2).
U(y~1toe)

Proof. Lemma 9.7 (1) yields

ar +b

L(e) (@ —r)duda) = Lm—loe) det) <m - r>i (e + " dul@).

Then we have

ax +b ' k2
(cxﬁ—d_r) (cx +d)
= (ax +b—r(cr +d)) (cx + )"
= ((a — cr)x — (dr — b)) (cx + d)F >

“lemay <x B —d;lba) (clx =77 () + (v () + )
~ (e -y Y (k _j _ ) e =77 () (e () + )P

7=0
Using the equality

(a—cr)(d+ ey (r) = (a—cr) <d+c< dr —b ))

—cr+a

= ad — cdr + c(dr — b) = det(7y),
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we obtain
az +b i k—2
<0x+d—T> (cx + d)
" (k-2 - . -
- < j > det(y)'e (z — 77 ()" ey (r) + ),
3=0
from which the lemma follows. 0

Lemma 9.12. Let e € TP be any edge satisfying oo ¢ Ul(e) and let

r € Ule). For any v = (CCL Z) e ' satisfying v~'(r) = oo and any

integer 0 < 1 < k — 2, we have
| @) = destrp i | (e ) )
Ule) U(y—1oe)

Proof. The assumption yields 7 = y(0) = 4. By Lemma 9.7 (1), we
have

i L far+b  a\ _
JU( )(az — 1) dp.(r) = JU( )det(fy)2 F <cx i E) (cx + d)*2dp.(x).
e ~y—loe

Then the lemma follows from

ar+b a\’ _ » ; o
(cx+d - E) (cx 4+ d)* 2 = (—c) " det(y) (cx + d)F >

U

Lemma 9.13. There exists C' > 0 such that for any e € T with
wé¢Ule), anyre U(e) and any 0 < i < k — 2, we have

J;J$—ﬂwm@)

k—2

< Cple) 7.

Proof. From Lemma 9.7 (1), we see that if ¢(e’) = 0 for some ¢’ € De,
then we have XU(B)(:U —7)lduc(x) = 0 and the estimate in the lemma

follows. By Proposition 9.5, we can take ¢/,...,e/ € T such that
any e € T satisfying c(e) # 0 is equivalent to some +e; modulo I'.
Replacing €, with —e! if necessary, we may assume oo ¢ U(e}) for any
1=1,...,m.

Take any e € T,? satisfying c(e) # 0 and o ¢ U(e). Then e = +yoel,

with some v = eland s=1,...,m.

b
d

First suppose e = «y o €. Then neither U(e)) nor U(yoel) = Ule)
contains o0. For any r € U(e), we have v~ 1(r) € U(€}) and v (r) # .
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Applying Lemma 9.9 to x = v~ 1(r) € U(€l,) gives

ple) = p(e)ley™"(r) +d|™>.
Moreover, since o ¢ U(e.) and —¢ = y71(0) ¢ U(e)), we have

ey (r) +d| = lel[y 7 (r) =77 (90)| > elp(ey).
Then Lemma 9.11 yields

L(e) (& — r)idpe()

< jemax pe) T ey r) +d|

| @)

Ul(el)

< INES2—i—j
osggz{Q—ip(eS) ’

| et o).
Uler)
Since v~ !(r) € U(€},), we have

| et
Ules)

Since oo ¢ U(el), the value on the right-hand side is bounded by a real
number depending only on (k, the harmonic cocycle ¢ and) e.. Thus
there exists a constant C” > 0 which satisfies the estimate of the lemma
for any e € | JI*, Tel.

Next suppose e = —y oe€l. Then we have oo ¢ U(e,) and o €
U(yoe,) = U(—e). Lemma 9.10 gives ¢ # 0, p(—e) = p(e.)|c|* and
ple) = ¢ p(—e) ™ = (gp(el)) el 2

Put 7' := 2 = v(0) € y(U(—¢})) = U(e) . Then Lemma 9.12 yields

| @y
Ule)

< max c(el) (XY 2.

~
0<i<i+j, zeU(e})

k=2_,

ple) 2

i—k=2) 19242k |—i
= (ap(ey))' ™ [ 27|

J (cx + d)* 2 "du.(x)
U(y~loe)

~ e[ (++ il) dnla).

By Definition 9.1 (2), this equals

kE—2

. NG
e[ (erd) o).

Ulel) ¢
Since —4 = y7(0) € y7H(U(—e¢)) = U(e}), this is bounded by

" ryyi— k=2 ’ Ink—2—i—1\ I
= 0Siohen s ot Oélﬁk—gl—%?{zeU(e’s)(qp(es» ’ ‘c(es)(X Y )z ‘ '
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Let 7 € U(e). Then |7 — r| < p(e) and we obtain

f (& — rYidpe(a) f (v + (7 — 1)) duela)
Ule) Ule)

< max |’ — 7|

O<y<i

L(e)(x — Y dpue()

< max C"p(cl' ™7 p(e) 7 = C"ple) .

0<j<i

Thus there exists a constant C” > 0 which satisfies the estimate of
the lemma for any e € | JI", I'(—e€}). This concludes the proof of the

S
lemma. O

9.3. Integration of meromorphic functions with poles only at
0.

Definition 9.14. We denote by .7, the set of C,-valued functions f
on P! (K ) which are locally meromorphic with poles only at oo of order
at most k — 2. The latter condition means that for any a € P'(K),
there exists v € Z satisfying

flptag— € { O(De,(a,47)  (a+ ),
v = 2t PO(De, (0,477)) (o =),

where we write
1
D¢, (00,q7%) = D¢ (0,¢")=Sp | C :
(Coc( 4 ) Cgo( 7q) p( oo<ﬂ_gox>>
Then we have P, < <7, .

For any a € K, and v € Z, we consider an element f of O(D¢, (a,q7"))
or 2*20(Dc, (0,q7")) as an element of &4 by extending f by zero
outside these discs.

In the sequel, we extend the integration of polynomials with respect

to p. to that of elements of .«7,, following [MTT, §11]. Let CO(P'(Ky))
be the set of compact open subsets of P'(Ky).

Lemma 9.15. Let e € T°. If 0 € U(e) and 0 ¢ Ul(e), then we have
U(e) = D(o0,q") with some v € 7.

Proof. Write U(e) = D'(a,¢"”) with some a € K, and v € Z. Since 0 ¢
U(e), we have |a| < ¢¥ and Lemma 4.2 implies D°(a,¢") = D°(0,¢").
Thus we obtain U(e) = D'(0,¢") = D(%0,q7"). O

Theorem 9.16. Let I" be an arithmetic subgroup of GLy(K). Let k = 2
be an integer and c € C}**(T). Then there exists a unique map

COMPH () % = o (V)= | Fa)do
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satisfying the following conditions:

(1) §; f(x)dpc(x) is finitely additive in U and Cy,-linear in f. The
former condition means that if Uy, ..., U, € CO(P'(Ky)) satisfy
U=11._, U, then we have

Jf )dpe(w fo )dpe(w

(2) For any 0 < i<k —2 and any e € T, we have
f c'dpe(z) = (—1)c(e)(XF27YT),
Ule)

(3) There exists a constant C > 0 satisfying the following condi-
tions:
(a) For any e € TP with oo ¢ Ule), any a € U(e) and any
integer © = 0, we have

k=2

< Cple) 7.

J;Jx—wﬁm@)

(b) For anye € TP withoo € U(e) and 0 ¢ U(e) and any integer
> —(k — 2), we have

L ()| < Cple) 5.

Ue) T

(4) Let e € T.
(a) Suppose o ¢ Ule). Write U(e) = D(a,q") with some
a€ Ky andveZ. Let F(x) =), (x—a)eCoo<fr;“.
Then we have B

d,uc C; f $ —a d#c )
JU(E) Z

(b) Suppose 0 € U(e) and 0 ¢ U(e). Write U(e) = D(o0,q7")
with some v € Z. Let F(x) = X1 _9) = € zk~ 2C30< —>.
Then we have

F(z)du.(x) = C; —dpic(T
LM()MU > ﬁmyum
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Corollary 9.17. Let c¢,c;,co € CP(T) and A € C,. Note that c¢; +
o, Ac € CP*(T). For any U € CO(PY(Ky,)) and f € ., we have

L fdpte e, (2 J fdpte, (z J Fdpo, (z
L Fdjunela) = A L Fduo(o),

Proof. The map

CO(PH(Ky)) x @ — Cop, (U, f) HJ fdpe, (x ffdﬂc2

satisfies all conditions of Theorem 9.16 for ¢; + ¢o. Thus the uniqueness
assertion of Theorem 9.16 yields the first equality.
For the second one, the map

COP(K.p)) x h — Cpy (U, f) > A f fdpe(a)

satisfies all conditions of Theorem 9.16 for Ac, with the constant (1 +

|A])C' for the assertion (3). Thus we obtain the second equality simi-
larly. 0

Definition 9.18. Let a € K, and v € Z. For any

T R e

v
=0

0

we define

I(F,a,v) = n kD Z O, .
i=k—1
On the other hand, for any

Fo= % Sea0e(m ) -t ),

> 9 x LT
we define
I(F,0,v) =7, Z O, .
i>1
Since lim;_, o, ¢;7% = 0 in both cases, we see that I (F, a, v) is a finitely

generated (’)Coo—submodule of Cy, for any a € PH(Ky). Smce Oc,, is a
Bézout domain, we can write I(F,a,v) = aO¢, with some a € Cy.
Then we define

[I(F,a,v)| = |a].
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Lemma 9.19. Leta,a’ € Ko, andv, V' € Z. Let F(x) € O(Dc¢, (a,q7")).
Then

/

D(d',q™") = D(a,q™") = I(F.d,v) < I(F,a,v).

Proof. Write F(z) = Y}._, ¢;(—a)’. From the assumption D(a’, V) <
D(a,q7"), we see that v/ > v.
When a = @', we have

I(F,a,V) Z e DO < Z DO = I(F,a,v)
i=k—1 i=k—1

and the lemma holds for this case. Since we have D(a’,q™"") < D(d/,q7") <
D(a,q™"), we may assume v = /.
In the ring O(Dc,, (a’,q7")) we can write

F(z) = Zcé(aj —d) = ch(x —a)' = Zcz(x —d +(d —a)),

>0 =0 =0

Y _ZCZ() d — a)i .

=7

which yields

Since a' —a € L, O we have
(Coo )

¢ 'miV e Z caml?(a —a)O¢, < ch ™0c,
= =
and thus we obtain I(F,d’,v) € I(F,a,v). O

Lemma 9.20. Let v,V € Z. Let F(x) € 2"2O(Dc,, (0,q7")). Then
D(w,q") S D(w0,q) = I(F,0,/) < I(F,o,v).

Proof. Write F/(z) = X,,. ;) . Since the assumption implies v/ >
v, we have
I(F,00,V') = 2 om0, < Z eV O, = I(F, 0, v).
i1 i>1
U

Lemma 9.21. Let a € Ky and v,V € Z satisfying v > —v' and
la] = q¥. Let F(x) € 2*720(Dc, (0,q7")). Then
D(a,q™") < D(0,q7"), I(F,a,v) < VO [(F o v).
If V' = 1+ |v|, then we also have
I(F,a,) < n VI(F 0,v).
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Proof. The first assertion follows from Lemma 4.14. For the second
assertion, write F'(z) = >, o) = In the ring O(Dc,(a, ")) we
can write

Fl@)= ) (a+x—a)) 2 Z‘(Hx;a)

i=>—(k—2) iz—(k-2)

B < ) x—a)j
i=— (k 2) j=0 ‘7
a)j.
]>0z> <'7 >a+j
<

Since (7) =0 when 0

WFaw)=mt™ 3 3 <‘?) O,
J ) a

—1 < 7, this yields

j=zk—14i>—
O
o Z Z aH—] Coo
j=k—11i>1
i+j)v+(G—(k—1))
C ) Ym0,
j=k—1i>1

Since v+ v/ > 1, forany j > k—1 and i > 1 we have
(i+jw+G—(k-—1D))0W=iwwv+jv+v)—(k—1)
>+ (k—1)—(k—1)/
=iv+ (k—1)(1-1).
Thus we obtain

F a, V ch ww+(k—1)(1— V)OC _ 7T(l)10+(k71)(171/)[(F’OO’V).

o0
=1

Suppose v/ = 1+ |v|. Since v/ — |v| > 0 and |v| + v = 0, we have
i+ v+ — (k-1
=@ =D+ =) = (k=1))+ G+ (v +v) - klv|
> (i—1)v—kly|.
Hence we obtain
I(F,a,V") < Zciwg_l)l’_kh’l(’)cw = 1 M I(F, o0, v).
i>1

This concludes the proof. O

Lemma 9.22. The map CO(PY(K,)) x o, — Cy satisfying all con-
ditions of Theorem 9.16 is unique.
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Proof. 1f (U, f) — §, f(x)du.(x) and (U, f) — §, f(x)dp.(x) are two
maps satisfying the conditions of Theorem 9.16, then the map

Ufof Jdlpio(z ff 2 g (o

also satisfies the conditions for ¢ = 0. Thus it is enough to show that
for ¢ = 0, the conditions of the theorem imply §,, f(x)du.(x) = 0. By
Lemma 4.15, we may assume U = U(e) for some e € 7%, and we may
also assume if 0 ¢ U(e) when oo € U(e).

First suppose o ¢ U(e). Write U(e) = D(a,q™") with some a €
K, and v € Z. Take any f(x) € O(Dc,(a,q")). For any v/ = v,
decompose U (e) into a finite disjoint union of distinguished closed discs
as

e) = H D(d',v"), D(d,V)="U(ew).

a’el
Write
flz) = ZCZ r—ad)eCy <x—a>
120
Using the assumption ¢ = 0, the conditions (2) and (4) give

J x)dpo(z Z CZJ (v —d')'duo(z).
U(e /) Z>k‘ 1

Then p(ew) = |7%| and the condition (3) yield

f £ () dpolx
Ul(ey)

and Lemma 9.19 shows

Z Cﬂroo‘ EZ)OCOO

izk—1

= Clrme| E 11,0

max
a’e

< Clmo| F|1(f,a,v)).

f@)dpo(z)| <

Ule)

| t@adue
Ue,r)

Since k > 2 and v/ is arbitrary, we obtain SU(E) f(z)dpo(z) = 0.

Next suppose 0 € U(e) and 0 ¢ U(e). By Lemma 9.15, we can write
U(e) = D(o0,q") with some v € Z. Take any f(x) € 2¥720(D¢_ (0,q7")).
For any v/ > 1+ |v|, Lemma 4.14 implies that U(e) is decomposed into
a finite disjoint union of distinguished closed discs as

Ule) = D(eo,q ) u [ [ Dla,g™), Dla,q™) = Ulea)
ael

with some finite subset A € K.
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Write f(z) = Xn (49 = On D(w0, q¢"') =: U(¢'), the conditions
(2) for ¢ = 0 and (4) yleld

), Fote Zczf ~dpola

Since p(e’) = g7V, the condition (3) implies

(i k=2 o
f@)duo(z)| < C | em " 2 0g, | = Clro T [1(f,0,)].
U(e) i1
By Lemma 9.20, this yields
B/
o /)f(JC)duo(a?) < Ol | 2 [1(f, 00, v)].

On D(a,q"") = Ule,), the first part of the proof and Lemma 9.21
show

f F (@) dpo(a)| <
Ulea)

k(' —2|v]) 2\V|

Clme| S [1(f,a' V)] < Clo] [1(f,0,v)|.

Since k > 2 and v/ > 1+|v| is arbitrary, again we obtain SU(E) f(z)duo(x) =
0. O

9.4. Construction of integration away from oo.

Definition 9.23. Let a € K, and v € Z. Let f(z) = Y., ¢(x — a)’
be an element of O(Dc, (a, q_”)). Define

(x —a) ePk.

HM|

Lemma 9.24. Let a,a’ € K, and v,V € 7 satisfying D(d',q"") <
D(a,q7"). Let f(x) = ZiZO ci(z—a)t be an element of O(Dc, (a,q7")).

Write
k-2

Tow(f) = Tww(f) = D iz —a')"
Then we have
7 € e VYI(f a,v).
Proof. From the equality

Yieila—ay =) ¢i(z—d+(a'—a)) = > ] c]<)a —a) " (z—d),

7=0 7=0 7=075=21=0
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Z (; ( ) (o —@H) (z — a)'.

On the other hand, we have
( > a—a) (x—ad)

Z;: mazi xa+aa 22

7=0

we see that

\\/

which yields

Hence we obtain

b, = i ¢j (‘7) (@' —a) ™"
jehe1 \!
€ Z GO =BV (f e, v).

j=k—1
O

Definition 9.25. Let a € K, and v € Z. Let f € O(Dc¢, (a,q7")). For
any v/ > v, take any decomposition

(94) D(a7 q—I/) = ]_[ D(a/7 q_’/>7 D(ala q—y’) = U(ea’,l/)
a’EAV/
with some finite subset A,, € K,,. Then we define

Maww (f) = ] f Fdpe(),

ael,, YU(eq, ’)
where the integration on the right-hand side is given by (9.2).

Lemma 9.26. Let C' > 0 be the constant in Lemma 9.13. Let a € K,
and v € Z. Let f € O(Dc,(a,q7")). Let v' be an integer satisfying
V' > v. For any d’ € D(a,q""), we have D(a,q™"") = D(d’,q"") and

| @) = Tasr (o) < P 1)
D(a,q=")
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Proof. The first assertion follows from Lemma 4.2. By Lemma 9.13
and Lemma 9.24, we have

JD( fu/)(Ta’”/(f) — Tor o (f))dpe()

k.t k.
= Clme|2” [[(f,a,0")] < Clmo |2 [I(f, a,v)],
where the last inequality follows from Lemma 9.19. U

Lemma 9.27. Let C' > 0 be the constant in Lemma 9.13. Let a € K,
and v € Z. Let f € O(Dc, (a,q7")). Let V', V" be integers satisfying
V=V >v. Letd € D(a,q7") so that

Ulew,) = D(d,q") < D(a,q").

Take any decomposition

D(a’, q_yl) = H D(a”7 q_yﬂ)7 D(a”, q—y”) =: U(ea”,l/”)‘

a’eA

Put
T = 3 J (Twr (f) = T () dpiel ).
a’e\ U(eau’y//)

Then we have
o (F)] < Clme| =7 T3 1(f, a,v)].

Proof. We claim that it is enough to show the lemma holds for " =
V' + 1 forany v/ = v and a’ € D(a,q™"). Indeed, since the case v" = 1/
follows from Lemma 9.26, by induction we may assume that the lemma
holds for some v” > /. Take any decompositions

D(d,q") =[] D" .a) = [ DO, ).
a’e\ beA’

From Lemma 4.2, we see that the latter is a refinement of the former.
For any a” € A, we can find a subset A(a”) € A’ satisfying

D(a".q") = [] Dla™ ™). Dlbg™" ") = Ulepurar).
beA(a”)

Then Lemma 9.6 yields
C(ea”w”) = Z C(eb,u”—i-l)'

beA(a”)
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and also

Ja’,y’,l/”+1 Z Z J Ty ! f) - Tb,l’”‘*'l(f))duc(x)

a”el beA(a eb l/”+1
) Z.[ (T () = Tongo (F))dse2)
a”’el beA(a Uley l/”+1

S 2.[ (Targr () = Ty 1 (1)) dpie()

a’eA beA(a Uley i y1)

SN[ @) - TP
a’eA YU (eqn 1)

+ Z Z JU(eb V//+1)(Ta”,u”(f) - Tb,y”+1(f))d/ubc(x)

a’eA beA(a”)

= Jatw o (f) + D Jarwrwraa(f)

a’eA

On the other hand, the assumptions yield

k=2 kg
St (F)] < Clmeo| =2 2V (0, v),
ki

|Ja”,l/”,u”+1(f)| < C(|7T00|_7+ Y |I( V)|

Since k > 0, we obtain

[ Tarwrrea ()] < Cmaxc{|mo| =775 |72 2} I(£, 0, )
= Clmo| 7 2V |1(f,0,v)|

and the claim follows.
Now we assume v = v/ + 1. Write

k—2

Turar (f) = Twrria (f) = ) bl = a)".

1=0
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By Lemma 9.13 and Lemma 9.24, we have

’Ja/,u’,u’-‘rl(f)’ < H,%aX
a’eA

j (T (f) = Torrss () dpio()
Uleqr r41)

< max
a’el, 0<i<k—2

[ - aduda)
U(e " V/Jrl)

< omax Clr| O a0 (1l )
_ (V' +1)(i—252) k 1—i)/

o3 Clmal 710 )
_ 0<I£1<a;€X2C’7T |z——(u +1)+(k—1)v/ |I(f a v )|

= Clme| =7 T3V 1(f,d V)]
Now Lemma 9.19 yields

o ia ()] < Clo| ™7 73 1(f,a,v).
This concludes the proof. U
Lemma 9.28. Let C' > 0 be the constant in Lemma 9.13. Then for

any V' = v we have
1Maww11(f) = Mawu (f)] < C'|7Too|_%+§”,|f(f, a,v)|.
Proof. We have two coverings
= H D(d,q" H D(a", ¢V 7).
a'el,, a’eh,

By Lemma 4.2, this forces the latter to be a refinement of the former.
For any a’ € Al,/, take a subset A(ad’) < A,/H satisfying

]_[ D(d", ¢ ).

a’eA(a’)
Then Lemma 9.6 yields
ma,u,y’(f) - ma,l/,u’-‘rl(f) =

Z JU(e, ) Fpe(x Z Z J Tor i1 (f)dpe(w)

a’el ! a’e\ o a”eA e a V/+1

-y X f ) = T (D))

a’eA /a”eA e al V’+1

Z Ja/,u’,u’+1

’
a EAU/
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Then the lemma follows from Lemma 9.27. ]
Lemma 9.29. The sequence {mq ./ (f)}=, converges in Cy,.

Proof. By Lemma 6.6, the sequence {mg, .,/ (f)},>, is Cauchy if and
only if

lim |ma,u,1/+1(f) - ma,l/ﬂ/’(f)| = 0.

v/ —00

Since k > 2, this follows from Lemma 9.28. O

Lemma 9.30. The limit lim, o, mq,,/(f) is independent of the choice
of A, chosen to define each mg,,,(f).

Proof. For any v/ > v, write A, = {d},...,a.}. Take any a; €

D(a,,q7"") and put A, = {a,,...,a.}. Then D(a,,¢~"") = D(a, ¢).
Put

osr$) =X [ Tl dula)
=1 D(aqu y)

By Lemma 9.26, we have

~a,,zj,l/’ f — a, v’ f = TZL;,V’ f _Ta;,u’ f d c
Pracor D) = masse ) = 3| ) o (D)l

< Clmo| 2V |1(f, a,v)|.

Since k = 2, we have lim,/ o [Map0 (f) —Ma . (f)| = 0, which implies
the lemma. ]

Definition 9.31. Let e € T satisfying U(e) = D(a,q™") with some
a€ Ky and veZ. Let fe O(Dc,(a,q")). We define

f f(@)dpe(z) = lim mg,.(f).
Ule)

v/ —o0
9.5. Construction of integration around oo.

Definition 9.32. Let v € Z and let f(z) = },,. ;) & be an element
of z*720 (D¢, (0,q™")). Define
0

Teulf) = D) %ePk.

i=—(k—2)
Note that for any v/ > v, we have T, ,(f) = Too . (f)-

Lemma 9.33. Let o' € Ky and v,V € 7 satisfying v > —v' and
la'| = ¢¥ so that Lemma 4.14 implies D(d’,q~"") < D(o0,q"). Let
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f(@) = 2is_(h_2) 5 be an element of 2*720(D¢, (0,q7")). Write

k—2
Too,u(f) - Ta’,z/(f) = Z bz(m - a,)i
=0

Then we have ‘
T by e I(f,00,v).

Proof. From the equality

2 C_] — Z Cj _ 2 Z (_]> Cj (x_a/)z
e T 20 (@' + (2 — ) 20> (h-2) N (')
we see that
_ N _j Cj PRy
=g 3 (3o
On the other hand, since (7 ) = 0 when 0 < —j < 7, we have
UNE 0 c 0 i 5
Z J Z J .:Z Z ( ) J. .(:zc—a’)l
] / — na’\)J AY S
P R P Gl CEl = P AN ALY
k—2 0 (_]) s
= Z ! (x—a)
; 1\i+j ’
=0 j=—(k—2) l (a )
which yields
-5
j=1 v (a) i
Since |@/|7! < ¢7¥ = |m|", we obtain
T Vb € T Z cngéﬂ)”(’)@w = 2 c;m¥ Oc, € T I(f,0,v).
j=1 j=1
O
Definition 9.34. Let v € Z. Let f € 2*720(D¢_ (o0,q7")). For any

v' =1+ |v], by Lemma 4.14 we can take a decomposition

D(%0,q¢7") = D(w,¢")u [ [ D(a,q™)

’
a GAV/

with some finite subset A, € K. Write D(a’,q™") = U(eq,) for any

a' € A, U {oo}. Then we define

Moo (f) = L(% ; Pdpe(z) + J

a'eN, (6"

dpe(z),
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where the integration on the right-hand side is given by (9.2).

Lemma 9.35. Let V', U € Z satisfying v/ > —v. Let a’ € K, satisfying
la/| = ¢ so that D( ¢ ") € D(w,q") by Lemma 4.14. Let f €
2*20(D¢, (0, q7")). Take a decomposition

D, = ] D@qg”)
aeAs11(a’)

Put
Tz = [ TuslPide()~ J Tiinr (F)dpc(x).

D(alvq_ﬂ) acN 5 +1 _V 1)

Then we have
E
| Jwo51(f)] < Clmo| T2V | I(f, 00,0/,
where C' is the constant in Lemma 9.13.

Proof. By Lemma 9.6 and (9.2), we have
Teson)= N (Tl = Taou(dute)
= D(a,qg—7—1

Write
T o(f) = Tapsa( Zb
Then Lemma 9.13 and Lemma 9.24 yleld
T zoei(f)] <O _max|m |Z**2><”“>+<'f IS, d )]

.....

Since Lemma 4.14 implies

D(d’,q7") < D(d',¢" ") < D(

by Lemma 9.19 and Lemma 9.21 we have
I(f,d.0) < I(f,d',1—v) <7 I(f o0,V).
Since 7 > 1 — v/ and k > 2, we obtain
a1 ()] < Clmeg |75 T3040 | [(f, 00, 0/)|
= Clmeo |5V I (f,0,1)].

This concludes the proof. O



NOTES ON DRINFELD MODULAR FORMS 135

Lemma 9.36. Let C' > 0 be the constant in Lemma 9.13. Then for
any V' =1+ |v| we have
_ — 5245V =kl
[Meowpr1(f) = Moowu (f)| < ClI(f,00,v)|[m| 2772 :
Proof. We have two coverings
Dw,g")= ] D)= [ D@,qa®),
a’el,ru{oo} ael; ru{o}

which yields

freKyllal=¢"}u [] D,a)= ] D" ¢ "").

’
a’el, a’ehy

Since ' > —(1 + /'), we have
| =q” = D" .q¢"))c{ze Ky ||z =q"}.

This forces the latter covering to be a refinement of the former.
For any o' € A, U {oo}, take a subset A(a’) € A1y, U {00} satisfying

L[ D *(1+V )
a’eA(a’)
Then Lemma 9.6 and (9.2) imply

D= [ TusDante Zf T (f)dp2)

U(@alﬂ/) a’eA(a’) (eqn 1+V

- 2 L( )(Ta’,u’(f)_Ta",1+y/(f))duc(x).

a”’eN(a’)

Note that we have
moo,u,u’(f) - moo,u,l/’+1<f) = Z Ja’,u’(f)'

a’elruf{oo}
If a” = oo and a” € A(a'), then we also have ¢’ = o0 and

T (f) = Twis(f) = 0.

Hence the term for ¢” = oo has no contribution to Jy ,/(f).
Suppose a” # 0. Write

Ta’,u’(f) — Lgn 1+I/ Z b xr — Cl
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If o' # oo, then as in the proof of Lemma 9.27, we have

k=2 k
J ( ) (Ta’,u’(f) _Ta”,l-i-l/’(f))dﬂc(x) < CY"7r00| 7 T3 ’[(fa &/7V/)‘
U ea”,1+1/

< Clmo| =273 MMI(f,0,0),
where the last inequality follows from Lemma 9.21. Thus we obtain
(9.5) [ aar (D] < Clwee |77+ 57 M1, 00,0)

for any a’ # oo.
Let us consider the case a’ = o0. In this case, we have

{:L‘ e K., ‘ ’$‘ _ qr/} _ L[ D<a//’q—(1+1/)>'

a”eN(o0)\{oo}

For any integer o € [1—7/,1/ +1], we can find a subset Ay < A(c0)\{oo}

satisfying A, 1 = A(0)\{oo}, Ay—1 € A; and
{reKy|lz|=q"}= ][] D", q).
a’eAy
For each 7 and any a” € A;, we can write
D(".q ") = ][] D@aqg™"
Ay (a”)

with some subset Ay, 1(a”) € Ayyq. By applying Lemma 9.35 for any
ve [l -V, 1], we obtain

To(f) € j T (f)dpiol) — j T (F)dpic(2)

D(o0,q7%") D(00,qg=(1+v"))

_ J Tooso (f)dpele) + 1
D(a”,q”/_l)

"
a EA17V/

= Z ) 1)(Too,u’(f) = Tor 1 (f))dpe(x) + 1
areh,

D(a”,q""~

with some monogenic Oc_-submodule I < C,, satisfying
(9.6) 1] < Clmo |27 I(f, 00, )| < Clmo |27 | I(f, 0, 1)),

where the last inequality follows from Lemma 9.20.
Finally, writing

k—2
TOO,V’(f) - Ta//,].*l//(f) = Z bl(x - a”)ia
=0
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we see from Lemma 9.13 and Lemma 9.33 that

| Tl = T i
D(a”,qv" 1)

< ) PV
h 0336}52 b fD(a// qV'71)($ ¢ ) d'UC(:E)
_k=2
< e Clme |06 550 [0 1(f, 0, )
_ l,7+ v
= ax Clme| [I(f, 0,V)]

= Clmo| =7 +2V|1(f,00,/))|
< Clm| =7 37| I(f, 00,0,

where Lemma 9.20 gives the last inequality. Since k& > 2, by the in-
equality (9.6) we obtain

(9.7) [T (NI < Clao| ™3 757 |1(f, 0, ).
Now the lemma follows from (9.5) and (9.7). O
Lemma 9.37. The sequence {moo7y7yl(f)}l,/>1+|,,| converges in C,.

Proof. Since k = 2, Lemma 9.36 yields lim, o [mop 11 (f) =Moo (f)] =
0. Thus Lemma 6.6 implies that {mw ./ (f)}=14 converges. O

Lemma 9.38. The limit lim, o, Mo 1., (f) is independent of the choice
of A, chosen to define each mqy, . (f).

Proof. For any v/ > 1+ |v|, write A, = {d},...,a.}. Take any a; €
D(af, ) and put Ay = {af, ... aL}. Then Ulege) = Diaf,q~) =
D(ala ) Put

Men () = L(e

By Lemma 9.13 and Lemma 9.24 combined with Lemma 9.21, we have

Moo (f) = Moo (f)]

Zj (v — @} dpele)

e / l

TOO l/’ d,uc + 2 f T?z V’ dﬂc(x)

w,u/)

|7_[_k 1— l)l/ (f,(l;,l//”

-----

< max  Clme 075 e |07 L(f 00, 0)
= Clmee £ 1(f,00,0)].
Since k£ = 2, we have limy o [ (f) — Mo (f)] = 0, which

implies the lemma. O
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Definition 9.39. Let e € T satisfying U(e) = D(o0, ¢ ") with some
veZ. Let fex*20(Dc, (0,q7")). We define

f(x)dﬂc@) = l/lm moo,u,u’(f)'
U(e) v'—00
9.6. Properties of integration.

Definition 9.40. For any U € CO(P'(K)) and f € &, by Lemma
4.15 we choose a decomposition

(9.8) U=]]D(aq™)

ael
with some finite subset A = P'(K,,) and put

J f(x)dpe(z ;AJ ) dpc().

Lemma 9.41. The integration § f( duc( ) is independent of the
choice of a decomposition (9.8) of U.

Proof. Take two decompositions of U as in (9.8). By Lemma 4.16, we
may assume that one is a refinement of the other. Thus we may assume
U = D(b,q7") with some b e P}(K,) and v € Z.

Take any v’ € Z satisfying v/ > 1+|v| and v/ > 1+ |v,| for any a € A.
By Lemma 4.14, we can choose a decomposition

[] D, q)
a/EAa’V/
with some finite subset A,,, € P*(K,). Then we have
=11 1 p.a™)
aeN a’GAGTV/

and thus we may assume

mb,l/,u’(f) = Z ma,ya,z/(f)

aeA

Taking lim,/_,,, we obtain

j f (@) dpe(z) =
D(b,g™v)

This concludes the proof. O
Lemma 9.42. IfUy,...,U, € CO(PY(K)) satisfies U = [ [;_, U, then

we have
Jf Ydpue( Z f f@)dpe(x

S ri

aeA YD
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Proof. By Lemma 4.15, we can find a decomposition

Ui = HD(ai,j,q_w’j)
=1

with some a; ; € P*(K,) and v; ; € Z. Then we have
I )
i=1 j=1

Then Lemma 9.41 implies

| s@dneo - f 2ol Z 2)dne(2).
U i= 1] 1 ‘117117””)

Lemma 9.43. For any integer 0 < i < k —2 and e € T, we have
f ldpe(z) = (—1)'c(e)(XF27YT),
Ule)

Proof. By Lemma 4.15, we can write

6) = ]_[ D(aia qiw)

with some a; € P}(K,) and v; € Z. By Lemma 9.6 and Lemma 9.42,
we may assume U(e) = D(a,q™") with some a € P(Ky) and v € Z.
For any v/ > 1 + |v|, we choose a decomposition

- 11 pt.a), D(.q) = Ulea).
a’EAl,/
Then we have T,/ ,,(z') = 2" and Lemma 9.6 yields
ma,u,u’(xi) = 2 f ( )Ta',l/' (xz)dﬂc(x)
Ule,

’
a EAV/ a

= ) (F)elen) (XYY

a’GAV/
= (=1)'c(e)(X**7Y).
Taking the limit we obtain the lemma. 0

Lemma 9.44. Letae Ky, and v € Z. Let
f@)= . ez —a) e O(De,(a,47")).

i=k—1
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Let C > 0 be the constant of Lemma 9.13. Then for any v = v, we
have

M ()] < Clmop| 70

U1, a,v)].

Proof. Choose a decomposition

= H D(d',q”

CL’EAV/

By the equality
(9.9) (x—a) =] (;) (a'—a) 7 (z —a'),
j=0

we have

k—2
Ta’,u’(f) = Z
j=0i>k
Then Lemma 9.13 yields

| (;)Ci(a’ )z — ).

g (] = | j T (f)dpicl)

a’el,, D(al’qil/)
< max max Z ci(d — a)d C!Woo|(j*%)l/’
a’el,, j=0,.. k=2 |
i=k—1
7=0,....k—2
i=k—1
< max Cln U0 (1 0, p)
j=0,....k—
_ _ (k=2)v" 2)1/
:C’ﬂ'oo|k Dy \I(f,a,v)|.

U

Lemma 9.45. There exists a constant Cy > 0 such that for any e € T,°
with oo ¢ U(e), any a € U(e) and any integer i = 0, we have

J (x — a)'duc(r)| <
Ule)
Proof. Write U(e) = D(a,q™") with some v € Z. Put f = (z —a)" and
mif) = | (o a)duo)

Ule)

Lemma 9.13 shows that the constant C' of this lemma satisfies the
inequality of the lemma for ¢« < £ — 2. Thus we may assume ¢ > k — 1.

k=2

C’lp( )z_T.
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To compute m(f), for any v/ = v we choose a decomposition
= [ pt,q).
a'eh,,
Note that we have
I(f,a,v) = 70~ k-Dro,
Since ¢ > k — 1, Lemma 9.44 ylelds

0"

_ (B=2)v" iv— (k— 2)1/
[Mawu (f)] < Ol |0 | (f;a,v)] = Clme]
On the other hand, by Lemma 9.28, for any v” > v/ > v we have
’ma,u,u”(f> - ma,u,l/’(f)’ < =0 H}/%)—(V’—l |ma,u,y’+l+1(f) - ma,y,l/’+l(f)‘
< max  Clrol T (S aw)

1=0,...0"—v'—1

= Clro [T+ |1(f,a,v)|

C| |—%+T+(z—(k—1))y‘

Taking v — o0, we obtain

|m(f) - ma,z/,y’(f)‘ < C|7TOO‘7%+I€TU+(¢*(]€*1))V

for any v/ > v.
For any v/ > v, we have (k — 1)v < (k — 1)v/ — %52 and thus

(k=20 k—2 kv

v — — —+ (= (k—=1))r.
iv 5 < st T (1 —( )
Putting v/ = v + 1, this yields
k=2
m(f)] < Clmee |25

Since p(e) = |mo|”, the constant C|7TOO’_T2 satisfies the condition for
any ¢ > k — 1. Thus we may put

Cy = max{C,Clrp| 2 } = Clry| 7.

Lemma 9.46. Let v € Z and let
C<
flx) =) —€O0(Dec,(0,q7")).

Let C' > 0 be the constant of Lemma 9.13. Then for any v' > 1+ |v|,
we have

kv _ k=2
Moo (f)] < Clmes| 27 2 |I(f, 00, V)]
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Proof. Choose a decomposition
0,q7") = H D(d
a/EAy/
Since the assumption on f implies T3, ,/(f) = 0, we have
mesrl D)= 5| Ta Do)
a’el,,\{oo} VD@ a™)
By Lemma 4.14, we can find a subset A < A,/\{oo} satisfying
D(o0,qg "\D(0,¢") = [ [ D(a.q"") =[] Dla.q"),
a’el a’eA \{oo}

where the latter covering is a refinement of the former. By using Lemma
9.35 repeatedly, we have

moo,y,y’(f) € Z J Ta/,lfu(f)d,uc(x) + I
aen YD ¢ 7h)

with some monogenic O¢_-submodule I of C,, satisfying
7] < Ol |5 1(f, 0, V).
By the equality

(9.10) =Y (‘J’) (a)%(x Y

we have

Ty ZZ(J ey,

7=01:>1
Since |a’| = ¢”, Lemma 9.13 yields

Z f Tor 1o (f)dpe()
areA VD@ ,qv 1)

< max  max . ch DY O | Ol )G=452)
a’eA j=0,..., =1
k=2, (k=2)v 2)
< max  Clme (0, )

= C’WOOPViTN(fa OO, V)‘
Since k > 2, we obtain
[Mep o (£)] < Cmax{ |72, o272 HI(f, 0, )|

K, k=2
:C|7TOO|2 2 |](f,OO,I/)|.
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This concludes the proof of the lemma. O

Lemma 9.47. There exists a constant Cy > 0 such that for any e € T,°
with oo € Ule) and 0 ¢ U(e) and any integer i = —(k — 2), we have

1
—dp.(x
L(e) x (@)

Proof. By Lemma 9.15, we can write U(e) = D(o0,q™ ") with some
v € Z. Then we have p(e) = ¢~ and

U(_e) = D(07 qyil)7 p(_e) = qyil = qilp(e)il'
Put f = i and

< Cople)t'z.

T

mi) = [ nte)

For 0 > i > —(k—2), Lemma 9.13 and (9.2) show that the constant C'
of this lemma satisfies

J v dpe () f v dpe(x)
U(e) U(—e)
< Cp(=e) 75" = g T p(e) T < Cq'7 ple)

and the constant Cy = C|m,| =2 satisfies the inequality of the lemma
for 0 > i > —(k—2).
Suppose i = 1. To compute m(f), for any v/ = 1 + |v| we choose a

decomposition

v = 1] D).

(Z’EAV/

Note that we have

I(f? a0, V) = chéil)l/@@oc'
Then Lemma 9.46 yields

M0 ()] < Clmec] 275 | 1(f,50,)| = Ol | 375,

Taking v/ — o0, we obtain

ki 1)—k=2 i k=2y, k=2
Im(f)] < Olme| 27072 = Ofmy |72 )7
2

= Clm| 7 ple)*7.

Thus the constant Cy = C |7TOO|’¥ satisfies the inequality of the lemma

also for 7 > 1. O

Thus the constant max{C}, Cs} satisfies the condition (3) of Theorem
9.16.
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Lemma 9.48. Let e € T satisfying oo ¢ U(e). WriteU(e) = D(a,q™")
with some a € Ky and v € Z. Let F(x) = 3 ci(z — a)' € Coo(%52).
Then we have

[ bt = o[- orinin

=0

Proof. For any [ > k — 1, put
Ffe) = Yota ), m(F) = | Fidulo)
i>l Ule)

It is enough to show lim; .., m(F;) = 0.
To compute m(F;), for any v/ = v we choose a decomposition

= H D(d',q™").

a’EAV/
By Lemma 9.44, we have
(Mt (F1)] < Clen] B0~ (a0, ).

On the other hand, as in the proof of Lemma 9.45, Lemma 9.28
shows

k— 4
() — Mayw ()| < C!%FTZ*%U(E,CL,V)\-

When v/ > v + 1, we have v + (k 1)<V’ and
(k—2)/ kE—2 kv
E—1)py—-——< —— 4+ —.
(k=1 2 > "
For v/ = v + 1, this imphes
Im(F)| < Clro| 0“5 1(F, 0,0)] = Clro| =5 |1(F a,v)].
Since lim; o, ;7% = 0, we have lim;_,o, |[(F},a,v)| = 0. This con-
cludes the proof. 0

Lemma 9.49. Let e € T satisfying oo € U(e) and 0 ¢ U(e). Write
Ule) = D(w0,q7") with some v € Z. Let F(x) = Y. 4 oS €
$k72(coo 1

1
| Pedne = ¥ o] e
Ule) iz—(k—2) Ule) xr

Proof. For any [ > 1, put
C;
Rle)= ¥ 5%, mF) = | Fidulo)
z Ule)

il

It is enough to show lim;_,,, m(F}) = 0.
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By Lemma 9.46 and taking v — oo, we have
k k=2
Im(F))| < Clmo |2 2 [I(F, 00, v))].

Since lim; ., ;7% = 0, we have lim;_, |I(F},0,v)| = 0. This con-
cludes the proof. O

Now the proof of Theorem 9.16 is completed.

9.7. Transformation property of the integration. For any v =

<CCL Z) € GLy(K) and any rigid analytic function f on a distinguished

closed disc in P*(Cy), we define

(o) = den(oHew a2 (B0

cxr +d

Note that if f € Py, then f, € Bj.

Since v : P}(Cy,) — P'(Cy) is an isomorphism of rigid analytic
varieties, for any e € T° its restriction to the open subvariety U(e)
induces an isomorphism of affinoid algebras over C,

(9.11) 7*: OU(yoe)) = OU(e)), va*(f)(x):ijiz)'

Note that for any e € 7%, the ring O(U(e)) is a PID. Hence for any
z € U(e) and g € Frac(O(U(e))), we may define the vanishing order
ord,(g) of g at z. Then, for any z € U(e) and f € OU(yoe)), we have

(9.12) ord, (7*(f)) = ordy ().

For any e € T satisfying oo ¢ U(e) or 0 ¢ U(e), write p(e) = ¢~(¢) and
put

m(e)={ 0 (0EUle).
k—2 (woeU(e)and 0¢ U(e)),

so that P, < 2™®0O(U(e)). When oo ¢ Ul(e), choose any element
z(e) € U(e). When oo € U(e), we put z(e) = o0.

Lemma 9.50. Let e € T° and let v = (g Z

2" OWU(y o €)).
(1) Suppose o ¢ D or 0¢ D for any D € {U(e),U(yoe)}. Then
£y € x™O0U(e)).
(2) Suppose moreover y(z(e)) = z(yoe). Then

) € GLy(K). Let f €

Tz(e),u(e)(f”/) = Tz(voe),u('yOe)(f)”/'
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Proof. First we claim that

ar +b
cr +d

m(yoe)
J(e,y) := x—m ( ) (cx +d)2eOWU(e))”.
Indeed, if oo ¢ U(e) and oo ¢ U(y oe), then J(e,v) = (cx + d)¥2 €
O(U(e))* since =4 = y71(0) ¢ U(e). If o ¢ Ue) and w0 € U(y oe),
then J(e,7) = (az + b)*% € OU(e))* since =2 = y71(0) ¢ U(e). If
w0 € Ule) and w0 ¢ U(yoe), then J(e,7) = (c+ 4)¥2 e OU(e))*
since =¢ = v71(o0) ¢ U(e). If w € Ule) and o0 € U(y o e), then
J(e,7) = (a+2)*2 e OU(e))* since =2 =~71(0) ¢ U((e).

By this claim, the map * of (9.11) induces a C-linear isomorphism

xm(’Yoe)O(z,[(fy o e)) — xm(e)o(u(e)>,
f =m0 o £, = 27O det (374 (e, 1)1

and the assertion (1) follows.
Moreover, if the condition of (2) is satisfied, then the claim and (9.12)
show

0rdz(yoe) (f) =k —1—m(yoe) <  ordye(fy) =k—1—m(e).
Hence, if we write
f = Teyoeywivee)(f) + F, 0rda(yo)(F) = k =1 —m(yoe),
then we have
fy = Tetyoeywinoe) (f)y + Fyy - ordee)(Fy) =k —1—m(e).
Since T.(yoe)u(v0e) (f)y € Pi, we obtain T (o) u(y0e) (f )y = Tz(e>,u<e>(f%

Lemma 9.51. For any f € <, and any v = (CCZ b) € GLy(K), we

d
have

£ (@) := det(y)> *(ca + d)F2f (ij_z) e .
Proof. We show that f, satisfies the condition of Definition 9.14 for all
z € PY(K,). By Lemma 9.50 (1), it is enough to show that for any
z € P1(K,), there exists an integer v such that D = D(z,q ") satisfies
0 ¢ (D) or 0 ¢ ~(D).

Suppose 0,00 € v(D(z,q7")) for some v € Z. Since y71(0) # v~*(o0),
we can find v/ € Z with v/ > v such that the set {y~1(0),7(0)} N
D(z,q™"") consists of at most one element. This 1/ satisfies the require-
ment. U
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Lemma 9.52. Let f € o, and let v1,v2 € GLy(K). Then we have
f’Yl’Yz :(f71>727 fia=Tf

a;

Proof. Write ~; = (c Z’) Since v1(72(z)) = (1172)(x), we have

(fyi)na (@) = det(r2)* ™ (com + da)" 72 £, (92 ()
= det(y1)* " det ()"~

(co + do)"™2 (01 (M) + d1>k2 f(r(re(z)))

Cox + dg
= det(7172)* " ((c102 + drca)x + (c1by + dide))* 2 f((1172) ()
= Jy ().
Thus we obtain the first equality of the lemma. The second equality is
clear. 0

Lemma 9.53. Let f € o, e € T and v € GLy(K). Suppose oo ¢ U(e)
and o ¢ U(yoe). Then we have

J d,u"*c J f v d:uc )
Ul(yoe)

Proof. By Lemma 9.8, the function z — |cz + d| is constant on U (e).
Since 0 ¢ U(yoe), we have cz +d # 0 for any 2z € U(e) and this
constant is positive. Let ¢ be this constant and write |det(y)| = ¢™°.
For any sufficiently large integer 1/ satisfying ¢ > ¢~*|c|, take any
decomposition
= H D(z

ZEA,//

asin (9.4). Then Lemma 4.8 and Lemma 9.50 (2) imply v(D(z,¢7"")) =
D(v(2), q_(’/”m_"m)) and

’yoe H D —(/+2m- mo)), zz/(f’y) = v(z )V +2m— mo(f)ﬁ“

zeA !

By Lemma 9.7 (1), we have
My 4 2m-—mo (f) = Z f Ty (2) v/ +2m—mo (f)dpre()

vens, ID((2) g F2m=mo))

T’y(z) VI 42m—myg (f)vd/vbc (l’)

Il
EiNg
—

Tz,V’(fw)dﬁLC(x) =: ml/’(fv)~

|
g
—
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Now the lemma follows from

f f(@)dpre(z) = Tim myyom—m, (f), J fy(@)dpe(x) = lim my(f,).
U(yoe) Ue) V=00

I/*}

O

Lemma 9.54. Let f € o, e € T and v € GLy(K). Suppose o € U(e)
and o ¢ U(yoe). Then we have

f z)dpie(w f fr(@)dpe(z).
Ul(yoe)

Proof. Since w0 € U(e) and o ¢ U(yoe), we have ¢ # 0 and ¢ € U(yoe).
Take a sufficiently large positive integer v satisfying |d| < ¢”|c| and a
decomposition

Ule) =D (w0,q7") u | [D(z.q7")
zEN

By Lemma 9.53, we have

j F(@)dpee(z) = f £ (@)due(a)
Y(D(z,q77)) D(z,q7")

for any z € A. Thus we may assume U(e) = D (o0, q7").
For any sufficiently large positive integer v/ > v, take any decompo-
sition
Ule) = D(oo,q")u | [ D(z
zeN

as in Definition 9.34.
Write |c| = ¢, |det(y)] = ¢™ and |z| = ¢°* for any z € A,,. Put
to = 2t — mg. Then we have

(9.13) O<v<s, <V-1
and |d| < ¢"|c| < |ez|, which yields |cz + d| = |cz| and
lcz +d| = |cz| = ¢"|c| > q7"]c|.
By Lemma 4.8, Lemma 4.9 and Lemma 9.50 (2), we have y(D(0,q7")) =
D(%,¢q7"7") and

c’

WD, a ) =D (507 ) ) Tow(f) = Tewrsinl oy

C
V(D(Za qil/)) = D(7(2)7 qu/ft072sz), Tz,l/(f'y) = T:y(z),l/’-&-to+2sZ (f)’y

for any z € A,
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. f T (£)dpe(w),

My : f T (fy)dpe(x
D(OOqV) ZEA/ (un

mu f 0 g t0>Tau+to<f)d/1”c( )

' E]_f ot (o).

zeh,, gV ~to—2sz)
By Lemma 9.7 (1), we have m,(f,) = m,(f) and
o @) = Jim (1),
For m,/(f), (9.13) implies
Vidto <tV +tg+2s, <3V +ty— 2.
Take any decomposition

a
D <_ -/ to) _ D — (3 +t0—2) :
. LD )

weA (oo

D(,y(z)’q—l/—to—Qsz _ H D —(3V +to— 2))

weA(z

for any z € Ay Put Azprigg—2 = A(0) U U,en , A(2) and

m31,1+t0_2(f) = Z J w 3V +to— Q(f)dﬂ’vc(x)
A wq —(3v/ +tg— 2)

WEA3Y ty—2

Since this agrees with the sum of Definition 9.25, we have

j F@)dgeele) = T miyesg(f).
U(vyoe)

v —o0

Now Lemma 9.27 yields

7 _ k=2 k(
70, (f) = Mawri1g—2(f)] < Clmo| =2 T2 H0)

(50 )|
C

with some constant C' > 0. Since k£ > 0, we have

lim M, (f) = lim ma,44-2(f) = J( )f(m)duwc(x).

v/ —o0 v/ —o0

This concludes the proof of the lemma. O
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Proposition 9.55. Let f € o, and let e € T°. Then for any v €
GLy(K), we have

‘Lmdﬂwmm@ﬁzﬁwﬁaWVk@x+@kv(““”vd%@)

cr +d

Proof. By Lemma 9.53 and Lemma 9.54, we may assume o € U(yoe).
For a sufficiently large positive integer v, we have a decomposition

U(yoe) = D(wo,q*)u | [ D(z.q7).
zeA
Since o ¢ D(z,q¢"), Lemma 9.53 and Lemma 9.54 imply
| @ - | fr(@)due(a)
D(z,q7) Y1 (D(z,q7))

By Theorem 9.16 (1), we may assume U(yoe) = D(w0,q¢").
Take any @ # 0 € A satisfying deg(Q) > —v and put

5im (612 ?) e GLy(K).

Then Qz + 1 # 0 for any z € K, satisfying |z| = ¢”, so that oo ¢
d(U(yoe)) =U(éyoe). Lemma 9.51 yields fs-1 € .
Applying Lemma 9.53 and Lemma 9.54 to fs-1: and the map
0y :U(e) > U(dyoe),

Lemma 9.52 gives
| @) = | s @dut) = | F@dio).
U (d~yoe) Ule) Ule)

Similarly, for the map
5:U(yoe) - Uyoe),
since ¥ = %) we have
| ) = [ Groseldiede) = [ ra)ded)
U(8voe) U (yoe) U (yoe)
Hence the proposition follows. U

10. RESIDUE THEOREMS

In this section, we recall the theory of rigid analytic residues on P,
following [FvdP1, §1.3]. Let K be an algebraically closed field equipped
with a complete non-Archimedean valuation | — | : K — Ryq. Let Ok
be its ring of integers, mx be the maximal ideal of O and k be its
residue field. Since £ is also algebraically closed, we see that k is an
infinite field.
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10.1. Circular residue.

Lemma 10.1. Let Sp(R) be a connected affinoid subdomain of Sp(K(x)).
Then R is a PID of dimension one such that its prime element is x — ¢
with some ¢ € K satisfying |c| < 1.

Proof. By [BGR, Theorem 5.2.6/1 and Remark 6.1.3], we see that K{z)
is a Noetherian UFD of dimension one. Hence it is a PID. Then [BGR,
Proposition 7.2.2/1] shows that R is a regular ring of dimension one
such that any maximal ideal of it is generated by = — ¢ with |¢| < 1.
Since Sp(R) is connected, it follows that R is a PID. O

Definition 10.2. Let ¢ € K and p € |[K*|. Let w, € K be any element
satisfying |w,| = p. We define

r—a Wy
)

Cla,p) = {ze K| |z —a| = p} = Sp(K(

)

and call it the circle centered at a with radius p. We also put

Co=C(0,1)={zeK||z] =1} = Sp(Klz,z™ ).

Wp Tr—a

By definition any element f € O(C(a,p)) is uniquely written as

with some a, € K satisfying lim,, . a,, = lim,, ,,a_,, = 0. Then the
ring O(C(a, p)) is equipped with the Banach norm

|[f| = max{[an| | n € Z}

so that we have an isometric isomorphism of affinoid algebras over K

r—a w r—a
I p>7 €T —
a

(10.1) Kz, 27 — K{(

Wp r — Wp

Lemma 10.3. The Banach norm | — | on O(C(a,p)) agrees with the
supremum norm and it is a valuation.

Proof. Using the isometry (10.1), we reduce ourselves to showing the
lemma for the unit circle Cj.

By a remark after [BGR, Proposition 6.1.4/2], the Banach norm is
the same as the residue norm with respect to the surjection

KX, Y) -» Kz,o7"), X2, Vool

Since k[z,z7'] is a domain, [BGR, Proposition 6.4.3/4] implies that
this norm agrees with the supremum norm. By [BGR, Proposition
6.2.3/5], it is also a valuation. O
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Definition 10.4. Let C' = C(a, p) be a circle. We say t € O(C)* is a
parameter of C'if the following conditions are satisfied:

(1) [tlsup = 1.
(2) Any element f e O(C) can be written uniquely as

f= Z ant”,
nez

where a,, € K satisfies lim,,_,, a,, = lim,,_,, a_,, = 0.
(3) With a,, as above, we have | f|s,, = max{|a,| | n € Z}.

Then ¢! is also a parameter of C.

By Lemma 10.3, the element =% € O(C(a,p)) is a parameter of
C(a, p)-

Let C' be a circle and let ¢ be any parameter of C'. Then the canonical
reduction of the affinoid algebra O(C) is given by

O(C) = k[t t7].
Thus we have an isomorphism of groups
(10.2) 2 - 00 Jk*.

Definition 10.5. An orientation of a circle C' is an isomorphism of

groups ¢ : Z — Mx/lﬁx. We call the pair (C, ) of the circle C' and
an orientation ¢ of C' an oriented circle. For an orientation 9 of C, the
isomorphism ¥ (n) := ¥ (—n) is called the orientation opposite to 1. A
parameter ¢ of the oriented circle (C, ) is said to be positive if 11 (¢)
is positive.
Lemma 10.6. Let t be a parameter of the circle C. Then f € O(C)*
iof and only of

f=M"(1+ ) bit")

i#0

with A € K* and b; € K satisfying |b;| < 1 for any i.

Proof. Suppose that f is written in the form as in the lemma. Since

the series ‘
j
L+ > bt) ™ => <— > biti)
i#0 720 \ %0
converges in O(C'), we obtain f e O(C)*.
Conversely, take any f e O(C)*. By Lemma 10.3, the Banach norm
on O(C) is a valuation and thus | f|s,, = 1. We denote by f the image
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—_— X

of f by the canonical reduction map O(C)° — O(C). Since f € O(C) ,
by (10.2) we can write as -
7=
with some A € k* and n € Z. Take a lift X' € Of of A\. Then we have
fNt) P =1+0(0)"
and thus we can write f as in the lemma. ([l

Definition 10.7. Let (C, 1)) be an oriented circle and let ¢ be its pos-
itive parameter. Let w be a holomorphic differential form on C'. Write

w = Z a,t"dt, a, € K.
nez

Then we define
Resi(w) = a_;
and call it the residue of w with respect to C' (or (C,)).

Let Q} x be the module of rigid analytic differential forms on C'.
We can write Qf, x = O(C)dt and the topology on it induced by the

Banach topology of O(C') is independent of the choice of a parameter
t [BGR, Proposition 3.7.3/3|. By Definition 10.4 (3), the map

Res; : QIC/K - K

is continuous (with respect to the Banach norm on O(C')). Moreover,
since

=t dt  dt
L et
we have Res;—1(w) = —Res;(w), where the former residue is with respect

to (C, ).

Lemma 10.8. Res;(w) does not depend on the choice of a positive
parameter t.

Proof. Let s be another positive parameter of (C, ). By the continuity
of Resy, it is enough to show

Ress(tm%) :{ 1 (m=0)'

For m < 0, we have

and thus

Ress(tm%) _ Res, ((t—l)—m d(t_1>> _ Res, ((t—l)—md(t—_l)) .
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Since both of s7! and ¢~! are positive for the opposite orientation 1,
we may assume m = 0.
By Lemma 10.6, we can write

t=As(l+ Z a,s")

n#0

with A, a,, € K satisfying |\| = 1 and |a,| < 1 for any n. Again by the
continuity of Res;, we may assume that there are only finitely many
nonzero a,. Then for some non-negative integers [,!” we have

-1 =+
t=As-s'f(s), f(s)= Z a5 + s+ Z a;_s’
i=0 j=l+1

with a_; # 0 and ay # 0. Here we consider the sum is zero when [ = 0
orl'=0.

Suppose m = 0. Then inspecting the Newton polygon shows that the
polynomial f(s) has exactly [ roots oy, ..., with absolute value less
than one and exactly I’ roots 1, ..., By with absolute value more than
one. Moreover, inspecting the right endpoint of the Newton polygon
we obtain |ayf; - - fy| = 1 when I’ > 0. Thus we can write

t=su H(l — ;s H(l — B 's)

i=1 j=1

with some p € K satisfying |u| = 1. Then
RS )8
1 — s~ 5

which yields Resy (%) = 1.
Suppose m > 0. If char(K) = 0, then writing " = >

have
mdat 1 o1 n\ ds

n
ez ns™ we

neZ

which yields Res,(t™4) = 0.
If char(K) > 0, write

m—1
t7=)\s (1—1—2%5) (14—2(71—1—1)@”3)?.

n#0 n#0
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Since m > 0, there exists a polynomial P € Z[X_;, ..., Xy] such that
the constant term of the Laurent polynomial

s™ (1 + 2 ans”> 7 (1+ E(n + 1)a,s")

n#0 n#0

insis Pla_y,...,ay).

Consider the fraction field of the p-adic completion of the localization
of Z| X _4,..., Xy] at (p). Let L be the p-adic completion of its algebraic
closure. Since L is algebraically closed with char(L) = 0, we have
Res,, (t™49) = 0 with a parameter sy and

I+l

-1
t=sg- Salf(S()), f(So) = ZXZ',ZSE + Slo + 2 Xj,lS{).
1=0

j=1+1
This implies P(X_;,...,Xy) =0 and P(a_y,...,ay) = 0. O

Definition 10.9. Let (C,v) be an oriented circle. Choose a positive
parameter t of (C,1)). For any w € QE/K, we define

Res(c,p)(w) := Res(w).
We also denote it by Rese(w) if there is no risk of confusion.
10.2. Discs and orientations of boundary circles.
Definition 10.10. For any a € K and p € |[K*|, let
Dx(a,p) ={zeK||z—a| <p}, Dxla,p) ={z€K||z—al = p}o{o}.

We call them closed discs in P§ and we refer to a as a center of these
closed discs. Moreover, we put

Dg(a,p) ={z€K||z—a| < p}, Dg(a,p) ={z€K||z—a| > p}u{ow0}
and call them the interiors of the closed discs. We also put
0Dk (a, p) = 0Dk (a, p) = {z € K| |z —a| = p},

which we call the boundary of the closed discs. Then the latter is a
circle. For any closed disc D in Py, we denote by D° its interior and
by ¢D its boundary.

By Lemma 4.3, there exists a unique p € |K*| satisfying D =
Dk(a,p) or D = Dg(a,p) with some a € K, while such a € K is
not unique. Note that D° and dD depend on the choice of a center a
of D. Thus we also write D° as Int,D and ¢D as J,D.
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Example 10.11. For D := Dg(0,1) = Dk(1,1), we have Dg(0,1) =
mx, Dg(1,1) = 1+ mg and
Dg(0,1) n Dg(1,1) = &, 0oD =Of # 1+ O = 01D.
Definition 10.12. Let D be a closed disc in Pk. Put
w={ 5 (07 Den)
= (D = Dgla, p)).

We call tp the standard parameter of the closed disc D. Then tp is a
parameter of the circle 0D, and defines an orientation

@bDIZHé(a\l)/)X/k’X, ]-’_’tD

We call ¢)p the orientation of the circle 0D associated with D. If we
write

{D> D/} = {DK(CL’ p)v D]IK(CL, p)}7
then the orientations ¢p and ¥ p of the circle 0D = 0D’ are opposite
to each other.

Note that we have an isometric isomorphism of affinoid algebras over
K

K<$>4’O(D), $*—>t[),
by which we often identify these affinoid algebras.

Lemma 10.13. Let D and D’ be closed discs in Py with center a and
a’, respectively. Let f : D — D' be an isomorphism of rigid analytic
varieties over K such that f induces an isomorphism 0,D — 0y D’. Let
we Qéa/D,/K. Then we have

Res (o, 0,0p)(f*w) = Resa,, prp,,) (W).
Proof. Put Dy = Dg(0,1) = Sp(K(x)). Consider the isomorphisms

Z—a

g: Dy — Dy := Dkla,p), zw— ,
w
w

"Dy — D! := D) —
g 0 1 K(aap)a z - a

with @ € K* satisfying |w| = p. Then they induce isomorphisms
aoDo g 8aD1, aoDo g (9aD’1.
Moreover, if we write w € Qéa Dy /K 88

o= Yo () 1(57),

nez
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Then g*w equals
g w = Z apxdr.

neZ

and similarly for D]. By the definition of circular residues, this implies

Res(aoDo,wDo)(g*w) = R’es(aaDly¢'D1)(w)’
Res a0y, ((9) @) = Res(a, 0y ) (@)
for any w € € i and W' e QL py - Hence, by composing these

isomorphisms with f, we may assume D = D' = Dy and a = a’ = 0.
Consider the isomorphisms of affinoid algebras over K

Ky » Kz, g% Kz, - Ko, 2™t
which f induces. Put F' = f*(z). Then F is invertible in the ring

K{z,z') and any element G of K{z,z~1) can be uniquely written as

GzZanF”, lim a, = lim a, = 0.

n—o0 n——oo
neZ

By [BGR, Proposition 6.2.2/1], these maps are isometric with respect
to the supremum norm. Thus we have

[Flsup = |zlsup = 1, |Glsup = |Z an 2" [sup = max{|an| | n € Z}.

neZ

Hence F' is a parameter of the circle dyD.
Moreover, the map f induces isomorphisms of k-algebras

7 Ky = k[z] — k[z], §* Kz, z b = klz,2 '] — k[z, 2.

This shows that f*(z) = ax + b with some a,b € k satisfying a # 0.
Since it is invertible in the ring k[z, 2], we have b = 0. This implies
that the parameter F' is positive for the orientation 1p, of dyDo.

For any w € Qéo Dok Write

w = 2 apx™dr, ffw = Z anF"dF.

neZ neEL
By Lemma 10.8, we obtain
Res(aoDoﬂliDo)(f*w) = ReSF(f*w) =01 = Res(aoDo,wDo)(w)'

This concludes the proof. O
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10.3. Rigid analytic residue theorem on discs. Let Y be a con-
nected affinoid admissible open subset of Pj. By the maximal modulus
principle and [BGR, Corollary 8.2.1/4], we see that Y is an affinoid sub-
domain of a closed disc. Then Lemma 10.1 implies that O(Y") is a PID.
We denote by K(Y') the fraction field of O(Y).

Definition 10.14. For any connected affinoid admissible open sub-
set Y of Pi, we call any element of K(Y) ®o(v) Jx @& meromorphic
differential form on Y.

Definition 10.15. Let Y be a connected affinoid admissible open sub-
set of Py and ce Y. Put t = z —c when ¢ # o0 and t = % when ¢ = 0.
Let w be a meromorphic differential form on Y. Since O(Y) is a PID,

we can write at ¢
w = 2 a,t"dt

n=—N
with some a, € K and N € Z. Then we define Res.(w) = a_1.
Lemma 10.16. Let Y be a connected affinoid admissible open subset

of Pk and c € Y. Putt be as in Definition 10.15. Let m = 0 be an
integer. Then the map

OY)—K, fr Res/(t7™fdt)
is continuous with respect to the Banach norm on O(Y).

Proof. Take a closed disc D = Dk(c, p) contained in Y. Since the map
O(Y) — O(D) is continuous and the map of the lemma factors through
this map, we may assume Y = D. Take any w € K satisfying |@| = p.
Then f e O(D) is written as

t n
f=Zan(5> , lima,=0
n=0

and the Banach norm of O(D) is given by |f| = max{|a,| | n = 0}.
Since Res.(t7™ fdt) = 22=% the continuity follows. O

= wom—1)

Lemma 10.17 (Rigid analytic residue theorem). Let D be a closed
disc in Py. We consider 0D as an oriented circle by the orientation
Yp associated with D. Let w be a meromorphic differential form on D
which has no poles on 0D. Then we have

Resop(w) = Z Res.(w).
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Proof. Write w = gdtD with f,g € O(D). Since O(D) is a PID, we

may assume that f and ¢ are coprime and

g= hH(tD —a;)"
i=1

with some «; € K satisfying |o;| < 1, n; € Z=o and h € O(D)*. By the
Weierstrass division theorem [BGR, Theorem 5.2.1/2], we can write

= QH(tD — Oéi)ni + R
i=1

with some @ € O(D) and R € K[tp] with deg(R) < >,;_, n;. Thus, by
the partial fraction decomposition we can write

W= (Z Z tD“_”a + ) bmty;) dtp.

i=1ln= 1 m=0

From the equality

a; a; 1 a; —n\ ,—oy .
M _ din _ %in (Vi
e mw ()G

we obtain Respp(w) = D3_; a1
Let us compute Res.(w) for any ¢ € D°. When D = Dg(a, p) and

lp = m—a7
©@p
dr d(z—c r— (a+ w0
dtp= 2 M=)y o E @m0
Wy (P Wp
Thus Res.(w) = 0 unless ¢ = a + w,a; for some ¢ = 1,...,7. When

the latter equality holds, then Res.(w) = a;; and the lemma follows
for this case.

Suppose D = Dg(a,p) and tp = —2. Then a # c. For ¢ # w0, we
have

_ Wp _ Y (-1) r— )
tD_:C—c—I-(c—a) c—a;)(c—a)j( Y
dtp = Czipa Z (]c(:la))]i (z — ) td(z — ¢,

—(oyjx — (aqy; + wp))'
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Thus Res.(w) = 0 unless ¢ = a+w,q; ' for some i = 1,...,r satisfying

a; # 0. In the latter case, we have

i — )t — ¢).

Its residue at ¢ only comes from the term of j = n—1[. For j = n—1[ and
[ = n, we have j = 0 and the residue vanishes. Hence, by c—a = wpozi_l

the residue equals
n—1
nai’n n — 1 n—l1 0 (n > 1),
e S e =
(—a;) = l a1 (n=1)
For ¢ = o0, we have
1 v CLj i CLj 1
tp=>-1 —% = WPZ it ditp ==, Z(j * 1)Ed(5>‘
P j=0 §=0
If a; # 0, then

lp —a; = —q _szj+l

and thus Resy(w) = 0. If a; = 0, then we have

a,
antD = Q4 p <
th w,

w;} x =0
!
i n a
= 0 1) — 1)—d(—
=NGIE = D0+ D)
Then its residue at oo only comes from the term of j =n—1—1[. Thus
the residue equals
namanlnz_zl n—l _ 0 (n>1),
a a;1 (n = 1)

n—1
Wp =

Hence the lemma follows also for this case
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10.4. Connected affinoids in Pj. .
Let I = {Dy,...,D,} be a nonempty finite set of closed discs in Pk.
Let a; € K be a center of D; and let D; = Int,,D,. Suppose either

(1) D3,..., Dy are disjoint to each other and oo € Dy for some i, or
(2) Dy, ..., D, are disjoint to each other.

Put
Fr =P\ D5, F; =P\ JDs.
=1 i=1

Then they are admissible open subsets of P. Since
Fr = (\(PX\D5)
i=1
is a finite intersection of closed discs in Pk, we see that F} is an affinoid
variety over K. Moreover, since Pf is reduced so is F7, and by [BGR,
Theorem 6.2.4/1] the supremum semi-norm on Fj is a complete norm
which defines the Banach topology on O(F7).

Lemma 10.18. Let [ = {Dy,...,D,} and a; € K be as above. Then
there exists v € GLy(K) satisfying the following conditions.
e Y(D1) = Dg(0,1).
e v(D;) is a closed disc in Py for any i.
o With some choice of centers of v(D;), the interiors ~(D;)° are
disjoint to each other.

Proof. First suppose o ¢ F;. We may assume Dy = Di(aq, p1) and
D; = Dxkl(a;, p;) for i # 1 with some p; € |K*|. Take any w; € K
1 —aq . /

0 o ) Then v(D;) = Dg(0,1)

and y(D]) = Dg(0,1). For any i # 1, we have |0 a; + 1| = p1 >
0 = p;|0]. By Lemma 4.8 and the complement of the former equality
of Lemma 4.9, we obtain

(Delarsp) = De (1@, 2) . (Ditanp) = Di (706, 2 ).

satisfying |w;| = p; and put v =

Since DY, ..., Dy are disjoint, so are y(DY),...,v(D;) and the lemma
holds for Int.,)y(D;) = v(Dy).

Next suppose o € FJ, so that the assumption (2) holds. For any i =
1,...,7r, we can write D; = Dg(a;, p;) with some p; € |K*| satisfying
la; — a;| > max{p;, p;}. Take any w; € K satisfying |w;| = p; and put

v (? Zﬂ)- Then v(D1) = Dg(0,1) and v(D}) = Dg(0,1). For
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any i # 1, we have |1 -a; — a1| = |a; — a1| > p; = p;|1|. By Lemma 4.8
and the complement of the former equality of Lemma 4.9, we obtain

P1Pi o o P1pi
Dk(a;, pi)) = D i T3 | Dy (a;, pi)) = D i) T3 |
2(Delars ) = D (20 22 (i) = Di (0, 222
Then the lemma holds similarly for Int.q,)y(D;) = v(DY). O

Lemma 10.19. There exists a finite covering {Yx}xea of Fr satisfying
the following conditions.

(1) Each Yy is an affinoid subdomain of F; which is isomorphic to
Fy:={zeK|[p<lz| <1\ J{zeK]||z—al <1}
i=1

with some p <1, m =0 and ¢; € K satisfying |c;| = 1.
(2) For any A\, N € A, there exist \i,..., Ay € A such that A\ = \y,
N=Avand Y\, nYy,, # foranyi=1,...,N — 1.

Proof. By Lemma 10.18, we may assume Dy = D (0, 1). Then for any
1=2,...,7, We can write

Di = DK(aiapi>7 |al| S 1? Pi < 17

where we have |a; — a;| = p; for any 4,7 € {2,...,r} satisfying i # j.
Then
Fr={zeK||z|<1, |z—a;| = p; foralli =2,... r}.
Put
F,={z€eFi||z—aj| <|z—aqajforal j=2,...,r}

which is a rational subdomain of F satisfying F; = (J;_, Fi.

Fix some i = 2,...,r. Note that we have p; < |a; — a;| < 1 for any
J # 1. Let

,01'27’1<7“2<"'<7“s<7“s+1=1
be the elements of the set {p;, 1} U {|a; — a;| | j # i}. Put
Jo={7=2,...,r||a; — a;| = m}.
Take some r; € |K*| satisfying r; < 7} < ;1. Define
Xi={2eK|r <|z—a <r£}\U{zeK| |z — a;| <},
jedi
X/ =f{zeK|r<lz—al <ma}\ |J {zeK||z—q] <rua}.

jEJt+1

Then we claim F; = (J;_,(X; u X)).
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Take any z € X;. Then |z —a;| = r = p;. Since |z —a;| <7 < 1
and |a;| < 1, we have |z| < 1. For any j # i satisfying j ¢ .J;, we have
la; — aj| # r, and 7, < |z — a4 < 7. Hence |z — a;| # |a; — a;| and

|2 — aj] = max{|z — ai], [a; — ail},

which yields |z — a;| = |z — ;] and |z — a;] = |a; — a;| = p;. For any
j € Jy, we have |z —a;| = 1 = |a; — a;] = p;. If |2 —a;] > |z —q;|, then
re = |a; — a;| = |z — a;| > |2z — a;|, which is a contradiction. Hence we
obtain |z — a;| < |z —qj| and z € F;.

Take any z € X|. Then |z — a;| = 7}, > p;. Since |z —a;] < 141 <1
and |a;| < 1, we have |z| < 1. For any j # i satisfying j ¢ J;,1, we
have |a; — a;| # 141 and 7} < |z — ;| < ri4q. Hence |2 — a;] # |a; — ;|
and

|2 = a;| = max{|z — ai, |a; — ail},
which yields |z — a;| = |z — a;| and |z — a;| = |a; — a;| = p;. For any
J € Jit1, we have |z — aj| = 11 = |a; —ay] = p;. I |2 —ai] > |2 — a4,
then 741 = |a; — aj] = |z — a;| > |2z — q |, which is a contradiction.
Hence we obtain |z — a;| < |z —q;| and z € F;.

On the other hand, take any z € F;. Since |z| < 1 and |q;] < 1, we
have |z — a;| < |z —a | < 1 for any j.

Suppose 1, < |z — a;| < 141 with some ¢t = 1,...,s. For any j € J,,
we have r, = |a; — a;| and |z — a;j| = |z — a;| > r;. Similarly, for any
J € Jiy1, we have ry = |a; — a;| and |z — a;j| = ri4y. This implies

ze Xy if |z — a;] <7} and z € X otherwise.
Suppose |z — a;| = 1. Then we have 1 = |z — a;| < |z —q;| < 1 and
|z —aj| =1 for any j. This yields z € X_.

Suppose |z — a;| = r; with some ¢t = 1,...,s. For any j € J;, we
have |z — a;| = |z — a; + (a; — aj)| < 1 = |2z — a;|. Since z € F;, the
inequality |z — a;| = |z — a;| forces |z — a;| = |z — a;| = rr. Hence we

obtain z € X;. This concludes the proof of the claim.

Since X; and X] are rational subdomains of Dk (0, 1), [BGR, Proposi-
tion 7.2.2/4] implies that they are also affinoid subdomains of Fj. Take
any w,; € K satistying |w,| = 7. For j € Jiy1, write a; — a; = wiq1¢j
with [¢;[ = 1. Then the map z — Z=% induces an isomorphism

/
Tt

{zeK| <[zl <1 | fzeKz—¢l <1} - X].

T .
t+1 J€Jt41

On the other hand, for j € J;, write a; —a; = wyu; with |u;| = 1. Then

the map z — - gives an isomorphism
T

{ZGK]%<|z|<1}\U{zeK||z_1—uj|<1}—>Xt.
t jEJt
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For any z € K satisfying |27! — u;| < 1, we have |z| = 1 and thus

|z — uj_1| = |z||uj_1||z*1 — u;| < 1. Since the converse also holds, for
any j € J; we obtain

{zeK||z7"—uj| <1} ={zeK| |z —u;!| <1}
and thus the map above gives an isomorphism

r _
{zeK|T—zé\z|<1}\U{zeK|\z—uj1|<1}—>Xt.

JjeJt

Hence the condition (1) holds.

Let us show the condition (2). Let ¢ € {1,...,s}. Take any z € K
satisfying |z — a;| = r}. For any j € .J;, we have |a; — a;| = r < r} and
|z —aj| = |# — a;| = r; > 1y, which shows z € X;. For any j € Ji;1,
we have |a; — a;| = ri41 > 1} and |2 — a;| = 7,41, which shows z € X].
Hence X; n X} # .

Let t € {1,...,s—1}. Since k is an infinite field, we can choose u € K
such that |u| = 1 and |u—¢;| = 1 for any j € Jy41. Then z = a; + wiqu
satisfies |z — a;| = |z — a;| = ry4q for any j € Jiq. Thus z € X] n Xy

and X| N X1 # .
Now we are reduced to showing ();_, F; # &. For this, fix some

i€{2,...,r}. Since k is an infinite field, we can take u € K satisfying
lu| = |u+a; —a;| =1forall j e Jy11. Put 2 = a; + u. Then we have
12| <1, |z —a;| = |u| =1 and

z—aj| = |u+ (a; —a;)] =1 forany j # i,
which yields z € [),_, F;. This concludes the proof of the lemma. O

Lemma 10.20. Let |—| be the Gauss norm on the Tate algebra K{x,y).
Let f € Oxlx,y) satisfy |f| = 1 and let f be its image in k[x,y] by
the natural reduction map. Let R = K{(x,3)/(f) and R = k[z,y]/(f).
Suppose that the rings R and R are reduced and Spec(R) is connected.
Then the affinoid variety Sp(R) is connected.

Proof. By [BGR, Proposition 9.1.4/8], it is enough to show that Spec(R)
is connected.
For this, first we claim that the Og-algebra

Ry = Ox(z,y)/(f)

is torsion free as an Og-module. Suppose that we have aF = fG
with some a € Og\{0} and F,G € Ok(x,y). Since the Gauss norm on
K{z,y) is a valuation, we have |a||F| = |f||G| = |G|. Since |F| < 1,
we have |G| < |a| and thus G = aH with some H € Og{z,y), which
yields F' = fH and the claim follows.
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The claim implies that Ry is a subalgebra of R. Hence R, agrees
with the image of Ox(x,y) by the natural surjection

K{z,y) — R.

Since R is reduced, [BGR, Proposition 6.2.1/4 (iii)] implies that the
supremum semi-norm | — |y, on R is a norm. Since the ring R = Ry®o,
k is reduced, [BGR, Proposition 6.4.3/4] shows Ry = R°. By [BGR,
Remark after Proposition 6.3.4/1], the ring Ry is integrally closed in
R.

Let e € R be an idempotent. Since e* = e, we have e € Ry and
lelsup < 1. Since |elgyp = [€*]sup < |€]Z,,, We have e = 0 or |e|gp = 1.
Suppose e # 0. Since Spec(R) is connected, there is no nontrivial
idempotent in R and thus |1 — e|gy, < 1. Since (1 —e)? = 1 — e, this
forces e = 1. O

2

Lemma 10.21. The affinoid variety Fy in Lemma 10.19 is connected.
Proof. Let p < 1 and ¢; be as in Lemma 10.19 (1). Take w € K
satisfying |w| = p. For any i = 1,...,m, let

Yi={2e Ok |[z—al =1} = Sp(Kz, )/ (y(x — ;) = 1)),

Yo ={2€ Ox | p <[z} = Sp(K(z, 9)/(2y — w)).
Then they are rational subdomains of Sp(K{(x)) satisfying Fy = (., Yi.

Since Lemma 10.20 shows that each Y; is connected, we are reduced

to showing ()", Y; # . For this, since k is an infinite field we can
find u € K satisfying |u] = |u —¢;| = 1 for all @ = 1,...,m. Then
we () ,Y; and the lemma follows. O

Lemma 10.22. The affinoid variety Fy is connected.

Proof. Take a finite covering {Y)} ea of F; as in Lemma 10.19. Suppose
that we have a nontrivial decomposition F; = U 1 V into the disjoint
union of affinoid subdomains. By Lemma 10.21 each Y, is connected
and it is contained in either of U or V. Put

AUZ{)\GA|Y)\QU}, sz{)\EA|Y)\gV}
Since U and V' are nonempty, so are Ay and Ay. Take A € Ay and
X € Ay. By Lemma 10.19 (2), we have a finite subset of A
A=A, N, A =N
satisfying Yy, n Y),,, # &. Then there exists ¢ such that \; € Ay and
Air1 € Ay. Since U n'V = ¥, this is a contradiction. 0

Lemma 10.23. The ring O(Fy) is a PID of dimension one. Moreover,
it contains the ring R(Fy) of rational functions on Py with no poles in
Fy as a dense subring.
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Proof. By Lemma 10.18, we may assume Dy = D (0, 1). Then for any
1=2,...,r, We can write

D; = Dx(ai, pi), la| <1, p; <1,

where we have |a; — a;| = p; for any ¢ # j. Take w; € K satisfying
|w;| = p;. Then the affinoid algebra of Fy is written as
wWa
O(F;) =K . .
(£7) <x’x—a2’ ’x—ar>

By Lemma 10.1 and Lemma 10.22, the ring O(F7) is a PID of di-
mension one. Since k is an infinite field, we can find infinitely many
u € O satistying |u —a;| = 1 for all 4 € {2,...,7}. Thus the function
z is non-constant on F7.

We claim that the natural map

K(z) — K(Fr)

into the fraction field K (F7) of O(F7) is injective. If not, we can find
a nonzero element P(x) € K[z] which is zero on F;. Since O(Fy) is a
domain, this implies that x is a constant on F7, which is a contradiction.

Let a € K\F;. Then z—a € O(F;)* and - € O(F}). By the partial
fraction decomposition, we obtain R(F;) € O(F}). For the density, we
have

@,

TwWa Wy
K € R(F7) € O(F
[x’ZL‘—CLQ’ ’I—(LT] R( I) O( I)
and the leftmost ring is dense in O(F;). Thus R(F}) is also dense in
O(F7). O

Remark 10.24. Let r, s be integers satisfying s > —r. By Lemma
5.20, the affinoid variety €2, ; is an example of F;. Then Proposition
5.24 and Lemma 10.23 give the following description of the ring O(€2):
A function f: Q — Cy lies in O() if and only if for any r, s € Z~,,
the restriction f|q, , is the limit of a sequence {F,(z)},>0 With respect
to the supremum norm on €2, ; such that F,,(z) € C,(x) has no poles
on €, .

10.5. Rigid analytic residue theorem on connected affinoids in
Pk. Let I = {Dy,..., D,} be a nonempty finite set of closed discs in Pk
which are disjoint to each other. By Lemma 10.22, the affinoid algebra
O(F7) is a PID. Thus we may consider the module K (F7) ®o(ry) Q}WK

of meromorphic differential forms on Fj.

Theorem 10.25. Let I = {D;,...,D,} be a nonempty finite set of
closed discs in Py which are disjoint to each other. Let a; € K be a
center of D;. We equip the circle 0D; = 0,,D; with the orientation {p,
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associated with D;. Let w be a meromorphic differential form on Fy
which has no poles on 0D; for all i. Then we have

Z Res.(w) + Z Resap, (w) = 0.

ceFy =1

Proof. Take any a € K\F;. Put t = - € O(F}) so that Cy(x) =

Cw(t). By the maximal modulus principie, we can find p € [K*| satis-
fying Fy € D := {t e K| |t| < p}.
For any b € K and o € |[K*|, we have
lz—bl<o < J|la—bt+1
r=wor|lr—b>=>0 < |la—bt+1
Thus F7 is a rational subdomain of D.
We can write

O(‘FI) = O(‘D)<y17 s 7y7’>/(a1y1 - blu vy QY — br)
with some a;,b; € O(D). Note that the relation a;y; — b; = 0 implies

dy; = %dt Hence we can write w = fdt with some f € K(Fy).
Moreover, since dt € Q};I K 18 nowhere vanishing, for any ¢ € F; we have
(10.3) ord,—.(fdt) = ord,—.(f).

By Lemma 10.1, the ring O(F7) is a PID whose prime element is ¢
or t — — with some « € Fy\{oo}. Thus we can write

B g
= [[oi (=B

with some n; € Z=g, g € O(F7) and §; € K satistying
aj = (B;:=(1+ab) e Fr, t=Pi1g.
When §; # 0, we have a; € K and

F— B = 1 L T —
T r—a aj—a  (aj—a)(z—a)
For any j = 1,...,s and c € F}, this implies
yo 1 (e=qy),
(10.4) ord,—.(t — B;) = { 0 (c+a).

Since w has no poles on 0D;, (10.3) and (10.4) yield «; € F} so that
t—pB;€0@D;)* foralli=1,...,r.

By Lemma 10.23, there exists a sequence {g;};>o in the ring R(F})
which converges to g with respect to the Banach topology of O(F}).
By the continuity of Res, as in Lemma 10.16 and that of the circular
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residue map Resyp, : QéDi K™ K, we may assume that g € R(F;) and

thus w is a meromorphic differential form on P% without poles on 0D;
for all 1.
Now the residue theorem on algebraic curves implies

Z Res.(w) = 0.

1
cePy

Since Dy, ..., D, are disjoint, this yields

0= Z Res.(w) = Z Res.(w) + Z Z Res.(w)

CEIP]Il( ceFy i=1ceD;
= Z Res.(w) —I—Z Z Res,(w)
ceFf =1 ceD;?
and the theorem follows from Lemma 10.17. O

11. HARMONIC COCYCLES AND DRINFELD MODULAR FORMS

11.1. Annular residue. Let e € T and let V(e) be the annulus in
P!(Cy) as in Definition 5.13. Recall that we have

V(e) = PH(Co)\(U(e) ulU(—e)) = V(—e).

Here U(e) is the distinguished closed disc in P!'(C,,) associated with
the edge e (Definition 4.19). Let a € K, be a center of U(e), so that
for some p € ¢% we have

{U(e),U(—e)} = {Dc,(a, p), D¢, (a. qp)}.

Thus we can write

Vie) ={z€Cx|p<|z—al <qp}
Definition 11.1. For any o € ¢ satisfying p < ¢ < gp, put

Cyle) ={2€Cqy ||z —a| =0}
and call it the concentric circle in V(e) of radius o.
Lemma 11.2. Let a,be K., and p € ¢*. Suppose
{zeCxlp<lz—al<qgp} ={zeCx | p<|z—b <qp}
Then for any o € q© satisfying p < o < qp, we have
{zeCyx||z—a|l=0}={2€Cy ||z —b|] =0}

In particular, the concentric circle C,(e) is independent of the choice

of a center a of Ule).
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Proof. First we claim |a — b| < p. Indeed, taking the complement we
see that for any z € C,
(lz—al<por|z—al=qp) < (z=b<por|z—0bl=qp).
For z = a this yields |a — b| < p or |a — b| = gp. Suppose |a — b| =
Take any z € C,, satisfying p < |z — a|] < gp. Then we have
|z =0 = [z —a+(a—b)|=]a—0b] = qp,
which is a contradiction.
Now, for any z € C,, satisfying |z — a| = o, we have
lz—bl=lz—a+(a—Db)|=|z—a|=0
and the lemma follows. U
Let Cy(e) be the concentric circle of radius o in V(e). Then
Cy(e) = 0uDc,(a,0) = 0. D¢ (a,0).
By the inequality p < o < ¢p, we have
D(Coc (CL, p) = D(Coc (CL, U) $ D(/Cm (CL, qp)7
D¢, (a,qp) = D¢, (a,0) $ De,,(a, p).
Thus there exists a unique element D, € {Dc, (a,0), D¢ (a,0)} satis-
fying U(e) < D
Lemma 11.3. The closed disc D, s independent of the choice of a
center of Ule).

Proof. Let a,b be centers of U(e). Note that D¢ (a,p) = D¢ (b,p)
implies |a — b] < p. Thus we have |a — b| < p < ¢ and Lemma 4.2
shows D¢, (a,0) = D¢, (b,0) and D¢_(a,0) = D¢ (b, 0). O

Definition 11.4. Let C,(e) be the concentric circle of radius o in V(e).
Let a € K, be a center of U(e) and let D, € {Dc,,(a,0), D¢_(a,0)} be
the unique element satisfying U(e) < D,. For Dj := Int,D,, we also
have U(e) < D.. We call D, the canonical closed disc of radius o for
the edge e. We refer to the orientation ¥p, of C,(e) as the canonical
orientation of concentric circles in V(e) for the edge e.

Definition 11.5. Let f € O(V(e)) and consider the holomorphic dif-
ferential form fdz on V(e). Take any concentric circle C,(e) in V(e)
and equip it with the canonical orientation 1 p, for e. Then we define

Res.(fdz) := Resc, (e),yp, ) (fdz)

and call it the annular residue of fdz for the edge e.
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Lemma 11.6. Res.(fdz) is independent of the choice of a concentric
circle Cy(e) in V(e).

Proof. Let a € K, be a center of U(e). Take any o # o’ € ¢q© satisfying
o,0" € (p,qp). By exchanging them if necessary, we may assume

Ule) € D,y < D, = Int,D,.

Let D, € {Dc, (a,0), D¢, (a,0)}\{D,}, so that the orientation ¢p, of
the circle C,(e) is opposite to 1p,. Then applying Theorem 10.25 to
I = {D,:, D!} we obtain

0 = Resa,p,, (fdz) + Resa,pr, (fdz) = Resc_, () (fdz) — Resc, ) (fdz).
This concludes the proof. 0

Lemma 11.7.
Res_¢(fdz) = —Res.(fdz).

Proof. Take a concentric circle C, in V(e) = V(—e). For a center
a€ K, of U(e), write

{Dy,D.} = {Dc,(a,0),D¢_(a,0)} with U(e) < D,.

Then we have U(—e) < D! . Thus the canonical orientation of C, for
the edge —e is the opposite of that for e. This yields

Res_.(fdz) = Res(cm%‘,j)(fdz) = —Resc, vp,)(fdz) = —Res.(fdz).
U

Lemma 11.8. For any v € GLy(K), let v*(fdz) be the pull-back of
fdz by the Mobius transformation v : 2 — Q. Then we have

Resyoe(fdz) = Rese(y*(f(d2))).
Proof. Write v = (Z Z) and

{U(e)u U(_e)} = {D(Za p)a Dl(’Z? q,O)}
with some z € K, and p € ¢%. Take any o € ¢ satisfying p < o < qp.
Let
Co={xeCqy||r—2| =0}
be the concentric circle of radius ¢ in V(e) and let D, € {Dc, (2,0), D¢ (2,0)}
be the canonical closed disc of radius o for e. Then we have

1(Cy) € v(V(e)) = V(voe), U(yoe)=~yU(e)) =v(Dy).
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First we claim that v(C,) is a concentric circle in V(yoe) and v(D,)
is a closed disc in Pg_ satisfying v(C,) = 0,v(D,) with some center w
of U(yoe). Note that

Y(V(e)) = PHC)\ (v(De,, (2, p)) L y(Dg, (2,qp))) -

Since z € Ky, we have either |cz + d| = gpl|c| or |cz + d| < plc].
lcz + d| = qp|c|, then by Lemma 4.7, Lemma 4.8 and Lemma 4.9 we
have

(o) = {0 (e ) D (o) |

B lad — be] lad — b
1) = fre € | o < o= 2(a)] < aor .
lad — bc| }

Y€)= e Ca | o2 = o1
(Dy) € {Dcoo (7(2),0M) Dl (V(ZMM)}

lcz + d|?

and ~ induces an isomorphism
Cy = 0.y — 0,7(Dy) = 4(Co).
Similarly, if |cz 4+ d| < plc/|, then we have

{wU@»wa<e»}{Ly(j;‘mcicz,D(iw;‘”if;)i,}
Llad bl _1, g llad—bd

g |cf? cl p e
al 1lad—bc|
’}/(Co—>— {J;E(COO ‘I—E‘ ;T},
, (a 1lad—bc| a 1lad— be
- D bl b
7(Da) € {D(Coo <C, > |C|2 sy HCo ¢ o |C|2

and v induces an isomorphism
Cy = 0.Dy — day(Dy) = v(Cy).

Hence the claim follows.
Now Lemma 10.13 yields

Res(c, yp,) (Y (fd2)) = Res(yc) ) (fd2),

from which the lemma follows. O
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11.2. Harmonic cocycles attached to Drinfeld modular forms.

Let I' be an arithmetic subgroup of GLy(K') and let & > 2 be an integer.

Definition 11.9. For any f € O(2), we define a map Res(f) : 7> —
Vi(Cy) by

Res(f)(e)(XY*27) := Res ((—2) 27 f(2)dz).
Note that (—z)¥=277 is obtained by plugging in (X,Y) = (1, —z) into
Xiyk—Q—i'

Lemma 11.10. For any v € GLy(K), e€ T and f € O(Q2), we have

Res(f) (v o€) =~ oRes(f[ey)(e).
Proof. Take any integer i € [0,k — 2]. By Lemma 11.8, we have

Res(f)(7 0 e)(X'Y*727") = Resyoe((—2)" 77 f(2)d2)
= Res(v"((—2)" 7" f(2)d2)).

Then the differential form inside Res, equals

Y ((=2) T f(2)dz) = (—“2 - b)“i F(v(2))d (“Z * b>

cz+d cz+d
az + b\ ad — bc
- <_cz + d) f0(2)) (cz+ d)2dz
(ad — be)*t
= Wf@(z))

(2 + d)'(—(az + )" 7 (ad — be)* *dz
= (e (G)ez + )/ (~(az + D) ad = be)?
This and (9.1) yield
Res(f)(y o ¢) (X¥52%)
= Res(f|xv)(e)((ad — bc)Z—k(dX — Y)(—bX + ay>k—2—i)
— (0 Res(f147)(€)) (XYE279)
from which the lemma follows. 0
Proposition 11.11. For any f € My ('),
Res(f) € CM(T).

Proof. By Lemma 11.7, we have Res(f)(—e) = —Res(f)(e).
Next we prove the harmonicity, namely

Z Res(f)(e) =0

o(e)=v

we have
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for any v € Ty. For this, put A, = {e € T° | o(e) = v}. Let e # € € A,,
so that U(e) n U(€') = . By Lemma 4.6, we have
(11.1) Ule) nU(E') = .
Since t(—e) = v = o(¢€’), the equality (4.5) and Lemma 4.5 yield U(e’) <
U(—e) and thus
(11.2) Vie) nU(e) = &.
Since d(t(e),t(e’")) = 2, Definition 5.13 and Lemma 5.15 imply
(11.3) V(e) n V(') =Uw) nU(t(e)) nU(t(e)) = .

For any e € A,, take a concentric circle C'(e) of some radius ¢ in
V(e). Let D(e) be the canonical closed disc of radius o for e. Then

U(e) = D(e)?, D(e) < V(e) ul(e).

By (11.1), (11.2) and (11.3), this implies that D(e) n D(e’) = & for
any e # €' € A,,.

We equip the circle C'(e) with the canonical orientation for e, namely
the orientation ¥p() associated with D(e). Put I = {D(e) | e € A,}.

Let D(e)° be the interior of D(e) for a center of U(e) and consider the
connected affinoid variety

Fy =P Cu)\ [ [ D(e).
o(e)=v

Then Definition 5.1 and Lemma 5.4 imply F; < U(v) <  and thus
the differential form w = (—2z)*"27¢ f(2)dz is holomorphic on F;. Now
Theorem 10.25 yields

Z Res,(w) = Z Resop(ey(w) =0
o(e)=v o(e)=v
and the harmonicity follows.
Finally, since f € My (T"), we have f|py = f for any v € I" and Lemma
11.10 yields

Res(f)(yoe) =voRes(flxy) = 7o Res(f)
and Res(f) is I'-equivariant. This concludes the proof. O

11.3. Drinfeld cusp forms associated with harmonic cocycles.
Let I' be an arithmetic subgroup of GLy(K) and let k& = 2 be an
integer. Let 4% be the set of locally meromorphic functions on P!( /)
of Definition 9.14.

Lemma 11.12. For any z € 2, the function x — ﬁ is an element of

.
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Proof. Since z € 2, the function ﬁ has no pole on K. Take any

x € Ky. Then z —x # 0 and |z — 2| > 0. Around z we have
1 1 1 1

=X z-z-(X—-2) z-x 1-X=

1 X —z\" b
:z—xZ(z—x> ’

n=0

which is analytic on D¢ (x,q™") for any n € Z satisfying ¢~ < |z —x|.
Around z = o0, we have

1 1 -1 1y )n

i-X X 1-2 X ’

n=0

which is analytic on D¢, (0,¢™") = D¢_ (0,¢") for any n € Z satisfying
qr > |z|.
U

Definition 11.13. For any ¢ € CPa*(T"), using the integration of The-
orem 9.16 we define a function F. : 2 —» C, by

1
F.(z):= dpe(x).
@] ande)

Lemma 11.14. We have F. € O(2). Moreover, there exists a constant
C1 such that for any sufficiently small integer r we have

sup |F, ()| < Chg#".

2€Q

Proof. For any integers r, s satisfying s > —r, consider the affinoid
variety €2, , of Definition 5.19. By Lemma 5.20, we can write

PY(K,) =D I_IL[DO (a,q " ¢! uHD ¢

aeJ aceJ

Q5 = PH(Cp)\ (DEOO(OO, ¢ u ][ Dz, (a q_r)>
aeJ
for some finite subset J < K. Put
1
Fso0(2 =J duc(x), Fru(z =J dpe(x).
OO( ) D(o0,g—5—1) zZ—X ( ) ( ) D(a,qg—"1) zZ—X )

By Theorem 9.16 (1), we have
Fu(2) = Fo(2) + ) Fra(2)

aeJ
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First consider Fs,. For any z € Q,, we have |z| < ¢° and the
function
S >
. - +1
zZ—x T e, "

lies in (Coo<ﬁ>. Then Theorem 9.16 (4) implies

1 no -
Fale) == Z (JD(@O q—51) Wduo(x)) 0 <e

n=0

In particular, for a,, = SD(OO g—s-1) ﬂ%d,uc(x) the power series — ano 2"

converges on D¢, (0,¢°). Thus F, is the restriction of an element
O(Dc,,(0,¢%)) to .5 < D¢, (0,¢°), which gives F;,, € O(,,). By
Theorem 9.16 (3), with the constant C' of the theorem we obtain

sup ’F&OO(Z)’ < Osup q(—s—l)(n+1+—)+n5 C'q—g(s-i-l).

2€Qyr s n=0
Next consider F,,. For any z € Q, 5, we have |z —a| = ¢ and the
function
1 1 1 Z (x —a)”

= aGa

lies in Cor( T+1> Then Theorem 9.16 (4) implies

=X ([ @-arin)) g i el z 0

n=0

Z—x z—a 1-—

In particular, F., is the restriction of an element O(D¢_(a,q7")) to
Qs € D¢, (a,q7"), which gives F,., € O(€2,,). By Theorem 9.16 (3),
we obtain

sup |Fr.a(2)] < CSUPC] —r= D)= SR+t qu (r+1)-1

2€Qr s n=0

Hence, we have F, € O(£, 5) for any integers r, s satisfying s > —r.
Since it holds for any integers r,s > 0, Proposition 5.24 yields F, €
O(Q).

Moreover, we have

sup |F.(2)] < Cmax{q~ 5(s+1) qg(’"“)_l}.

2€Qr s

Since s > —r is arbitrary and k > 0, this yields

sup |Fo(2)] < Cmax{q_g(_”‘l)?qg(r+1)—1} < Cq%qgr’
2€8Q,

which concludes the proof. O
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Lemma 11.15. For any v € GLy(K), we have Fy.|y = F.. In partic-
ular,

Fwy=F. forany~yel.

Proof. Write v = (CCL Z) First we claim that

(cx + d)F2 (cz + d)*
T dpelr) = O,
o pelr) = =L E(2)

for any z € €.
Indeed, note that we have

(cz+d)f2 (cx 4+ d)* ez + d)
v(2) —y(z)  (az + b)(cx + d) — (azx + b)(cz + d)
(cx + d)* ez + d)
(ad — bc)(z — x)

This shows
(cz + d)k=2 (cz + d)*

v(z) —v(x)  (ad —be)(z — z)
_(ez+d) (cx+ d)F1 — (cz + d)F!

ad — be Z—x

Since we can write
(cx +d)* ' —(cz+d)* ' = (2 — ) P(2)

with some P(x) € Cy[x] satisfying deg(P) < k — 2, the claim follows
from Lemma 9.7 (2).
Take any v € Ty. By the claim and Proposition 9.55, we have

PG = -7§j;w%<>

d:u“Yc( )

Z

det’y2 Flex + d)k—2

o(e)= f U (vyoe)

- v(2) = () Aue(a)
B det( )2 *(cx + d)F2 .
‘Lw<) SRR

= det(y)" *(cz + d)*F.(2).
This concludes the proof. O
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Lemma 11.16. For any arithmetic subgroup I' of GLy(K), an integer
k=2 and c e C} (1), the rigid analytic function F, vanishes at [o0].

Proof. Since Lemma 11.14 yields

lim sup |F.(z)| =0,

r—=—90 50,

Lemma 11.15 and Lemma 6.60 (2) conclude the proof. O

Lemma 11.17. For any arithmetic subgroup T' of GLy(K), an integer
k=2 and ce C}(T), we have

Fc S Sk(F)

a b

Proof. Let v = (C d> € GLy(K) and s = v(w). Note that we have

c = I/l/_lc — 1/(1/_10).
By Lemma 11.15, we have

FC|kV = Fu(u*16)|k:V = Fl,flc.

Since ¥ '¢c € CM (y~'T'v), Lemma 11.16 and Lemma 6.60 imply that
F.|pv = F,-1, vanishes at [oc], namely F, vanishes at [s]. O

Lemma 11.18. Let a € Ky, and p,n € |K2|. Suppose n < min{p, p~'}
L. Then there ewists a finite subset A © K., satisfying

and |a| < n7t.
D'(a,p) = D(oo,n) u [ [ D(a’,m).

a’e\

Proof. Since min{p, p~'} < 1, we have n < 1 and n < n~ L.

First we show D(o0,n) < D'(a,p). Let z € Ky, satisfy || = n~'.
Then |z —al = |x| = n~! > p and z € D'(a, p).

Next we show D(a’,n) < D'(a, p)\D(o0,n) for any a’ € K, satisfying
la’ —a| = p and |d'| < n~!. Let z € K satisfy | — a’| <. Then

lz—a|l=lx—d +(d —a)|=|d—al =p
and x € D'(a,p). Moreover, we have |z| = |z —d + d| < n~! and
x ¢ D(0,n). Now Lemma 4.2 (1) concludes the proof. O

Lemma 11.19. Let ¢ € CM*(T') and let e € T. Suppose oo ¢ Ule).
Write U(e) = D(a, p) with some a € Ky and p € |K}|. Then for any
integer m = 0, we have

Resc((z —a)"F.(2)dz) = JU( )(93 —a)"dp(x).
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Proof. For any o € ¢9, choose w, € C., satisfying |w,| = 0. Write
R = [ o) [ duo)

c\?) = MelT HelX).

Ue) # — T U(=e) # — T

To compute Res,, take any o € ¢% N (p, gp) and consider the concentric
circle of radius o in V(e)

Co={2€Cyx ||z —a| =0}

Then its canonical orientation for the edge e is given by its parameter
z—a

For any z € V(e), we have p < |z — a|] < gp and

1 1 1 (x —a)” r—a
= . —_— S — C
z—x z—a 1—%22 Z:(z—a)’“rle °O< wp>

z—a n=0

and Theorem 9.16 (4) yields

1 1 .
(11.4) L(e) P xduc(iﬂ) = = a)pt L(e) (z — a)"dpec(z).

n=0

Since the series converges for any z € C,, the right-hand side of (11.4)
lies in O(C,) and

Resc, <(z _a)m L(e) _ ! xdpc(x)dz) _ L(e) (z — a)"dpue(z).

Now it is enough to show

Resc, ((z—a)m L(_e) L duc(x)dz) 0.

z—x
For this, choose n € ¢% satisfying < min{gp, (¢p)*} and |a| < n~'.
By Lemma 11.18, we can find a decomposition
U(—e) = D'(a,qp) = D(0,n) u | [ D(d',n)
a’eA
with some finite subset A € K. Then we have

1 1 1
dpe(x :f dpe(x) + J dpe(x).
JU(—@) Z—X ( ) D(w0,n) zZ—X ( ) Z D(a’,n) Z—X ( )

a’el\

Note that a’ satisfies o0 < gp < |a' —a| < (qn)™' <n~L.
For any z € V(e), we have p < |z — a|] < gp and

[z —d|=]z—a+(a—d)|=la—d|=qp
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Since 1 < qp, we have
/

1 1 x—(z Tr—a
- / Z n+1 COO
zZ—x zZ—a — = wy,

and Theorem 9.16 (4) yields

1 1
11.5 f ——dpe(x) = —J x—a)"du.(z).
) [ )= ¥ [ =t

n=0

We claim that the right-hand side of (11.5) lies in Coo{(Z*).
deed, consider the supremum norm on this affinoid algebra, which is a
valuation by [BGR, Corollary 5.1.4/6]. Then |z — a|swp = 0 and

2= dlsp = [z —a+ (a—d)|ap = |0’ —a] = gp
Moreover, since |a’ —a| > o we have z —a’ € Co(Z*)*. Now Theorem

9.16 (3) implies
k=2 k=2 "
-y [ -dran)| <o o (L))
D(a’,n) ap

which goes to zero when n — oo and the claim follows. Since m > 0,
we obtain

sup

1
Resc, z—amJ ducxdz>=0.
oo (marm | i

Finally, let us consider the integration over D(o0, 7). Since |a| < 571,
for any z € V(e) we have p < |z —al < gp < n~ ! and

|zl =z —a+al <n!
This implies

1 -1 oy 1
2—x T —g_ :E”H Co Ty, T

n=0

and Theorem 9.16 (4) yields
11.6 dpse ¢
R I i Yl W=t}

We claim that the right-hand side of (11.6) lies in Coo(%#). Indeed,
for the supremum norm of this affinoid algebra, we have

2lsup = [z — @ + alsup < nt
and Theorem 9.16 (3) yields

1
2" dpie(z)
JD(oo,n) i

| |supcnn+1+7 _07] (| |sup77) _)0

sup



180 SHIN HATTORI

when n — oo and the claim follows. Since m > 0, we obtain
1

Resc, z—amJ ducxdz)zo.
o (Gmar | i

This concludes the proof. O

Proposition 11.20. For any ¢ € CP**(T), we have Res(F,.) = c. In
particular, the map

C¥ (D) — Sp(T), c— F,
s an injective Cy-linear map.

Proof. Take any e € T°. We need to show Res(F,)(e) = c(e). Replacing
e by —e if necessary, we may assume oo ¢ U(e). Let i be any integer
satisfying 0 < i < k — 2. Write U(e) = D(a, p) with some a € K, and
pe|K|. Put

k=2
Z)F2 = Z Cm(z—a)™,  c¢m € Ky

By Definition 11.9 and Lemma 11.19, we have
Res(F,)(e)(X'Y*27") = Res.((—2)" 27" F,(2)dz)

Z cmRese((z — a)"Fu(z)dz)

= - Cm, z—a)"du.(x
> L(e)< Y djie(2)
- | o)
Ule)

By (9.2), this equals c(e)(X*Y*27%) and we obtain Res(F,) = c. Hence
the map of the proposition is injective. Its C,-linearity follows from
Corollary 9.17. dJ

12. DESCRIPTION OF DRINFELD CUSPFORMS VIA HARMONIC
COCYCLES AND THE STEINBERG MODULE

Let I' be an arithmetic subgroup of GLy(K) and let & > 2. In this
section, we show that the injection CP*(T') — Si(T") of Proposition
11.20 for T" is an isomorphism. Moreover, under the assumption that
[ is p/-torsion free, we give a description of Char(T), and thus of Si(T),
using the Stelnberg module St.

For this, first we recall the notion of I'-stable simplices and their
properties, following [Ser, Ch. II, §2.9].
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12.1. Stable and unstable simplices. In this subsection, we assume
that I' is p’-torsion free.

Definition 12.1. We say a vertex (resp. an edge) s of T is I'-stable if
Stabr(s) = {id}, and T-unstable if not. We denote by Tt (resp. 7,1
the set of D-stable vertices (resp. edges), and by T&™ (resp. T, ™)
the set of I'-unstable vertices (resp. edges).

Note that (3.2) implies that for any g € GLy(K), a simplex s is -
stable if and only if g o s is g'¢g '-stable. On the other hand, (3.1)
implies that if e € T,? is [-unstable, then —e, o(e) and t(e) are all I'-
unstable. Thus I'-unstable vertices and edges form a subgraph of the
tree 7 which we denote by T.

Lemma 12.2. Let G < GLy(K) be a nontrivial finite p-subgroup. Then
there exists a unique rational end of T that is fixed by G.

Proof. Note that the set of rational ends Endg(7) is identified with
P!(K) via the isomorphism of Lemma 2.10. Thus it is enough to show
that there exists a unique line in K? that is fixed by G.

Since G is a nontrivial finite p-group, its center Z is nontrivial. Since
Z is a nontrivial finite abelian p-group, we can find g € Z of order p.
Since g € GLy(K) satisfies ¢? = id, its minimal polynomial divides
(X — 1) in the polynomial ring K[X]. Thus g has the eigenvalue one,
and there exists a line D < K? which is fixed by g. Since g # id, such
a line is unique.

For any h € G, we have gh(D) = hg(D) = h(D) and the uniqueness
of the line D yields h(D) = D. Thus D is stable under the action of
G, and the action defines a character y : G — K*. Since char(K) = p,
there is no nontrivial p-power roots of unity in K. Hence x = 1 and D
is fixed by G. Since G # {id}, such D is unique. This concludes the
proof. O

Lemma 12.3. Suppose that T is an arithmetic subgroup of GLs(K)
which is p'-torsion free. For any I'-unstable simplex s of T, the stabi-
lizer subgroup Stabr(s) is a nontrivial finite p-group.

Proof. By Lemma 3.6, the group Stabr(s) is finite. The assumption
that I is p/-torsion free implies that it is a p-group. Since s is I'-
unstable, it is nontrivial. U

Lemma 12.4. Let v e Tg ™.

(1) There ezists a unique rational end b(v) € Endg(T) fized by
Stabp(v).
(2) For any v € T', we have b(y ov) = 7o b(v).
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(8) There exists a unique half-line H(v) starting from v that repre-
sents b(v).

(4) The half-line H(v) is fixred by Stabr(v). In particular, if we
write H(v) = {w;}is0, then the edge (w; — w;i1) is I'-unstable
for any i.

Proof. By Lemma 12.3, the group G := Stabr(v) is a nontrivial finite
p-group. Then Lemma 12.2 yields (1).

For (2), by (3.2) we have Stabp(yowv) = yStabp(v)y™! for any v e T
and yob(v) is a rational end fixed by this group. Hence the uniqueness
in (1) yields b(y o v) = vy o b(v).

Since T is connected, we can find a half-line H = {w;};>¢ starting
with wy = v and representing the end b(v). If H = {w}};>¢ is another
such half-line, then H’ agrees with H except finitely many vertices.
Thus they yield a circuit unless H = H’. Since T is a tree, this shows
H = H’ and (3) follows.

For any g € G, put go H = {gow;};>0. Since G fixes v and b(v), the
uniqueness yields H = go H. This implies (gow; — gow;41) = (w; —
w;+1) for any ¢ and (4) also follows. O

Lemma 12.5. Let e € T, ™.

(1) There ezists a unique rational end b(e) € Endg(T) fized by
Stabp(e).
(2) For any w € {o(e),t(e)}, we have b(e) = b(w).

Proof. Since Stabr(e) is a nontrivial finite p-group, Lemma 12.2 yields
a unique rational end b(e) that is fixed by Stabr(e) and (1) follows.
For (2), note that w is I'-unstable. Since we have

Stabr(e) < Stabr(w),

the rational end b(w) of Lemma 12.4 (1) is fixed by Stabr(e). Then
the uniqueness of b(e) implies b(e) = b(w) and (2) follows. O

Lemma 12.6. Let b€ Endg(T) be a rational end and let H = {wy, }n=0
be a half-line representing b. Then there exists an integer N = 0 such
that for any n = N, the edge f, = (w, — wuy1) s [-unstable and
Stabr(f,) = Stabr(w,) € Stabr(f.11).

Proof. Take v € GLy(K) satisfying vT'v=! < GLy(A). By (3.2), replac-
ing H by v o H we may assume that I is a congruence subgroup. By
Lemma 3.15, there exists 7 € I and g € GLy(A) such that {yg o v,}ns0
and H agree up to finitely many vertices. Replacing I' by the congru-
ence subgroup vgI'(vg) ™!, we may assume H = {v,},>0.
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Take any P € A\F, satisfying I'((P)) < I'. By Lemma 3.10 (2), for
any n = deg(P) we have

{(é ]FqlP)} < Stabr(v,) = Stabr(e,) € Stabr(v,41) = Stabr(e,41),

from which the lemma follows. O

Lemma 12.7. Let my(T) be the set of connected components of T.
For any v € Ty ™, let [v] be the connected component of Ty, that con-
tains v. Then we have a I'-equivariant bijection

70(T) — Endg(T) ~ PHK), [v] — b(v).

Proof. First we show that the map of the lemma is well-defined. Sup-
pose that T'-unstable vertices v,v’ € Ty satisfy [v] = [v']. This means
that there exist vertices wy, ..., w, of Ty satisfying wg = v, w, = v’
and such that for any i the edge (w; — w;;1) is -unstable. Thus we
may assume n = 1, so that e = (v — ¢') is a [-unstable edge. Then
Lemma 12.5 (2) yields b(v) = b(e) = b(v"). The I'-equivariance of this
map follows from Lemma 12.4 (2).

Next we show that the map of the lemma is injective. Let v, v €
T and suppose b(v) = b(v'). Then the half-lines H(v) and H(v') of
Lemma 12.4 (3) agree except finitely many vertices. By Lemma 12.4
(4), each edge in these half-lines is I-unstable and thus v and v" are
connected with a chain of I'-unstable edges. Hence we obtain [v] = [v'].

For the surjectivity, take any b € Endg(7) and let {w,},=0 be a
half-line which represents b. By Lemma 12.6, we may assume that for
any n the edge f, = (w, — wyy1) is [-unstable with Stabr(w,) <
Stabr(wy41). Then Stabr(wg) fixes b and the uniqueness of Lemma
12.4 (1) yields b = b(wp). This concludes the proof. O

Lemma 12.8. For any v € T4 ™, let e(v) be the first edge of the
half-line H(v) so that o(e(v)) = v. Then the map

T T, v [e()]
15 a I'-equivariant bijection.

Proof. The I'-equivariance follows from Lemma 12.4 (2) and the unique-
ness of H(v). For any e € T;""™, consider the rational end b(e) of T .
For any w € {o(e),t(e)}, Lemma 12.5 (2) yields b(e) = b(w). Thus
there exists a unique element v(e) € {o(e),t(e)} such that the half-
line H(v(e)) contains both of o(e) and #(e). Since the definition shows
v(e) = v(—e), we obtain a map

7-10,F—un/{i1} - 76F—un’ [6] — 2}(6),
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which gives the inverse of the map v — [e(v)]. O

Definition 12.9. Let e € 7. We define a subset srcp(e) of 77" as
follows:

e If e is ['-stable, then srcr(e) = {e}.
e If ¢ is I-unstable, then srcr(e) consists of I'-stable edges €’ sat-
isfying the conditions below.

(1) There exists a '-unstable vertex v' € {o(¢), t(¢')} such that
the half-line H(v') starting from v" and representing b(v’)
passes though e. This means that if we write H(v') =
{wp}ns0, then e = (w, — wy41) or e = —(w,, — wy41) for
some n.

(2) ¢’ has the same orientation as e with respect to H(v"). This
means that

- { fm =) (=)

Any element of srcr(e) is called a I'-source of e.

Note that for any I'-unstable edge e and any ¢’ € srcr(e), the vertex
v' € {o(€'), t(e')} satisfying the condition of Definition 12.9 (1) is unique.
Indeed, suppose that both of o(¢’) and t(e’) are I'-unstable. Since €’
is [-stable, Lemma 12.4 (4) implies that neither H(o(¢e’)) nor H (t(¢’)
passes through e’. Hence, if both of these half-lines pass through e,
then they form a circuit. This is a contradiction.

Moreover, since Stabr(v’) fixes H(v'), we have Stabr(v) < Stabr(e)
and b(e) = b(v').

From the definition, we have
(12.1) srep(—e) = —srep(e) = {—¢' | € € srer(e)}.

Lemma 12.10 ([Ser|, Ch. I, §2.1, Exercise 2). Let G' be a connected
locally finite graph containing no injective infinite path. Then G is
finite.

Proof. We may assume G # . Take any vertex v € G. Put Gy = {v}.
For any integer ¢ > 0, let G; = Vert(G) be the subset consisting of
vertices w such that w is adjacent to a vertex in G;_; and w ¢ G; for
any j < ¢ — 1. Since G is locally finite, each G; is finite. Since G is
connected, we have G = | J,o, G

For any i and any w € G}, choose a vertex ¢;(w) € G;_; which is
adjacent to w. This gives a map ¢; : G; — G;_1. For any j > ¢, put
gji = git10---0¢; : G; = G; and g;; = id. Then (Gj, g;;) forms an
inverse system.
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Suppose that G is infinite. Then for any n > 0 there exists i > n
satisfying G; # . By taking the image of g, ,, we see that G,, # &
for any n > 0, and [Sta, Lemma 4.21.7] implies lim _ G; # &. Now
(w;)i=0 € lim _ G; gives an injective infinite path in G, which is a
contradiction. 0

Lemma 12.11. Let e € 7.
(1) For any g € GLy(K), we have

srcgrg-1(g 0 €) = g osrep(e).

(2) srer(e) is a finite set.

(8) Suppose that e is I'-unstable. Let v € {o(e),t(e)} be the farther
one from b(e). If v = o(e) (resp. v = t(e)), then let fi,..., f,
be the edges with terminus (resp. origin) v. Then we have

srer(e) = Hsr(:p(fi).

Proof. (1) follows from (3.2) and go (v —> w) = (gov — gow).

For (2), we may assume that e is [-unstable. Let Ty(e) be the
connected component of T, containing e. Then Lemma 12.5 (2) yields
b(e) = b(o(e)) and by Lemma 12.4 it is represented by the half-line
H(o(e)) = {wp}n=0 starting from o(e) and consisting of I-unstable
edges. Hence Lemma 12.7 implies that H(o(e)) represents the unique
end in 7o (e).

Now Lemma 12.10 implies that for some m > 0, omitting {wy, },>m
and {+(w, — Wpi1)}nsm from T (e) defines a finite subgraph. Thus
we can find an integer N > 0 such that all the half-lines starting from
o(e) or t(e) except those representing b(e) pass through I'-stable edges
before passing through N edges. This shows |srer(e)| < 2¢™.

Let us show (3). Note that if f; is [-unstable, then b(f;) = b(v) =
b(e). From the definition we see srcp(e) = |Ji_, srer(fi). Suppose
f € srep(fi) nosrep(f;). Then the unique path starting from f and
connecting with H(v) passes through both of f; and f;, which yields
1 = 7 and the union is disjoint. This concludes the proof. 0

12.2. Steinberg module and its resolution. Also in this subsec-
tion, we assume that ' is p/-torsion free. Let Z[P'(K)] be the free
abelian group with basis P!(K).

Definition 12.12. Consider the augmentation map

aug : Z[P'(K)] > Z, > ngx]—> > na

zeP1(K) zeP1(K)
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Then we put St := Ker(aug) and call it the Steinberg module, so that
we have an exact sequence

aug

0—>St——= Z[PY(K)] 2% 7 ——~0.

By Lemma 2.3, the group I' acts without inversion and thus we can
choose an orientation 7;% of 7;° which is stable under the action of T.

Definition 12.13. Put 7'1+’F'St =T n 1°’F'St and
SO - 76I‘—st7 Sl = 7—1+,F-st.

Lemma 12.14. The group I" acts freely on Sy and Sy from the left via
the action o.

Proof. By (3.2), the group T acts on Sy = 75" and 77" from the
left via o. Since the orientation 7;* is I'-stable, it also acts on S;. For
any [-stable simplex s we have Stabr(s) = {id} and the freeness of the
action follows. U

Definition 12.15. Put
lo =1|T\So|, 11 =IT\S1]-
Lemma 12.16. The cardinality l; is finite for i =0, 1.

Proof. Take g € GLy(K) satisfying gT'g™! = GLy(A). By (3.2), the
map s — ¢ o s induces bijections

T\Tg™ — gTg NTE™ ™ D\TPT {1} — gTg TP

Thus we may assume I' © GLy(A).

By Lemma 3.12 and Lemma 3.15, we see that the quotient graph T'\'T
is the union of a finite graph and the image of finitely many rational
ends in 7. Hence Lemma 12.6 implies that any ['-stable simplex is I'-
equivalent to a simplex which lies in the finite graph obtained from I'\'T"
by cutting off injective infinite paths. This concludes the proof. U

Definition 12.17. Define
LO = Z[So], Ll = Z[Sl]

By the action induced by o, they are considered as left Z[I']-modules.
Then the left Z[I']-module L; is free of rank [; for i =0, 1.

Though the definition of L; depends on the choice of a I'-stable
orientation 7;* of T, we have the following description of L; which is
independent of the choice.
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Lemma 12.18. The natural map
Ly = Z[S1] — Z[T"™)/e] + [l | e e T, [e] = [e]
is an isomorphism of left Z[I'|-modules.

Proof. The map of the lemma is Z[I']-linear. It is enough to construct
its inverse as a morphism of Z-modules. Define a Z-linear map

F:Z[T" ] - Z[S)]

by F([e]) = [e] if e € T;" and F([e]) = —[—e] if not. Then we have
F([e] + [—€]) = 0 for any e € T,""™" and the map F induces a Z-linear
map

ZIT N Kle) + [—e] e e T — Z[S1],

which gives the inverse of the map of the lemma. 0

The graph T defines a simplicial complex X whose set of zero-
dimensional simplices is 7y and that of one-dimensional simplices is
T.F. Similarly, 7, defines a simplicial complex X.,. We denote the
group of i-dimensional chains of them by C;(X) and C;(X,). Put

Then we have a natural isomorphism of left Z[I']-modules

Proposition 12.19. The left Z|T'|-modules St ® Ly and Ly are iso-
morphic. In particular, we have ly = ly and the left Z[I']-module St is
finitely generated and projective.

Proof. The long exact sequence of relative homology groups gives an
exact sequence of left Z[I']-modules

00— Hy(Xy) —= Hy(X) —= H{(X, Xo) —= Ho(Xo0)

0.

Ho(X) — Ho(X, Xy)

Since T is a connected tree, we have H;(X) = 0 and Hy(X) = Z.
Since the map Hy(Xy) — Ho(X) can be identified with the map send-
ing a connected component of 7, to that of 7, it is surjective and
Ho(X, Xyx) =0.

Thus we have an exact sequence of left Z[I']-modules

aug

00— Hy(X, Xop) — Ho(Xo) —2- 7 — 0,
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where the map aug sends any connected component of 7T, to one.
By Lemma 12.7, this map is identified with the augmentation map
Z|PY(K)] — Z and we obtain an isomorphism of left Z[I'-modules

Hy(X, X,) — St = Ker(aug).

On the other hand, by the definition of relative homology groups we
have an exact sequence of Z[I']-modules

O _— Hl(X, Xoo) e Cl(X, Xoo) _— C()(X, Xoo) _— HQ(X, Xoo) = O,

which yields an exact sequence of Z[I'|-modules

(12.2) 0 St A 0.
Here the map 0 : Ly — Lo is given by d([e]) = [t(e)] — [o(e)], where
we put [v] = 0 when v € T3 ™. Since the left Z[[']-module L; is free of
rank /;, the exact sequence (12.2) splits. Hence the Z[I']-module St is
finitely generated and projective. By tensoring the augmentation map
Z|I'] = Z from the left to (12.2), we obtain 1 > ly. This concludes the
proof. O

Lemma 12.20. Let x(I') be the Euler—Poincaré characteristic of I, as
in Definition 3.17. Then we have

X(F) = lo — ll.
Proof. Recall that x(I') is defined as the absolutely convergent series
1 1
D S D M e e
v |Stabr(v)| TV 1) |Stabr(e)]
Put

1 1
RS [Stabr(0)] 2 [Stabr ()|’

ver\']al"—st eEF\'TlO'F_St/{il}
1 1
X = Y =——— D> =
peri |Stabr(v)| e\ o ) |Stabr(e)]

so that they are also absolutely convergent and x(I') = x4 (') + xun(T)-
For x4 (I'), the stabilizer subgroups are all trivial and thus

Xa(D) = VTS| = I\TP /{1 = o — L

Thus we are reduced to showing y.,(I") = 0.
Consider the I'-equivariant bijection

76F-un R 710,1“—un/{i1}7 v — [6(11)]
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of Lemma 12.8. By definition, we have o(e(v)) = v and thus Stabr(e(v)) <
Stabr(v). On the other hand, by Lemma 12.4 (4) the group Stabr(v)
fixes the half-line H(v) and thus Stabr(v) < Stabr(e(v)). Hence we
obtain Stabr(v) = Stabr(e(v)) and

1 1
()= 3, <|Stabr<v>\ - |Stabr(€(v))|> =0

ver\%l"»un

This concludes the proof. 0

12.3. Euler—Poincaré characteristic and group homology. Let
I' be an arithmetic subgroup of GLy(K). For any left Z[I'|-module M,
we denote by Mt the module of I'-coinvariants of M. Then the group
homology H;(I'; M) is the i-th left derived functor of M — Mr.

Since T is a tree, the boundary map 0 : C1(X) — Cp(X) gives an
exact sequence of Z[I']-module

00— Cy(X) —2> Cp(X) —=Z ——=0.

For i = 0,1, put C;(X)g = Q®z Ci(X). Then we have the long exact
sequence of group homology
(12.3)

o Hy(T,C1(X)g) — Hi(T, Cy(X)g) — Hi(T, Q)

— H; 1 (T, C1(X)q)

Lemma 12.21. Let I' be an arithmetic subgroup of GLy(K). Then we
have an isomorphism of Q-vector spaces

Hl(FvQ) = HI(F\X7 Q)

Proof. Let ¥ and ¥; be complete sets of representatives of T'\ Ty and
[\ 7", respectively. Then for i = 0,1 we have I'-equivariant isomor-
phisms

Ci(X) = @ ZIT/Stabr(s)], - Ci(X)g — D QI /Stabr(s)]

By Shapiro’s lemma [Bro, Ch. III, Proposition 6.2], we also have an
isomorphism

H;(I',Q[I'/Stabr(s)]) ~ H;(Stabr(s), Q).

By Lemma 3.6, the group Stabr(s) is finite. Then [Bro, Ch. III, Propo-
sition 9.5 (ii)] implies H;(Stabr(s),Q) = 0 for any ¢ > 0. Hence (12.3)
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yields an exact sequence
0 —— Hy(T', Q) — Ho(I', C1(X)g) — Ho(I', Co(X)q)
Since for ¢ = 0,1 we have an isomorphism
Ho(T', Ci(X)g) = (Ci(X)g)r ~ Ci(T\X)q
compatible with boundary maps, the lemma follows. U

Let ¥ be a complete set of representatives of Cusps(I') = I'\P!(K).
Then we have an isomorphism of left Z[I']-modules

Z[PY(K)] ~ P Z[I'/Stabr(0)],

oeY

which yields an exact sequence of left Z[I']-modules
0 — St —= @, Z[I'/Stabr(o)] — Z — 0.

Hence we have the long exact sequence of group homology
(12.4)

T @aez Hi(StabF<U)a @) - Hz’(R @) - i—l(ru Q®z St)

- @O’EE Hifl(Stabp(O), @) —_—

Lemma 12.22. Let I" be an arithmetic subgroup of GLy(K) which is
p'-torsion free. For any i > 0, we have

Hi(T,Q®;St) =0, dimg(Hy(I, Q®; St)) = —x(I).

Proof. Since H;(I", Q®z St) ~ Toriz[r]((@, St), the first assertion follows
from Proposition 12.19. Applying the functor Q ®gzr — with (12.2)
and using the isomorphism

Ho(I',Q®z St) = (Q®z St)r ~ Q ®zry St,

we obtain an exact sequence of Q-vector spaces

0 — Hy(T',Q ®z St) Qh Qo 0.
Thus Lemma 12.20 concludes the proof. O
Lemma 12.23. Let 0 € PY(K). Then
Q ®z Stabp (o)™ = 0.
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Proof. Replacing I' by its conjugate, we may assume that I' is a con-
gruence subgroup. Since we have g o 00 = ¢ with some g € GLy(A),
replacing I' by gI'g~! we may also assume o = o0. Then we have

suir= {1~ (3 1)

Suppose v € Stabr (o). If a # d, then as in the proof of Lemma 6.50
we have v971 = id. Otherwise

_ p(g—1) _ p(g—1)
APl (a <(1) afb)) = ((1) &1117) = id.

Thus the module Stabp(c0)? is torsion. This concludes the proof. [

Proposition 12.24 ([Ser], Ch. II, §2.9, Exercise 2). Let I" be an arith-
metic subgroup of GLy(K) which is p'-torsion free. Let

g = dimg(H,(I"\X,Q)), h:=|Cusps(I)|.
Then we have x(T') = —(g + h —1).

a,deFy, beA}.

Proof. By Lemma 12.23 and the universal coefficient theorem [Bro,
Ch. 111, §1, Exercise 3], for any o € ¥ we have

H,(Stabr(0),Q) = Q®z Stabr(c)™® =0, Hy(Stabp(c),Q) = Q.

Note that h = |X| and Hy(I',Q) = Q. By Lemma 12.21 and Lemma
12.22; the sequence (12.4) yields an exact sequence of Q-vector spaces

0— H(MNX,Q) — Q" — Q" —Q—0,
from which the proposition follows. O

12.4. Description of Drinfeld cuspforms via harmonic cocycles.

Definition 12.25. Let k£ > 2 be an integer. Suppose that I' is p/-
torsion free. We denote by C*"(I") the C..-vector space consisting of
maps ¢ : T2 — V3, (Cy) satisfying the following conditions.

(1) For any v € T, ", we have

Z c(e) = 0.

eeT?, tle)=v

Note that the assumption v € 7% forces e in the sum to be
I-stable.

(2) For any e € T, we have ¢(—e) = —c(e).

(3) For any v € I" and e € 77, we have yo c(e) = c(yoe).
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Moreover, we denote by C:"*(T") the C,-vector space consisting of
maps ¢ : T, — V;(Cy) satisfying the conditions (2) and (3).

Lemma 12.26. Let Ay be a complete set of representatives of T'\S; =
D\T;""™". For any e e TOT™, there exists a unique triple (e.,7.,7(€)) €
{£1} x ' x Ay satisfying e = €.y, o r(e). Moreover, for any 6 € I' we
have

(5—e77—e,7“(—e)) = (_567’7ear(6))7 (6508,’)/506,7“(506)) = (5675’7677“(6))'

Proof. Since T;" is an orientation, we can find e, € {£1} satisfying
Ee€ € 7'1+’F'St. This yields the existence of such a triple.

For the uniqueness, suppose triples (e.,7.,r(e)) and (¢.,7.,r'(e))
satisty

e=cyeor(e) =g, 0r'(e).

Since 7;" is a I-stable orientation, both of v, o r(e) and «/ o 7/(e) lie
in 7;" and thus €, = /. Since A is a complete set of representatives,
we have 7(e) = r'(e) and v, 19/ or(e) = r(e). Since r(e) is I-stable, we
obtain 7, = 7.. The last assertion follows from the uniqueness. U

Lemma 12.27. Let Ay be a complete set of representatives of I'\Sy.
Then we have a Cy,-linear isomorphism

CoHT) = @ Vi(Cx), ¢ (c(€))een, -

6€A1

Proof. By Lemma 12.26, for any f € 7,”"™, we can find a unique triple
(e, 75, 7(f)) € {£1} x ' x Ay satistying f = epysor(f). Then the map

(‘B Vi(Cy) — Clit’i(FL (We)een, = (f = €y OWT‘(f))

66/\1

is well-defined and gives the inverse of the map of the lemma. 0

Lemma 12.28. Suppose that I is p'-torsion free. Then
dimcm((],it’har(l“)) = (k—1)(l; — ).

Proof. Let A; be a complete set of representatives of I'\ 5;. Consider the

.....

of Vi(Cy,). For any c e C;"*(T') and e € Ay, write
k—2
cle) = > ac(e)(XF2TYNY ag(e) € Co.
1=0
By Lemma 12.27, we have a Cy-linear isomorphism

(12.5) CET) - @ @Coo, ¢ (aei())ey-

eEA1 =0



NOTES ON DRINFELD MODULAR FORMS 193

Moreover, by Lemma 12.26, for any e € ’Tf”r'st we can uniquely write
€ =EeVe© 7”(6), (6677€7T(e)) € {il} x I x A1-
Fix v € Ag. Then we have
diele)=0 = > e(veoc(r(e) (XY =0 for any L.
t(e)=v t(e)=v
Thus the condition that ¢ € C3“*(T') lies in C3""* (") is identified, via
the isomorphism (12.5), with (k—1)[, linear relations on C¥ D" Thus
the C-vector space C5"™ (') is isomorphic to the null space
{re CFV | Bz =0}
for some (k — 1)lp x (k — 1)l; matrix B with entries in Cy,. Now
Proposition 12.19 yields [y > [, and
dimg,, (CY**(T')) = (k — 1)l; — rank(B) = (k — 1)l; — (k — 1)l,.
This concludes the proof. 0

Lemma 12.29. Suppose that I is p’-torsion free. Then the restriction
o,I'-st . . . .
to T, gwes a Cy-linear isomorphism

Cl}clar(r) . Czt,har(f‘), C— C|7-10,1—‘fst.
In particular, we have
dime,, (CR(T)) = (k — 1)(l — ly).

Proof. From the definition of I'-sources, we see that for any ¢ € Ci*"(T")
and any e € 7° we have

cle) = Z c(e).

e’esrer(e)

Thus the harmonic cocycle ¢ is determined by its restriction to I'-stable
edges, and the map of the lemma is injective.
For the surjectivity, take any ¢ € C:"™ (T'). We define a map ¢ :
T — Vi(Cs) by
de):i= > ).
e’esrcr(e)

By Lemma 12.11 (2), it is well-defined and its restriction to 7,7

is ¢. By Lemma 12.11 (1), the map ¢ is ['-equivariant. (12.1) yields
é(—e) = —é(e).

Let us show that ¢ is harmonic at any vertex v € Ty. We may assume
that v is [-unstable. Consider the half-line H(v) of Lemma 12.4 (3).
Then Lemma 12.4 (4) shows that the first edge e of H(v) is I'-unstable
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and satisfies o(e) = v. Let f1,..., f, be the edges with terminus v. By
Lemma 12.11 (3), we have

de)= D, =D, D, cle) =2 f)

e’esrcr(e) i=1 e’esrcr(f;)
which shows the harmonicity of ¢ at the vertex v. Thus the map of the

lemma is surjective. The last assertion follows from Lemma 12.28. [J

Theorem 12.30. Let I' be an arithmetic subgroup of GLy(K) and let
k = 2 be an integer. Then the map

Cy(T) — Si(I'), c— F,

of Proposition 11.20 is a C,-linear isomorphism with the inverse f —

Res(f).
Proof. By Proposition 11.20, the theorem is equivalent to the inequality

(12.6) dime, (C;*(T)) = dime,, (Si(T)).

For any v € GLy(K'), we have an isomorphism

O (I) — Cp" (v 'Tw), c—" ci(e—vtocvoe)).

By Lemma 6.62, replacing I' with its conjugate, to show the inequality
(12.6) we may assume I' € GLy(A). Then we have I'(n) < T" for some
nonzero ideal n € A.

Note that the group I'/T'(n) acts on Cp*(I'(n)) from the right via

¢ 7 ¢ for any y e T and

Ci (1) = G (D (n)/H,
If the theorem holds for I'(n), then Lemma 11.15 and Lemma 6.63 yield
dimc, (CPa"(T')) = dimg, (Sk(T")). Hence the theorem also holds for T
Therefore, we reduce ourselves to showing the theorem for I'(n), which
is p/-torsion free.

For this, by Lemma 12.29 and Lemma 12.20 we have
dime,, (Ci*(C(n))) = (k = 1)(ly = lo) = —(k — Dx(T(w)).
On the other hand, Lemma 3.18 and (3.8) yield
GLy(A) : T'(n)
() = (PR T

(@ —=1)%g+1)
Let g, be the genus of the compactification X (n) of I'(n)\Q and let
h = |Cusps(I'(n))|. Then [Gekl, Ch. VII, Theorem 5.11] gives

On = 1- X(F(ﬂ)) —h.
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By [Gosl, Corollary 1.81], we have an invertible sheaf w on the pro-
jective smooth curve X (n) such that deg(w) = g, — 1 + h and there
exists a natural isomorphism

Sp(T(n)) — H°(X (n),w"(—Cusps)).
Since k > 2 and h > 1, we have
deg(w"(—Cusps)) = k(ga — 1+ h) — h > 2g, — 2.
Now the Riemann—Roch theorem yields
dimc,, (Sk(I'(n))) = k(g —1+h) —h+1—g,
= (k= 1(ga =1+ 1) = —(k = 1x(T'(n)),
from which the theorem follows. U

Remark 12.31. The use of Gekeler’s genus formula can be bypassed
by using Proposition 12.24 and the fact that the graph obtained from
[\7 by cutting off all ends agrees with the dual graph of the semi-
stable reduction of the compactification X (I') of I'\§2 and the first Betti
number of the dual graph gives the genus of X (I'). A construction of
the compactification is explained in [Béc, §3.7]. On the other hand, in
order to construct the Hodge bundle w we need the theory of Drinfeld
modules and Tate-Drinfeld modules. I hope to add these topics to the
notes when I have time.

12.5. Steinberg module and harmonic cocycles. Let I' be an
arithmetic subgroup of GLy(K) which is p/-torsion free. For i = 0,1,
let S; be the set of Definition 12.13 and let L; = Z[S;] as in Definition
12.17. Let A; be a complete set of representatives of I'\ S;.

For any left Z[I']-module M € {Ly, L1, St}, we consider M as a right
Z[T']-module by

m-y:=ytom, ~el, meM,

so that for any integer k& > 2, we can form the tensor product M ®zry
Vi(Cy). Then for i = 0, 1, the right Z[I']-module L; is also free. Hence
(12.2) induces an exact sequence of C,-vector spaces

(12.7)
0 — St ®zr] Va(Cx) — L1 ®zjr) Vi(Cw) Riis Lo ®zjr) Vi(Cy) — 0.

Definition 12.32. For any k > 2, define a Cy-linear map ¢} by
1T = Ly @iy Vi(Co), e D [e] ®@cle).

eEA1
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Then Lemma 12.27 implies that ¢§* is an isomorphism. For any v € T
and ee S| = Tf“F_St, in the module L; ®zry Vi(Cy) we have

[yoel®@c(yoe) =[e] v ®@vocle) =[] ®cle).
Hence the map ¢} is independent of the choice of A;.
Lemma 12.33. The map ¢} induces a Cy-linear isomorphism
C3M (T — St ®gpry Vi(Co)-

Proof. Note that for i = 0, 1, the freeness of the right Z[I']-module L;
implies that the C.-linear map

@ Vk((coo) - Lz ®Z[F] Vk((coo)a (ws)seAi = Z [S] ® Wg

sel; seA;

is an isomorphism. Let ¢ € C;"*(T) and write

(0@ 1)(dr(c) = 2 [0] ® wew
vEAQ
with some w,, € V4(Cy). By the exact sequence (12.7), it is enough to
show that w,, = 0 for any v € Ag if and only if c € C’Zt’har(F).

Take any v € Ag. Let A(v) = {e € TP | t(e) = v}. Since T;" is an
orientation, for any e € A(v) there exists a unique €, € {+1} satisfying
ece €T, Put

A(w)* :={ece| ee A(v)}.
Since v is I'-stable, any edge in A(v) is [-stable. Moreover, for any
e,/ € A(v) we have ¢ ¢ T'e, and Lemma 2.3 also implies ¢ ¢ —Te.
Then it follows that A(v)* < 7,77 and any two distinct elements
of A(v)* are not I'-equivalent. Thus we can find a complete set of
representatives Ay of I\7;7"™ satisfying A(v)*™ < A;.
Note that for any e € Aj\A(v)*, we have v ¢ {o(e),t(e)}. Hence

[v] @ we,w = Z eefv] ®c(eee) = [v] ® Z c(e)
ecA(v) e€A(v)

and wey = Dl.cp () €(€), from which the lemma follows. O

Corollary 12.34. Let " be an arithmetic subgroup of GLy(K) which
is p'-torsion free and let k = 2. Then the Cy-linear map

o : O (L) — St @z Vi(Cx), e Y [e] @ c(e)

eEA1

is an 1somorphism which is independent of the choice of Ay.
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Proof. Since A; € T, we have
Br(c) = G (clyor).
Thus the corollary follows from Lemma 12.29 and Lemma 12.33. [

Remark 12.35. The assumption that I' is p’-torsion free in Corollary
12.34 is removed by [BGP, Theorem 1.14].

REFERENCES

[Abb] A. Abbes: Eléments de géométrie rigide. Volume I, Progr. Math. 286,
Birkh&user/Springer Basel AG, Basel, 2010.

[Boc] G. Bockle: An FEichler-Shimura isomorphism over function fields between
Drinfeld modular forms and cohomology classes of crystals, preprint, avail-
able at http://typo.iwr.uni-heidelberg.de/groups/arith-geom/home/
members/gebhard-boeckle/publications/

[BGP] G. Bockle, P. M. Graf and R. Perkins: A Hecke-equivariant decomposition of
spaces of Drinfeld cusp forms via representation theory, and an investigation
of its subfactors, Res. Number Theory 7 (2021), no. 3, Paper No. 44.

[BGR] S. Bosch, U. Giintzer and R. Remmert: Non-Archimedean analysis. A sys-
tematic approach to rigid analytic geometry, Grundlehren der Mathematischen
Wissenschaften 261, Springer-Verlag, Berlin, 1984.

[Bro] K. S. Brown: Cohomology of groups, Grad. Texts in Math. 87, Springer-
Verlag, New York, 1994.

[Con] B. Conrad: Irreducible components of rigid spaces, Ann. Inst. Fourier (Greno-
ble) 49 (1999), no. 2, 473-541.

[DH] P. Deligne and D. Husemoller: Survey of Drinfel’d modules, Current trends in
arithmetical algebraic geometry (Arcata, Calif., 1985), 25-91. Contemp. Math.
67, American Mathematical Society, Providence, RI, 1987.

[DS] F. Diamond and J. Shurman: A first course in modular forms, Grad. Texts
in Math. 228 Springer—Verlag, New York, 2005.

[Dri] V. G. Drinfeld: Elliptic modules, Math. USSR-Sb. 23 (1974), no. 4, 561-592
(1976).

[FvdP1] J. Fresnel and M. van der Put: Géométrie analytique rigide et applications,
Progr. Math. 18, Birkh&user, Boston, MA, 1981.

[FvdP2] J. Fresnel and M. van der Put: Rigid analytic geometry and its applica-
tions, Progr. Math. 218, Birkh&user Boston, Inc., Boston, MA, 2004.

[Gekl] E.-U. Gekeler: Drinfeld modular curves, Lecture Notes in Math. 1231,
Springer—Verlag, Berlin, 1986.

[Gek2] E.-U. Gekeler: On the coefficients of Drinfeld modular forms, Invent. Math.
93 (1988), no. 3, 667-700.

[GN] E.-U. Gekeler and U. Nonnengardt: Fundamental domains of some arithmetic
groups over function fields, Internat. J. Math. 6 (1995), no. 5, 689-708.

[GvdP] L. Gerritzen and M. van der Put: Schottky groups and Mumford curves,
Lecture Notes in Math. 817, Springer, Berlin, 1980.

[Gosl] D. Goss: w-adic Eisenstein series for function fields, Compositio Math. 41
(1980), no. 1, 3-38.

[Gos2] D. Goss: Basic structures of function field arithmetic, Ergebnisse der Math-
ematik und ihrer Grenzgebiete (3), 35, Springer-Verlag, Berlin, 1996.



198 SHIN HATTORI

[Gos3] D. Goss: A construction of v-adic modular forms, J. Number Theory 136
(2014), 330-338.

[MTT] B. Mazur, J. Tate and J. Teitelbaum: On p-adic analogues of the conjectures
of Birch and Swinnerton—Dyer, Invent. Math. 84 (1986), no. 1, 1-48.

[Miy] T.Miyake: Modular forms, Springer Monogr. Math., Springer—Verlag, Berlin,
2006.

[Pel] F. Pellarin:  From the Carlitz exponential to Drinfeld modular forms,
arXiv:1910.00322v2.

[Pet] A. Petrov: A-expansions of Drinfeld modular forms, J. Number Theory 133
(2013), no. 7, 2247-2266.

[SS] P. Schneider and U. Stuhler: The cohomology of p-adic symmetric spaces,
Invent. Math. 105 (1991), no. 1, 47-122.

[Ser] J.-P. Serre: Trees, Corrected 2nd printing of the 1980 English translation,
Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003.

[Sta] The Stacks Project Authors:  Stacks Project, http://stacks.math.
columbia.edu.

[Teil] J. T. Teitelbaum: The Poisson kernel for Drinfeld modular curves,
J. Amer. Math. Soc. 4 (1991), no. 3, 491-511.

[Tei2] J. T. Teitelbaum: Rigid analytic modular forms: an integral transform ap-
proach. The arithmetic of function fields (Columbus, OH, 1991), 189-207. Ohio
State Univ. Math. Res. Inst. Publ. 2, Walter de Gruyter & Co., Berlin, 1992.

DEPARTMENT OF NATURAL SCIENCES, TOKYO CIiTY UNIVERSITY, 1-28-1
TAMAZUTSUMI, SETAGAYA-KU, TOKYO 158-8557, JAPAN
Email address: hattoris@tcu.ac.jp



