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3.3. Euler–Poincaré characteristic 16
4. Discs and the Bruhat–Tits tree 19
4.1. Distinguished closed discs 19
4.2. Distinguished closed discs and edges in the tree 27
4.3. Explicit description of Upeq 30
4.4. Description of Upeq via projectivized closed discs 33
5. Drinfeld upper half plane 36
5.1. Coverings of Ω associated with vertices 36
5.2. Annuli in P1pC8q associated with edges 41
5.3. Irrational absolute value 41
5.4. Rigid analytic structure of Ω 43
5.5. Admissibility of the covering tUpvquvPT0 46
6. Drinfed modular forms 47
6.1. Carlitz exponential 47
6.2. Quotient by a discrete group action 53
6.3. Carlitz exponential as a uniformizer at 8 66
6.4. Uniformizers at cusps 71
6.5. Definition of Drinfeld modular forms 75
7. Operators acting on Drinfeld modular forms 80
7.1. Double coset operators 80

Date: February 21, 2025.
1



2 SHIN HATTORI

7.2. Hecke operators 81
7.3. Diamond operators 84
7.4. Type operators 87
7.5. Hecke operators for non-irreducible polynomials 89
8. Examples of Drinfeld modular forms 91
8.1. Goss polynomials 91
8.2. Eisenstein series for GL2pAq 94
8.3. Poincaré series 98
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1. Introduction

1.1. Preface. These are notes for the intensive course I gave at To-
hoku university in the fall of 2024. I do not claim that anything in these
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notes is original: I just tried to explain the definition of Drinfeld mod-
ular forms and Hecke operators acting on them [Gos1, Gek1, Gek2],
the description of Drinfeld cuspforms using harmonic cocycles on the
Bruhat–Tits tree [Tei1], the necessary background on the tree [Ser] and
on rigid analytic residue theorems [FvdP1]. In most parts I followed
the normalization and exposition of [Böc], and I copied some arguments
of [Pel] on the analysis around cusps, though any errors are my fault.
It should be used at the reader’s own risk.

1.2. Convention. We follow the convention in [Böc].

(1) We consider V8 “ K2
8 as the set of row vectors on which

GL2pK8q acts tautologically from the right and we define a
left action ˝ of GL2pK8q on V8 by

γ ˝ px, yq “ px, yqγ´1 “

ˆ

dx ´ cy

ad ´ bc
,

´bx ` ay

ad ´ bc

˙

, γ P GL2pK8q

(2) Put P1pK8q “ pV8ztp0, 0quq{Kˆ
8 and similarly for P1pC8q. The

class of px, yq is denoted by px : yq. We consider C8 as a subset
of P1pC8q by

C8 Ñ P1pC8q, z ÞÑ p1 : ´zq.

Thus we define 8 “ p0 : 1q.
This is compatible with the Möbius transformation, namely

p1 : ´γpzqq “

ˆ

1 : ´
az ` b

cz ` d

˙

“ p1 : ´zq
1

ad ´ bc

ˆ

d ´b
´c a

˙

“ γ˝p1 : ´zq.

(3) For any vertex v “ γ ˝ v0 in the Bruhat–Tits tree T , we define
Upvq “ γ ˝ Upv0q.

(4) For any edge e “ pv Ñ wq, we define in Definition 11.4 the
orientation of the annulus V peq as follows: we have closed discs
Upeq and Up´eq in P1pC8q satisfying

V peq “ P1pC8qzpUpeq \ Up´eqq.

Then the orientation of V peq is given by an isomorphism

w : V peq Ñ tz P C8 | 1 ă |z| ă qu

such that w˚pzq extends to a rigid analytic function on Upeq
having zero at the center of Upeq.

In general there are two consistent choices of orientations of
V peq for all e, but this is the unique choice that makes RespF q “

c holds true.
(5) The residue map is defined as

RespfqpeqpX iY n´2´iq “ Resepp´zqn´2´ifpzqdzq.
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(6) The measure associated with a harmonic cocycle is defined from
the formula

ż

Upeq

xidµcpxq “ p´1qicpeqpXn´2´iY iq

ô

ż

Upeq

p´xqn´2´idµcpxq “ cpeqpX iY n´2´iq.

1.3. Notation. Let p be a rational prime, q ą 1 be a p-power integer
and Fq be the field of q elements. Let t be an indeterminate. Put A “

Fqrts and K “ Fqptq. We denote by A` the set of monic polynomials
in A.

Let π8 “ 1{t and K8 “ Fqpp1{tqq “ Fqppπ8qq. Let v8 : K8 Ñ

Z Y t`8u be the normalized additive valuation on K8. It is defined
by v8p0q “ `8 and

v8paq “ r if a “
ÿ

iěr

ciπ8, cr ‰ 0.

Let C8 be the π8-adic completion of an algebraic closure of K8. The
unique extension of v8 to C8 is also denoted by v8. For any z P C8,
put

|z| “

"

q´v8pzq pz ‰ 0q,
0 pz “ 0q.

For any field L equipped with an additive valuation v and any ratio-
nal number s ě 0, we put

měs
L “ tx P L | vpxq ě su.

For any affinoid algebra R with its supremum seminorm | ´ |sup,
define

R˝ “ tf P R | |f |sup ď 1u, R_ “ tf P R | |f |sup ă 1u, R̃ “ R˝{R_.

2. Bruhat–Tits tree

2.1. The projective line and the action of GL2. Let B be an A-
algebra. Let V pBq “ B2 be the set of row vectors over B. The group
GL2pBq acts naturally from the right via

px, yqγ “ pax ` cy, bx ` dyq, γ “

ˆ

a b
c d

˙

P GL2pBq.

Define its left action on V pBq by

γ ˝ px, yq “ px, yqγ´1 “
1

ad ´ bc
pdx ´ cy,´bx ` ayq.
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Let L be a field. The multiplicative group Lˆ acts on V pLq by

cpx, yq “ pcx, cyq, px, yq P V pLq, c P Lˆ.

Write P1pLq “ pV pLqztp0, 0quq{Lˆ and the class of px, yq by px : yq.
Then the action ˝ induces an action of GL2pLq on P1pLq which is de-
noted also by ˝.

We consider L as a subset of P1pLq by the map

(2.1) ι : L Ñ P1pLq, z ÞÑ p1 : ´zq.

Then we have P1pLq “ L Y t8u with 8 “ p0 : 1q.

Lemma 2.1. The subset ιpLq Ď P1pLq is open. Moreover, if we con-
sider ιpLq as a subspace of P1pLq, then the map ι induces a homeomor-
phism ι : L Ñ ιpLq.

Proof. Let f : L2ztp0, 0qu Ñ P1pLq be the natural surjection. Since

ιpLq “ tpx : yq P P1pLq | x ‰ 0u, f´1pιpLqq “ tpx, yq P L2ztp0, 0qu | x ‰ 0u,

we see that ιpLq is open in P1pLq.
Since the map ι factors as

L Ñ L2ztp0, 0qu Ñ P1pLq, z ÞÑ fpp1,´zqq,

the map ι : L Ñ ιpLq is continuous. Its inverse map is given by

j : ιpLq Ñ L, px : yq ÞÑ ´yx´1.

To show that j is continuous, it is enough to prove that for any open
subset V Ď L, the subset j´1pV q Ď P1pLq is open. Since the set

f´1pj´1pV qq “ tpx, yq P Lˆ ˆ L | ´yx´1 P V u

is open in Lˆ ˆ L, it is open in L2ztp0, 0qu and thus j´1pV q is open in
P1pLq. □

Via the map ι we identify the action ˝ of GL2pLq on P1pLq with the
Möbius transformation

γpzq “
az ` b

cz ` d
, γ “

ˆ

a b
c d

˙

P GL2pLq.

We give P1pK8q “ pV pK8qztp0, 0quq{Kˆ
8 the quotient topology in-

duced from the natural topology on V pK8q “ K2
8. Since the natural

map

pO8 ˆ t1uq Y pt1u ˆ O8q Ñ P1pK8q

is surjective, it follows that P1pK8q is compact.
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2.2. Definition of the tree. Put V8 “ V pK8q. An O8-lattice of V8

is a finitely generated O8-submodule of V8 which generates V8 over
K8. We say two O8-lattices M and M 1 are equivalent if M 1 “ cM
for some c P Kˆ

8, and the equivalence class of M is denoted by rM s.
We say two equivalence classes Λ and Λ1 are adjacent if there exists
representatives M P Λ and M 1 P Λ1 such that M Ě M 1 and the O8-
module M{M 1 is of length one.

Let M and M 1 be two O8-lattices in V8. By the elementary divisor
theorem, we can find a basis f1, f2 of the O8-module M and a, b P Z
such that πa8f1, π

b
8f2 form a basis of M 1. The integers a, b do not

depend on the choice of a basis of M , and the integer |a ´ b| depends
only on the equivalence classes Λ,Λ1 of M,M 1. We write

χpM,M 1q “ a ` b, dpΛ,Λ1q “ |a ´ b|

and call the latter the distance of Λ and Λ1. Then Λ,Λ1 are adjacent if
and only if dpΛ,Λ1q “ 1.

For any representative M of Λ, there exists a unique representa-
tive M 1 of Λ1 satisfying M Ě M 1 and the O8-module M{M 1 is mono-
genic. Then dpΛ,Λ1q agrees with the length lpM{M 1q of the O8-module
M{M 1.

Define a graph T as follows.

‚ The set of vertices T0 is the set of equivalence classes of lattices
in V8.

‚ The set of edges T1 is the set of tΛ,Λ1u consisting of adjacent
equivalence classes Λ,Λ1.

Lemma 2.2 ([Ser], Ch. II, §1.1, Theorem 1). Let n be a positive inte-
ger. If Λ0,Λ1, . . . ,Λn is a sequence of adjacent vertices without back-
tracking (that is, Λi,Λi`1 are adjacent and Λi ‰ Λi`2 for any i), then
dpΛ0,Λnq “ n.

Proof. We proceed by induction on n. For n “ 1 it is trivial. Suppose
n ě 2. We can find representatives Mi of Λi satisfying Mi Ě Mi`1

and lpMi{Mi`1q “ 1. Then lpM0{Mnq “ n. By the definition of the
distance, it is enough to show Mn Ę π8M0.
By the induction hypothesis we have dpΛ0,Λn´1q “ n´1 andMn´1 Ę

π8M0. By lpMn´2{Mn´1q “ 1, we have π8Mn´2 Ď Mn´1 and lpMn´1{π8Mn´2q “

1. Thus the image of π8Mn´2 in the Fq-vector space Mn´1{π8Mn´1 is
a one-dimensional subspace.

On the other hand, the image of Mn in Mn´1{π8Mn´1 is also one-
dimensional. Indeed, if the image is zero, then we haveMn Ď π8Mn´1 Ď

Mn´1, which contradicts lpMn´1{Mnq “ 1. If the image has dimension
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two, then we have Mn´1 “ Mn ` π8Mn´1 and Nakayama’s lemma
implies Mn´1 “ Mn, which is also a contradiction.

If these one-dimensional subspaces agree, then we have

Mn ` π8Mn´1 “ π8Mn´2 ` π8Mn´1 “ π8Mn´2.

Since lpMn´1{Mnq “ 1, we have π8Mn´1 Ď Mn and this shows Mn “

π8Mn´2. Thus it gives the backtracking Λn “ Λn´2, which is a con-
tradiction. Hence the images of Mn and π8Mn´2 generate the O8-
module Mn´1{π8Mn´1, namely Mn´1 “ Mn ` π8Mn´2. This forces
Mn Ę π8M0. □

Using Lemma 2.2, we can show that T is a connected pq`1q-regular
tree and the distance dpΛ,Λ1q of equivalence classes Λ,Λ1 agrees with
the distance of the corresponding vertices in the tree T .

We call T the Bruhat–Tits tree (for PGL2pK8q). To any edge
tv, wu P T1, we attach two oriented edges pv Ñ wq and pw Ñ vq.
The set of oriented edges is denoted by T o

1 . We refer to an element of
T0 \ T o

1 a simplex of T .
For any oriented edge e “ pv Ñ wq, we denote its reverse edge

pw Ñ vq by ´e, its origin v by opeq and its terminus w by tpeq. Then
the action ˝ of the group GL2pK8q on V8 induces its action on T0, and
also on T o

1 by γ ˝ pv Ñ wq “ pγ ˝ v Ñ γ ˝ wq. Then the actions on T0

and T o
1 are both transitive.

Lemma 2.3. Let Λ P T0 be any vertex of T represented by an O8-
lattice M of V8. Let γ P GL2pK8q. Then we have

χpM,γ ˝ Mq “ v8pdetpγqq, dpΛ, γ ˝ Λq ” v8pdetpγqq mod 2.

Proof. Choose a basis e1, e2 of the O8-module M . Then there exist
integers a, b P Z such that πa8e1, π

b
8e2 form a basis of the O8-module

γ ˝ M . Since v8pdetpγqq “ a ` b, we obtain the first equality and

dpΛ, γ ˝ Λq “ |a ´ b| ” a ` b “ v8pdetpγqq mod 2.

□

Definition 2.4. For any i P Z, put f1 “ p1, 0q, f2 “ p0, 1q and

v0 “ rO8f1 ‘ O8f2s, vi “

ˆ

π´i
8 0
0 1

˙

˝ v0 “ rO8π
i
8f1 ‘ O8f2s.

Then vi and vi`1 are adjacent. Put

ei “ pvi Ñ vi`1q.

We call vi and ei the i-th standard vertex and edge.
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We can show

(2.2)
StabGL2pK8qpv0q “ GL2pO8qKˆ

8,

StabGL2pK8qpe0q “ K0pπ8qKˆ
8,

where we put

K0pπ8q “

"ˆ

a b
c d

˙

P GL2pO8q

ˇ

ˇ

ˇ

ˇ

c P π8O8

*

.

Thus we obtain bijections [GN, (1.1)]

(2.3)
GL2pK8q{GL2pO8qKˆ

8 Ñ T0, γ ÞÑ γ ˝ v0,

GL2pK8q{K0pπ8qKˆ
8 Ñ T o

1 , γ ÞÑ γ ˝ e0.

Example 2.5. There are exactly q ` 1 vertices which are adjacent to
v0. Any such vertex is represented by the lattice which is the inverse
image of a line in Fqf1 ‘ Fqf2. The inverse image of the line Fqf2
represents v1. The other lines are Fqpf1 ` λf2q with some λ P Fq and
thus the rest of the vertices are

rO8pf1 ` λf2q ‘ O8π8f2s “

ˆ

π8 ´λ
0 1

˙

˝ v0 pλ P Fqq.

Example 2.6. Put

J “

ˆ

0 ´1
1 0

˙

P SL2pFqq.

Then J ˝ v0 “ v0. On the other hand, we have
ˆ

π8 0
0 1

˙ ˆ

0 1
´1 0

˙ ˆ

π8 0
0 1

˙

“

ˆ

0 π8

´π8 0

˙

P GL2pO8qKˆ
8,

which implies J ˝ v1 “ v´1 and J ˝ e0 “ ´e´1.

Example 2.7. There are exactly q ` 1 edges whose origin is v0. One
of these edges is e0. By Example 2.5, we have

ˆ

π8 ´λ
0 1

˙

˝ v0 “

ˆ

1 ´λ
0 1

˙

˝ v´1

and the other q edges are
ˆ

1 ´λ
0 1

˙

˝ p´e´1q “

ˆ

1 ´λ
0 1

˙

J ˝ e0 “

ˆ

1 0
λ 1

˙

˝ e0 pλ P Fqq.
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2.3. Limit points. A half-line is a sequence tviuiě0 of adjacent vertices
of T without backtracking. We say two half-lines tviuiě0, tv

1
iuiě0 are

equivalent if they are equal except finitely many vertices. An end of T
is an equivalence class of half-lines. The set of ends of T is denoted by
EndpT q, on which GL2pK8q acts naturally via the action ˝.

Lemma 2.8 ([FvdP1], (V. 1.12)). Let tMsusě0 be a family of O8-
lattices in V8 such that

(2.4) Ms Ě Ms`1, M0{Ms » O8{π8Os
8

for any s. Then
Ş

sě0Ms is a direct summand of the O8-module M0.

Proof. By the elementary divisor theorem, we can find a basis f s1 , f
s
2 of

M0 satisfying

M0 “ O8f
s
1 ‘ O8f

s
2 , Ms “ O8π

s
8f

s
1 ‘ O8f

s
2 .

Moreover, we may assume

(2.5) f s`1
2 ´ f s2 P ms

8f
s
1 .

Indeed, since f s`1
2 P Ms`1 Ď Ms we can write

f s`1
2 “ πs8xf

s
1 ` yf s2 , x, y P O8.

If y P m8, then we have f s`1
2 P π8M0, which contradicts (2.4). Thus

y P Oˆ
8 and replacing f s`1

2 with y´1f s`1
2 shows the claim.

Since Ms Ď V8 is closed, the sequence tf s2usě0 converges to some
element f2 P

Ş

sě0Ms. Moreover (2.5) yields f s`1
2 ´ f s2 P ms

8M0 and

f s`l
2 ´ f s2 P ms

8M0 for any integer l ě 0. By taking the limit we obtain

(2.6) f2 ´ f s2 P πs8M0 for any s.

In particular, Nakayama’s lemma implies that for any s ą 0, the ele-
ments f s1 , f2 form a basis of M0 satisfying

(2.7) Ms “ O8π
s
8f

s
1 ‘ O8f2.

We claim
Ş

sě0Ms “ O8f2. Indeed, for any f P
Ş

sě0Ms we write

f “ πs8xsf
s
1 ` ysf

s
2 , xs, ys P O8.

Then (2.6) gives f ´ ysf2 P πs8M0 and thus ys ´ ys`1 P πs8O8 for any
s ą 0. This implies that tysusě0 converges to some y P O8 satisfying
f “ yf2, which concludes the proof of the lemma. □
Definition 2.9. Let H be a half-line in T . Write H “ trMssusě0 with
lattices Ms satisfying (2.4). By Lemma 2.8, the K-subspace

W8 “ K8 bO8

˜

č

sě0

Ms

¸

Ď V8
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is one-dimensional and depends only on the end b represented by H.
Now we define

limpbq “ limpHq P P1pK8q

as the element corresponding to the line W8. Then the map lim is
GL2pK8q-equivariant.

Lemma 2.10 ([FvdP1], (V. 1.12)). The map lim defines a GL2pK8q-
equivariant bijection

lim : EndpT q Ñ P1pK8q.

Proof. For any element z P P1pK8q let W8 be the corresponding line
in V8. Let M0 be a lattice in V8. Then N0 “ W8 X M0 is a di-
rect summand of M0 of rank one. Put Ms “ N0 ` πs8M0. Then
dprM0s, rMssq “ s and trMssusě0 defines a half-line. Let bz be the end
it defines.

Now limpbzq is the element of P1pK8q that K8 bO8 N0 defines,
namely z. Conversely, for any b P EndpT q and z “ limpbq, take a fam-
ily of lattices tMsusě0 satisfying (2.4) and defining a half-line which
represents b. Then z P P1pK8q is defined by K8 bO8

Ş

sě0Ms and
(2.7) yields bz “ b. This concludes the proof. □

Definition 2.11. We say an end b P EndpT q is rational if limpbq P

P1pKq. The subset of EndpT q consisting of rational ends is denoted by
EndKpT q.

Example 2.12. Consider the half-lineH “ tviuiě0, where the standard
vertex vi is represented by the lattice Mi “ O8π

i
8f1 ‘ O8f2. Then

Ş

iě0Mi “ O8f2 and thus limpHq “ p0 : 1q “ 8.

3. Arithmetic subgroups and cusps

3.1. Arithmetic subgroups.

Definition 3.1. We say an A-submodule Y of K2 is an A-lattice of
K2 if it is a finite projective A-module satisfying K bA Y “ K2.

Let Y be any A-lattice of K2 and let n Ď A be any nonzero ideal.
Put

ΓpY q “ tγ P GL2pKq | γ˝Y “ Y u, ΓpY, nq “ tγ P ΓpY q | γ ” id mod nY u.

For Y “ A2, we have ΓpY q “ GL2pAq and ΓpY, nq “ Γpnq, where

Γpnq “

"

γ P GL2pAq

ˇ

ˇ

ˇ

ˇ

γ ”

ˆ

1 0
0 1

˙

mod n

*

.
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Definition 3.2. We say a subgroup Γ of GL2pKq is an arithmetic
subgroup (with respect to Y ) if there exist an A-lattice Y of K2 and a
nonzero ideal n Ď A satisfying

ΓpY, nq Ď Γ Ď ΓpY q.

Since ΓpY, nq is of finite index in ΓpY q, we see that the indices rΓpY q : Γs

and rΓ : ΓpY, nqs are both finite. Moreover, we have

detpΓq Ď Fˆ
q .

An arithmetic subgroup of GL2pKq with respect to Y “ A2 is called
a congruence subgroup.

Note that for any arithmetic subgroup Γ and any γ P GL2pKq, the
conjugate γ´1Γγ is also an arithmetic subgroup associated with the A-
lattice γ´1 ˝ Y . Moreover, since A “ Fqrts in our setting, any A-lattice
Y in K2 is free as an A-module and thus any arithmetic subgroup is
conjugate to a congruence subgroup.

Lemma 3.3. Let Y, Y 1 be any A-lattices of K2 and let n be any nonzero
ideal of A. Then there exists a nonzero ideal n1 Ď n of A satisfying
ΓpY 1, n1q Ď ΓpY, nq.

Proof. Replacing Y 1 by a scalar multiple, we may assume Y Ď Y 1.
Take any nonzero ideal m Ď n satisfying mY 1 Ď Y . Then we have
m2Y 1 Ď mY Ď nY . For any γ P ΓpY 1,m2q and y P Y Ď Y 1, this yields
γ ˝ y´ y P m2Y 1 Ď nY . In particular, this shows that Y is stable under
γ and γ´1. Hence we obtain γ P ΓpY, nq. □
Lemma 3.4 ([Böc], Proposition 3.14). Let Γ be any subgroup of GL2pKq.
Then Γ is an arithmetic subgroup if and only if there exists a nonzero
ideal n of A such that Γ contains Γpnq as a subgroup of finite index.

Proof. Suppose that Γ is an arithmetic subgroup. Take Y and n as in
Definition 3.2. By Lemma 3.3, for some nonzero ideals n1, n2 of A we
have

ΓpY, n2q Ď Γpn1q Ď ΓpY, nq Ď Γ.

Since rΓpY, nq : ΓpY, n2qs is finite, the subgroup Γpn1q is also of finite
index in Γ.

Conversely, suppose that Γpnq is a subgroup of Γ of finite index for
some nonzero ideal n of A. Define

Y “
č

γPΓ

γ ˝ A2.

Since γ ˝A2 “ A2 for any γ P Γpnq, the A-module Y is the intersection
of subsets γ ˝A2 for finitely many γ P Γ. Thus Y is an A-lattice in K2



12 SHIN HATTORI

satisfying Γ Ď ΓpY q. By Lemma 3.3, we can find a nonzero ideal n1 of A
satisfying ΓpY, n1q Ď Γpnq Ď Γ. Thus Γ is an arithmetic subgroup. □

Note that for any e P T o
1 , we have

(3.1) StabΓpeq “ StabΓpopeqq X StabΓptpeqq “ StabΓp´eq.

Moreover, for any g P GL2pKq and any vertex (resp. edge) s of T , we
have

(3.2) StabgΓg´1pg ˝ sq “ gStabΓpsqg´1.

Lemma 3.5. Let G be a subgroup of GL2pK8q satisfying | detpgq| “ 1
for any g P G. Let v P T0 and let M be an O8-lattice representing v.
Then we have StabGpvq “ StabGpMq.

Proof. Since we have StabGpvq Ě StabGpMq, it is enough to show the
reverse containment. Take any g P StabGpvq, so that g ˝ M “ xM for
some x P Kˆ

8. Then Lemma 2.3 yields

2v8pxq “ χpM,xMq “ χpM, g ˝ Mq “ v8pgq “ 0.

Hence x P Oˆ
8 and g ˝ M “ M . □

Lemma 3.6. Let Γ be any arithmetic subgroup of GL2pKq. For any
simplex s of T , the stabilizer subgroup StabΓpsq is finite.

Proof. By (3.1), we may assume s “ v P T0. LetM be an O8-lattice in
K2

8 representing the vertex v. Since detpΓq Ď Fˆ
q , Lemma 3.5 implies

StabΓpvq “ StabΓpMq.
We claim that StabΓpMq is a bounded subset of GL2pK8q. Indeed,

take any γ P GL2pK8q satisfying γ ˝M “ O2
8 and any m P Z satisfying

πm8γ, π
m
8γ

´1 P M2pO8q. Then, for any g P StabΓpMq, we have g “

γ´1hγ with some h P GL2pO8q and thus π2m
8 g P M2pO8q. This yields

the claim.
Since A “ Fqrts, we see that Γ is conjugate to a subgroup of GL2pAq.

By the claim, StabΓpvq is in bijection with a bounded subset of GL2pAq,
which is finite. This concludes the proof. □
Definition 3.7 ([Ser], p. 131). An arithmetic subgroup Γ of GL2pKq

is said to be p1-torsion free if any element of Γ of finite order has a
p-power order. Note that if Γ is p1-torsion free, then so is its conjugate.

3.2. Cusps of arithmetic subgroups and the quotient graph.

Definition 3.8. For any arithmetic subgroup Γ, let

CuspspΓq :“ ΓzP1pKq.

We refer to any element of CuspspΓq a cusp of Γ.
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Lemma 3.9. Let γ P GL2pK8q be any element satisfying detpγq P Fˆ
q .

Then the action of γ on T is without inversion. Namely, for any e P T o
1

we have γ ˝ e ‰ ´e.

Proof. Write e “ pv Ñ wq. If γ ˝ e “ ´e, then we have γ ˝ v “ w
and dpv, γ ˝ vq “ 1. By Lemma 2.3, this contradicts the assumption
detpγq P Fˆ

q . □

Let Γ be an arithmetic subgroup of GL2pKq. Then we have detpΓq Ď

Fˆ
q . By Lemma 3.9, the action of Γ on T is without inversion and thus

we can define the quotient graph ΓzT . Indeed, we define the set of
vertices of ΓzT as

pΓzT q0 :“ ΓzT0

and the set of oriented edges as

pΓzT qo1 :“ ΓzT o
1 .

For any res P ΓzT o
1 which is represented by e P T o

1 , we define

opresq :“ ropeqs, tpresq :“ rtpeqs, ´res :“ r´es.

Then the assumption of being without inversion implies ´res ‰ res for
any e P T o

1 and thus ΓzT is a graph.
Put G “ GL2pAq, which is an arithmetic subgroup of GL2pKq. De-

fine its subgroups

G0 “ GL2pFqq, Gn “

"ˆ

a b
0 d

˙ ˇ

ˇ

ˇ

ˇ

a, d P Fˆ
q , degpbq ď n

*

pn ě 1q.

We describe the quotient graph GzT , following [Ser, Ch. II, §1.6].

Lemma 3.10. (1) For any n ě 0 and m ą 0, the vertices vn and
vn`m are not equivalent modulo G.

(2) StabGpvnq “ Gn.
(3) G0 acts transitively on the set te P T o

1 | opeq “ v0u.
(4) For any n ě 1, the group Gn fixes en and acts transitively on

the set te P T o
1 | opeq “ vnuztenu.

Proof. Suppose that γ “

ˆ

a b
c d

˙´1

P G satisfies γ ˝ vn “ vn`m with

some integer m ě 0. Put Mn “ O8π
n
8f1 ‘ O8f2 representing the

vertex vn. Then we have γ ˝ Mn “ Mn`mπ
´h
8 with some h P Z. By

Lemma 2.3, we have

0 “ v8pdetpγqq “ χpMn, γ ˝ Mnq “ m ´ 2h

and m “ 2h.
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The condition γ ˝ Mn Ď Mn`2hπ
´h
8 implies

πn8pa, bq, pc, dq P O8π
n`h
8 p1, 0q ‘ O8π

´h
8 p0, 1q

and thus we obtain

degpaq ď ´h, degpbq ď n ` h, degpcq ď ´n ´ h, degpdq ď h.

For m ą 0, we have h ą 0 and a “ c “ 0, which is a contradiction.
This shows (1).

For m “ 0, we have h “ 0 and this implies a, d P Fq. Moreover, if
n “ 0 then c, d P Fq. For n ě 1, we have c “ 0 and degpbq ď n. Thus
(2) follows.

Since the set of O8-submodules of M0 of index q is naturally identi-
fied with P1pFqq, the group G0 acts transitively on it and (3) follows.

For (4), let n ě 1. Since Gn Ď Gn`1, the assertion (2) implies that
the group Gn fixes en “ pvn Ñ vn`1q. On the other hand, the action of
Gn on Mn{π8Mn factors through the homomorphism

Gn Ñ GL2pFqq,
ˆ

a b
0 d

˙

ÞÑ

ˆ

a bn
0 d

˙

where bn is the coefficient in degree n of b. The image of this homo-
morphism is the subgroup BpFqq of upper triangular matrices, and the
natural right action on P1pFqq of BpFqq fixes p0 : 1q and is transitive
on P1pFqqztp0 : 1qu. Thus we obtain (4). □

Lemma 3.10 also yields

(3.3)
StabGpe0q “ G0 X G1 “ BpFqq :“

ˆ

Fˆ
q Fq
0 Fˆ

q

˙

,

StabGpenq “ Gn X Gn`1 “ Gn pn ě 1q.

Lemma 3.11. Let T be the path consisting of vertices tvnuně0 and
edges t˘enuně0. Then the quotient graph GL2pAqzT is represented by
T .

Proof. Let π : T Ñ T 1 “ GL2pAqzT be the natural projection. By
Lemma 3.10 (1), the map π defines an isomorphism of T onto a sub-
graph T 1 of T 1. Since T and T 1 are connected, it is enough to show
that any edge ē P T 1 with opēq P T 1 is an edge of T 1.

Take any e P T o
1 satisfying πpeq “ ē. By assumption we have opeq “

γ ˝ v with some v P T and γ P G. Replacing e by γ´1 ˝ e, we may
assume opeq “ vn with some integer n ě 0. If n “ 0, then Lemma 3.10
(3) implies that e is equivalent to e0 modulo G0 and thus ē P T 1. If
n ě 1, then Lemma 3.10 (4) implies that e is equivalent to en or ´en´1

and thus ē P T 1. This concludes the proof. □
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Let Γ be a congruence subgroup of G “ GL2pAq. Consider the
natural projection

π : ΓzT Ñ GzT ,
which is a morphism of graphs. For any integer n ě 0, let

XnpΓzT q “ tv P pΓzT q0 | πpvq “ Gvnu,

YnpΓzT q “ te P pΓzT qo1 | πpeq “ Genu.

An element of these sets is called a vertex or an edge of type n [GN,
§1.4]. By Lemma 3.10 and (3.3), we have bijections

(3.4)
ΓzG{Gn Ñ XnpΓzT q, ΓgGn ÞÑ Γg ˝ vn,

ΓzG{pGn X Gn`1q Ñ YnpΓzT q, ΓgpGn X Gn`1q ÞÑ Γg ˝ en,

and thus they are finite sets. Since Gn X Gn`1 “ Gn for any n ě 1,
(3.4) yields a bijection

(3.5) on : YnpΓzT q Ñ XnpΓzT q, Γg ˝ en Ñ Γg ˝ vn.

Lemma 3.12. Let Γ be a congruence subgroup of G “ GL2pAq con-
taining Γpnq with some n P AzFq. Let d “ degpnq ě 1. Then the
natural map

(3.6) tn : YnpΓzT q Ñ Xn`1pΓzT q, Γg ˝ en Ñ Γg ˝ vn`1

is also a bijection for any n ě d. In particular, the subgraph of ΓzT
consisting of the vertices and the edges of type ě d is the union of
|XdpΓzT q| injective infinite paths.

Proof. Since ΓzG “ pΓpnqzΓqzpΓpnqzGq, the right action of Gn on ΓzG
factors through the natural homomorphism

pn : Gn Ñ ΓpnqzG » Fˆ
q SL2pA{pnqq Ď GL2pA{pnqq.

Since pnpGnq “ pn`1pGn`1q for any n ě d, the map tn is a bijection for
any n ě d. Combining it with (3.5), we see that the vertices and edges
of type ě d form |XdpΓzT q| injective infinite paths. This concludes the
proof. □

Lemma 3.13. Let Γ be an arithmetic subgroup of GL2pKq. Then the
quotient graph ΓzT is the union of a finite graph and finitely many
injective infinite paths.

Proof. Replacing Γ with its conjugate by an element of GL2pKq, we
may assume that Γ is a congruence subgroup. Then the lemma follows
from Lemma 3.12. □
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Definition 3.14. Let Γ be a congruence subgroup of GL2pAq contain-
ing Γpnq, where n P A and degpnq “ d ą 0. We denote by CuspspΓzT q

the finite set of injective infinite paths given in Lemma 3.12, so that
we have a natural identification

lim
ÝÑ
něd

XnpΓzT q Ñ CuspspΓzT q, Γg ˝ vn ÞÑ tΓg ˝ vnuněd,

where the direct limit is taken with respect to the bijection

tn ˝ o´1
n : XnpΓzT q Ñ Xn`1pΓzT q.

Lemma 3.15. Let Γ be a congruence subgroup of GL2pAq containing
Γpnq with some n P AzFq of degree d ą 0. Then there exists a natural
bijection

CuspspΓzT q Ñ ΓzEndKpT q, tΓg ˝ vnuněd ÞÑ Γrtg ˝ vnusně0.

In particular, composing the map lim of Lemma 2.10 we obtain a nat-
ural bijection

CuspspΓzT q Ñ ΓzEndKpT q » CuspspΓq.

Proof. Let

G8 “

"ˆ

a b
0 d

˙ ˇ

ˇ

ˇ

ˇ

a, d P Fˆ
q , b P A

*

.

Since the group GL2pAq acts transitively on P1pKq, Lemma 2.10 and
Example 2.12 yield a bijection

GL2pAq{G8 Ñ EndKpT q, gG8 ÞÑ rtg ˝ vnuně0s.

Since the proof of Lemma 3.12 shows that the natural map

ΓzGL2pAq{Gn Ñ ΓzGL2pAq{G8

is bijective for any n ě d, taking the direct limit yields the lemma. □

3.3. Euler–Poincaré characteristic. Let Γ be an arithmetic sub-
group of GL2pKq. For any v P T0 and e P T o

1 , by Lemma 3.6 we have
positive integers

|StabΓpvq|, |StabΓpeq|.

By (3.1) and (3.2), these numbers satisfy

|StabΓpvq| “ |StabΓpγ ˝ vq|, |StabΓpeq| “ |StabΓp˘γ ˝ eq|

for any γ P Γ. Thus we may consider the positive series

χ0pΓq “
ÿ

vPΓzT0

1

|StabΓpvq|
, χ1pΓq “

ÿ

ePΓzT o
1 {t˘1u

1

|StabΓpeq|
.
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For G “ GL2pAq, Lemma 3.11, Lemma 3.10 (2) and (3.3) yield

(3.7)

χ0pGq “
1

pq2 ´ 1qpq ´ qq
`

ÿ

ně1

1

pq ´ 1q2qn`1
,

χ1pGq “
1

qpq ´ 1q2
`

ÿ

ně1

1

pq ´ 1q2qn`1
,

which are both convergent.

Lemma 3.16. The series χ0pΓq and χ1pΓq are convergent.

Proof. By (3.2), replacing Γ with its conjugate we may assume that Γ
is a congruence subgroup. Put G “ GL2pAq. Then we have natural
surjections

ΓzT0 Ñ GzT0, ΓzT o
1 {t˘1u Ñ GzT o

1 {t˘1u

whose fibers have at most rG : Γs elements. Moreover, for any simplex
s of T , we have StabΓpsq Ď StabGpsq and

rStabGpsq : StabΓpsqs “ rStabGpsq : Γ X StabGpsqs

“ rΓStabGpsq : StabGpsqs ď rG : Γs,

which yields

1

|StabΓpsq|
“

rStabGpsq : StabΓpsqs

|StabGpsq|
ď

rG : Γs

|StabGpsq|
.

Hence we obtain
χipΓq ď rG : Γs2χipGq

and (3.7) implies the convergence for Γ. □
Definition 3.17. We define

χpΓq “
ÿ

vPΓzT0

1

|StabΓpvq|
´

ÿ

ePΓzT o
1 {t˘1u

1

|StabΓpeq|

and call it the Euler–Poincaré characteristic of Γ. By Lemma 3.16, this
series is absolutely convergent and

χpΓq “ χ0pΓq ´ χ1pΓq.

By (3.7), we have

(3.8) χpGL2pAqq “ ´
1

pq ´ 1q2pq ` 1q
.

Lemma 3.18. Let Γ1 be any arithmetic subgroup of GL2pKq which is
contained in Γ, so that Γ1 is of finite index in Γ. Then we have

χipΓ
1q “ rΓ : Γ1sχipΓq pi “ 0, 1q, χpΓ1q “ rΓ : Γ1sχpΓq.



18 SHIN HATTORI

Proof. It is enough to show the equality for χi. Replacing Γ by its
conjugate, we may assume Γ Ď GL2pAq. By Lemma 3.4, for some
nonzero ideal n Ď A we have Γ2 :“ Γpnq Ď Γ1. Then Γ2 are normal
both in Γ and Γ1. If the lemma holds for Γ2 Ď Γ and Γ2 Ď Γ1, then we
have

rΓ : Γ2sχipΓq “ χipΓ
2q “ rΓ1 : Γ2sχipΓ

1q,

from which we obtain χipΓ
1q “ rΓ : Γ1sχipΓq. Hence we may assume

Γ1 ◁ Γ.
Put X0 “ T0 and X1 “ T o

1 {t˘1u. Since Γ acts on T without in-
version, for any e P T o

1 and its image res in X1, we have StabΓpeq “

StabΓpresq.
Let Λi be a complete set of representatives of ΓzXi. For any γ, δ P Γ

and s P Xi, since Γ1 ◁ Γ we have

Γ1γs “ Γ1δs ô Γ1γs X Γ1δs ‰ H ô δ P γΓ1StabΓpsq.

This yields a decomposition

Xi “
ž

sPΛi

Γs “
ž

sPΛi

ž

γPΓ{Γ1StabΓpsq

Γ1γs,

where the subgroup Γ1StabΓpsq is also of finite index in Γ. Thus we
have

χipΓ
1q “

ÿ

sPΛi

ÿ

γPΓ{Γ1StabΓpsq

|StabΓ1pγsq|´1

“
ÿ

sPΛi

|StabΓpsq|´1
ÿ

γPΓ{Γ1StabΓpsq

|StabΓpsq|

|StabΓ1pγsq|
.

Since (3.2) yields |StabΓ1pγsq| “ |StabΓ1psq|, this equals

ÿ

sPΛi

|StabΓpsq|´1
ÿ

γPΓ{Γ1StabΓpsq

|StabΓpsq|

|StabΓ1psq|

“
ÿ

sPΛi

|StabΓpsq|´1rΓ : Γ1StabΓpsqsrStabΓpsq : StabΓ1psqs

“
ÿ

sPΛi

|StabΓpsq|´1rΓ : Γ1StabΓpsqsrStabΓpsq : Γ1 X StabΓpsqs

“
ÿ

sPΛi

|StabΓpsq|´1rΓ : Γ1StabΓpsqsrΓ1StabΓpsq : Γ1s

“ rΓ : Γ1s
ÿ

sPΛi

|StabΓpsq|´1 “ rΓ : Γ1sχipΓq.

This concludes the proof. □
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4. Discs and the Bruhat–Tits tree

4.1. Distinguished closed discs. Let L be a field equipped with a
complete non-Archimedean valuation | ´ | : L Ñ Rě0. We denote by
OL the ring of integers of L and by mL the maximal ideal of OL.

Definition 4.1. For any a P L and ρ P |Lˆ|, consider the following
subsets of P1pLq.

DLpa, ρq “ tx P L | |x´a| ď ρu, D1
Lpa, ρq “ tx P L | |x´a| ě ρuYt8u.

We refer to them closed discs in P1pLq. Moreover, we put

D˝
Lpa, ρq “ tx P L | |x´a| ă ρu, D1˝

L pa, ρq “ tx P L | |x´a| ą ρuYt8u.

We call them open discs in P1pLq. We also put

CLpa, ρq “ tx P L | |x ´ a| “ ρu.

We refer to a as a center of there discs and the circle. When L “ K8,
we often drop the subscript L as Dpa, ρq or D1pa, ρq.

We also write

DLp8, ρq :“ D1
Lp0, ρ´1q, D˝

Lp8, ρq :“ D1˝
L p0, ρ´1q.

Lemma 4.2. Let a, a1 P L and ρ, ρ1 P |Lˆ| satisfying ρ ě ρ1.

(1) DLpa, ρq X DLpa1, ρ1q ‰ H if and only if |a ´ a1| ď ρ. In this
case, we have DLpa1, ρ1q Ď DLpa, ρq.

(2) D˝
Lpa, ρq X D˝

Lpa1, ρ1q ‰ H if and only if |a ´ a1| ă ρ. In this
case, we have D˝

Lpa1, ρ1q Ď D˝
Lpa, ρq.

Proof. If |a´a1| ď ρ, then a1 P DLpa, ρq XDLpa1, ρ1q. Moreover, for any
z P DLpa1, ρ1q, we have

|z ´ a| “ |z ´ a1 ` pa1 ´ aq| ď maxtρ1, ρu “ ρ

and thus DLpa1, ρ1q Ď DLpa, ρq. Conversely, if |a´a1| ą ρ, then for any
z P DLpa1, ρ1q we have

|z ´ a| “ |z ´ a1 ` pa1 ´ aq| “ |a1 ´ a| ą ρ

and thus DLpa, ρq X DLpa1, ρ1q ‰ H, which shows (1). The assertion
(2) follows similarly. □

Lemma 4.3. Let a, a1 P L and ρ, ρ1 P |Lˆ|. If DLpa, ρq Ď DLpa1, ρ1q or
D1
Lpa, ρq Ě D1

Lpa1, ρ1q, Then ρ ď ρ1. In particular,

DLpa, ρq “ DLpa1, ρ1q or D1
Lpa, ρq “ D1

Lpa1, ρ1q ñ ρ “ ρ1.
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Proof. Suppose DLpa, ρq Ď DLpa1, ρ1q and ρ1 ă ρ. Take any x P L
satisfying |x ´ a| “ ρ. Then |a ´ a1| ď ρ1 ă ρ and x P DLpa, ρq Ď

DLpa1, ρ1q. Hence we have

ρ1 ě |x ´ a1| “ |x ´ a ` pa ´ a1q| “ |x ´ a| “ ρ,

which is a contradiction.
Suppose D1

Lpa, ρq Ě D1
Lpa1, ρ1q and ρ1 ă ρ. Taking the complement

we have D˝
Lpa, ρq Ď D˝

Lpa1, ρ1q. Take any x P L satisfying |x ´ a| “ ρ1.
Then |a ´ a1| ă ρ1 and x P D˝

Lpa, ρq Ď D˝
Lpa1, ρ1q. Hence we have

ρ1 ą |x ´ a1| “ |x ´ a ` pa ´ a1q| “ |x ´ a| “ ρ1,

which is a contradiction. □

Definition 4.4. Let L P tK8,C8u. For any a P K8 and ρ P |Kˆ
8| “

qZ, we refer to the closed discs in P1pLq.

DLpa, ρq “ tx P L | |x´a| ď ρu, D1
Lpa, ρq “ tx P L | |x´a| ě ρuYt8u

as distinguished closed discs in P1pLq.
The set of distinguished closed discs in P1pLq is denoted by DCDpLq.

Lemma 4.5. For any a, a1 P K8 and ρ, ρ1 P qZ, we have

Dpa, ρq Ď Dpa1, ρ1q ô DC8pa, ρq Ď DC8pa1, ρ1q,

D1pa, ρq Ď D1pa1, ρ1q ô D1
C8

pa, ρq Ď D1
C8

pa1, ρ1q.

Proof. Suppose Dpa, ρq Ď Dpa1, ρ1q. Then Lemma 4.3 yields ρ ď ρ1.
Since |a´a1| ď ρ1, by Lemma 4.2 (1) we obtain DC8pa, ρq Ď DC8pa1, ρ1q.

Suppose D1pa, ρq Ď D1pa1, ρ1q so that D˝pa, ρq Ě D˝pa1, ρ1q. Then
Lemma 4.3 yields ρ ě ρ1. Since |a ´ a1| ă ρ, by Lemma 4.2 (2) we
obtain D˝

C8
pa, ρq Ě D˝

C8
pa1, ρ1q and D1

C8
pa, ρq Ď D1

C8
pa1, ρ1q.

The other implications follow from

Dpa, ρq “ DC8pa, ρq X P1pK8q, D1pa, ρq “ D1
C8

pa, ρq X P1pK8q.

□

By Lemma 4.5, we have a well-defined bijection

DCDpK8q Ñ DCDpC8q, Dpa, ρq ÞÑ DC8pa, ρq, D1pa, ρq ÞÑ D1
C8

pa, ρq.

For any D P DCDpK8q, we call its image in DCDpC8q the extension
of D over C8.

Lemma 4.6. Let D1, D2 P DCDpK8q. Let D1,C8 and D2,C8 be their
extensions over C8. Then

D1 X D2 “ H ô D1,C8 X D2,C8 “ H.
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Proof. Suppose D1 X D2 “ H. Since 8 P D1pa, ρq, replacing D1 and
D2 if necessary we may assume

D1 “ Dpa1, ρ1q, D2 P tDpa2, ρ2q, D1pa2, ρ2qu

with some a1, a2 P K8 and ρ1, ρ2 P qZ.
Suppose D2 “ Dpa2, ρ2q. Then we have |a1 ´ a2| ą maxtρ1, ρ2u. If

z P D1,C8 X D2,C8 , then

|a1 ´ a2| “ |z ´ a1 ´ pz ´ a2q| ď maxtρ1, ρ2u,

which is a contradiction.
Suppose D2 “ D1pa2, ρ2q. Then a1 R D1pa2, ρ2q and |a1 ´ a2| ă ρ2. If

z P D1,C8 X D2,C8 , then

ρ1 ě |z ´ a1| “ |z ´ a2 ` pa2 ´ a1q| “ |z ´ a2| ě ρ2.

This forces ρ2 ď ρ1. Take any ϖρ2 P K8 satisfying |ϖρ2 | “ ρ2. Then
z “ a1 ` ϖρ2 P K8 satisfies

|z ´ a1| “ ρ2 ď ρ1, |z ´ a2| “ |a1 ´ a2 ` ϖρ2 | “ ρ2

and thus z P D1 X D2, which is a contradiction. Hence we obtain
D1,C8 X D2,C8 “ H.

Since D1 X D2 Ď D1,C8 X D2,C8 , the converse is clear. □
Consider the action of GL2pLq on P1pLq via the Möbius transforma-

tion as before.

Lemma 4.7. Let ρ P |Lˆ| and γ “

ˆ

a b
c d

˙

P GL2pLq. Let z P L.

Then we have

γpCLpz, ρqq “

$

&

%

CL

´

γpzq, ρ |ad´bc|
|cz`d|2

¯

p|cz ` d| ą ρ|c|q,

CL

´

a
c
, 1
ρ

|ad´bc|
|c|2

¯

p|cz ` d| ă ρ|c|q.

Proof. Write γ´1 “

ˆ

a1 b1

c1 d1

˙

“ 1
ad´bc

ˆ

d ´b
´c a

˙

.

First suppose |cz`d| ą ρ|c|. Then we have cz`d ‰ 0 and γpzq ‰ 8.
For any x P L with |x ´ z| “ ρ, it follows that

|pcx ` dq ´ pcz ` dq| “ |cpx ´ zq| “ ρ|c|, |cx ` d| “ |cz ` d| ą 0

and thus
ˇ

ˇ

ˇ

ˇ

ax ` b

cx ` d
´
az ` b

cz ` d

ˇ

ˇ

ˇ

ˇ

“
|ad ´ bc||x ´ z|

|cz ` d||cx ` d|
“

|ad ´ bc|

|cz ` d|2
|x ´ z|.

This yields

γpCLpz, ρqq Ď CL

ˆ

γpzq, ρ
|ad ´ bc|

|cz ` d|2

˙

.
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Since γ´1 satisfies

c1γpzq ` d1 “
1

cz ` d
, |c1γpzq ` d1| “

1

|cz ` d|
ą ρ

|ad ´ bc|

|cz ` d|2
|c1|,

applying the containment above to γ´1 shows

γ´1

ˆ

CL

ˆ

γpzq, ρ
|ad ´ bc|

|cz ` d|2

˙˙

Ď CLpz, ρq,

which yields the lemma for this case.
Next we suppose |cz ` d| ă ρ|c|. Since ad ´ bc ‰ 0, we have c ‰ 0

and γp´d
c
q “ 8 with

(4.1)

ˇ

ˇ

ˇ

ˇ

´
d

c
´ z

ˇ

ˇ

ˇ

ˇ

“
|cz ` d|

|c|
ă ρ.

For any x P L with |x ´ z| “ ρ, it follows that

|pcx ` dq ´ pcz ` dq| “ |cpx ´ zq| “ ρ|c|, |cx ` d| “ ρ|c|

and
ˇ

ˇ

ˇ

ˇ

ax ` b

cx ` d
´
a

c

ˇ

ˇ

ˇ

ˇ

“
|ad ´ bc|

|c||cx ` d|
“

1

ρ

|ad ´ bc|

|c|2
,

which gives

γpCLpz, ρqq Ď CL

ˆ

a

c
,
1

ρ

|ad ´ bc|

|c|2

˙

.

Since we have c1pa
c
q ` d1 “ 0, applying this to γ´1 we have

γ´1

ˆ

CL

ˆ

a

c
,
1

ρ

|ad ´ bc|

|c|2

˙˙

Ď CL

ˆ

´
d

c
, ρ

˙

.

By (4.1), we have

CL

ˆ

´
d

c
, ρ

˙

“ CLpz, ρq

and the reverse containment also follows. □

Lemma 4.8. Let ρ P |Lˆ| and γ “

ˆ

a b
c d

˙

P GL2pLq. Let z P L.

Then we have

γpDLpz, ρqq “

$

&

%

DL

´

γpzq, ρ |ad´bc|
|cz`d|2

¯

p|cz ` d| ą ρ|c|q,

D1
L

´

a
c
, 1
ρ

|ad´bc|
|c|2

¯

p|cz ` d| ď ρ|c|q.
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In particular, for any z P L and any ϖρ P Lˆ satisfying |ϖρ| “ ρ, we
have

DLpz, ρq “ γpDLp0, 1qq, γ “

ˆ

ϖρ z
0 1

˙

,

D1
Lpz, ρq “ γ1pDLp0, 1qq, γ1 “

ˆ

z ϖρ

1 0

˙

.

Proof. First suppose |cz ` d| ą ρ|c|. Then γpzq ‰ 8. By Lemma 4.7,
we have

γpDLpz, ρqq “ tγpzqu Y
ď

σPp0,ρsX|Lˆ|

γpCLpz, σqq

“ tγpzqu Y
ď

σPp0,ρsX|Lˆ|

CL

ˆ

γpzq, σ
|ad ´ bc|

|cz ` d|2

˙

“ DL

ˆ

γpzq, ρ
|ad ´ bc|

|cz ` d|2

˙

.

Next we suppose |cz ` d| ď ρ|c|. Since ad ´ bc ‰ 0, we have c ‰ 0
and γp8q “ a

c
. Moreover, for any ρ ă σ, we have |cz ` d| ă σ|c|. By

Lemma 4.7, we have

γpDLpz, ρqq “ γ
`

P1pLqzD1˝
L pz, ρq

˘

“ γ

¨

˝P1pLqz

¨

˝t8u Y
ď

σPpρ,`8qX|Lˆ|

CLpz, σq

˛

‚

˛

‚

“ P1pLqz

¨

˝

!a

c

)

Y
ď

σPpρ,`8qX|Lˆ|

γpCLpz, σqq

˛

‚

“ P1pLqz

¨

˝

!a

c

)

Y
ď

σPpρ,`8qX|Lˆ|

CL

ˆ

a

c
,
1

σ

|ad ´ bc|

|c|2

˙

˛

‚

“ P1pLqzD˝
L

ˆ

a

c
,
1

ρ

|ad ´ bc|

|c|2

˙

“ D1
L

ˆ

a

c
,
1

ρ

|ad ´ bc|

|c|2

˙

.

□
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Lemma 4.9. Let ρ P |Lˆ| and γ “

ˆ

a b
c d

˙

P GL2pLq. Let z P L.

Then we have

γpD1
Lpz, ρqq “

$

&

%

D1
L

´

γpzq, ρ |ad´bc|
|cz`d|2

¯

p|cz ` d| ě ρ|c|q,

DL

´

a
c
, 1
ρ

|ad´bc|
|c|2

¯

p|cz ` d| ă ρ|c|q.

Proof. First we suppose |cz`d| ě ρ|c|. Then cz`d ‰ 0 and γpzq ‰ 8.
Note that if ρ ą σ and |cz ` d| ě ρ|c|, then we have |cz ` d| ą σ|c|
even when c “ 0. By Lemma 4.7, we have

γpD1
Lpz, ρqq “ γ

`

P1pLqzD˝
Lpz, ρq

˘

“ γ

¨

˝P1pLqz

¨

˝tzu Y
ď

σPp0,ρqX|Lˆ|

CLpz, σq

˛

‚

˛

‚

“ P1pLqz

¨

˝tγpzqu Y
ď

σPp0,ρqX|Lˆ|

γpCLpz, σqq

˛

‚

“ P1pLqz

¨

˝tγpzqu Y
ď

σPp0,ρqX|Lˆ|

CL

ˆ

γpzq, σ
|ad ´ bc|

|cz ` d|2

˙

˛

‚

“ P1pLqzD˝
L

ˆ

γpzq, ρ
|ad ´ bc|

|cz ` d|2

˙

“ D1
L

ˆ

γpzq, ρ
|ad ´ bc|

|cz ` d|2

˙

.

Next suppose |cz ` d| ă ρ|c|. Then we have c ‰ 0 and γp8q “ a
c
.

By Lemma 4.7, we have

γpD1
Lpz, ρqq “ γ

¨

˝t8u Y
ď

σPrρ,`8qX|Lˆ|

CLpz, σq

˛

‚

“

!a

c

)

Y
ď

σPrρ,`8qX|Lˆ|

γpCLpz, σqq

“

!a

c

)

Y
ď

σPrρ,`8qX|Lˆ|

CL

ˆ

a

c
,
1

σ

|ad ´ bc|

|c|2

˙

“ DL

ˆ

a

c
,
1

ρ

|ad ´ bc|

|c|2

˙

.

□
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Lemma 4.10. The group GL2pK8q acts transitively on DCDpLq. More-
over, the extension map

DCDpK8q Ñ DCDpC8q, D ÞÑ DC8

is GL2pK8q-equivariant.

Proof. Lemma 4.8 and Lemma 4.9 imply that the image of a distin-
guished closed disc by any element of GL2pK8q is again a distinguished
closed disc, and also the action is transitive. Since the formulas in these
lemmas are independent of the choice of L P tK8,C8u, the GL2pK8q-
equivariance of the extension map follows. □

Lemma 4.11. The stabilizer in GL2pK8q of DLp0, 1q is K0pπ8qKˆ
8.

The same holds for D1
Lp0, qq.

Proof. By Lemma 4.10, we may assume L “ K8. Since P1pK8q “

Dp0, 1q \ D1p0, qq, it is enough to show the assertion on Dp0, 1q.

Take any γ “

ˆ

a b
c d

˙

P GL2pK8q. By Lemma 4.8 and Lemma 4.3,

we have γpDp0, 1qq “ Dp0, 1q if and only if

|d| ą |c|,
|ad ´ bc|

|d|2
“ 1 and

ˇ

ˇ

ˇ

ˇ

b

d

ˇ

ˇ

ˇ

ˇ

ď 1,

namely if γ P K0pπ8qKˆ
8. □

Corollary 4.12. We have a GL2pK8q-equivariant bijection

GL2pK8q{K0pπ8qKˆ
8 Ñ DCDpK8q, γ ÞÑ γpD1p0, qqq.

Lemma 4.13. The set DCDpK8q forms an open base of the topology
of P1pK8q.

Proof. Since the action on P1pK8q ofGL2pK8q is continuous, by Lemma
4.10 it is enough to consider an open neighborhood U of 0 “ p1 : 0q.
Let p : K2

8ztp0, 0qu Ñ P1pK8q be the natural projection. Since p´1pUq

is an open neighborhood of p1, 0q in K2
8ztp0, 0qu, we can find positive

integers m,n satisfying

p1, 0q P p1 ` πm8O8q ˆ πn8O8 Ď p´1pUq.

Then we have 0 P tx P K8 | |x| ď q´nu Ď U . □

Lemma 4.14. Let ν, ν 1 P Z and let a P K8.

(1) Suppose ν ą ´ν 1. If |a| ě qν, then Dpa, q´ν1

q Ď Dp8, q´νq.
(2) Suppose ν 1 ě 1. If |a| ď qν

1´1, then Dpa, q´ν1

q Ď Dp0, qν
1´1q.
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In particular, if ν 1 ě 1 ` |ν|, then there exists a finite subset Λ Ď K8

satisfying

tx P K8 | qν ď |x| ď qν
1´1u “

ž

aPΛ

Dpa, q´ν1

q.

Proof. Suppose ν ą ´ν 1 and |a| ě qν . If x P K8 satisfies |x| ă qν , then
|x ´ a| “ |a| ě qν ą q´ν1

and x R Dpa, q´ν1

q. This shows (1).
Suppose ν 1 ě 1 and |a| ď qν

1´1. For any x P Dpa, q´ν1

q, we have

|x| “ |x ´ a ` a| ď maxtq´ν1

, qν
1´1u ď qν

1´1,

which shows (2). If ν 1 ě 1`|ν|, then ν 1 ě 1 and ν 1 ą |ν| “ maxtν,´νu,
which yields ν ą ´ν 1 and ν 1 ą ν. Thus the last assertion follows from
(1) and (2). □
Lemma 4.15. Let U be a compact open subset of P1pK8q. Then there
exist a1, . . . , ar P K8 and ρ1, . . . , ρr, ρ P qZ satisfying

U “

"
šr

i“1Dpai, ρiq p8 R Uq,
šr

i“1Dpai, ρiq \ Dp8, ρq p8 P Uq.

Proof. By Lemma 4.13, we see that U is a finite union of elements of
DCDpK8q. If 8 R U , then we have U “

Ťs
i“1Dpai, ρiq with some

ai P K8 and ρi P qZ. Then Lemma 4.2 implies that by taking a
subcovering we can make this union disjoint.

Suppose 8 P U . We can find a sufficiently large ρ P qZ satisfying
Dp8, ρq Ď U . Then UzDp8, ρq “ U X Dp0, q´1ρ´1q is also compact,
and the lemma follows from the former part of the proof. □
Lemma 4.16. Let a1, . . . , ar and a

1
1, . . . , a

1
s be elements of P1pK8q and

let ρ1, . . . , ρr and ρ1
1, . . . , ρ

1
s be elements of qZ. Suppose that we have

the equality

U :“
r

ž

i“1

Dpai, ρiq “

s
ž

j“1

Dpa1
j, ρ

1
jq.

Then there exists a finite covering

U “
ž

λPΛ

Dpaλ, ρq

consisting of distinguished closed discs in P1pK8q such that it is a re-
finement of the two coverings above.

Proof. Take any ρ P qZ satisfying ρ ă mintρi, ρ
´1
i , ρ1

j, pρ
1
jq

´1, 1u for any

i, j. Then we have ρ ď 1
qρ

and

(4.2) b P Dpai, ρiq ñ Dpb, ρq Ď Dpai, ρiq
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even when b or ai is 8. If ai ‰ 8, then we can choose a finite subset
Λi Ď K8 satisfying

Dpai, ρiq “
ž

aPΛi

Dpa, ρq.

If ai “ 8, then the choice of ρ implies that for any b P Dp8, ρiqzDp8, ρq

we have

z P Dpb, ρq ñ z P Dp8, ρiqzDp8, ρq.

Thus we can find a finite Λ1
i Ď K8 satisfying

Dp8, ρiq “ Dp8, ρq \
ž

aPΛ1
i

Dpa, ρq.

In this case, we put Λi “ Λ1
i Y t8u.

Hence the covering

U “

r
ž

i“1

ž

aPΛi

Dpa, ρq

is a refinement of the first covering of U . For any i “ 1, . . . , r and
a P Λi, we have a P Dpa1

j, ρ
1
jq with some j “ 1, . . . , s. Then (4.2)

yields Dpa, ρq Ď Dpa1
j, ρ

1
jq. Thus it is also a refinement of the second

covering. □

4.2. Distinguished closed discs and edges in the tree.

Definition 4.17. For any e P T o
1 , let Hpeq be the set of half-lines

H in T such that H starts from opeq and passes tpeq. This means
H “ twnuně0 with e “ pw0 Ñ w1q. Define

Upeq “ tlimpHq | H P Hpequ.

Since the map lim is GL2pK8q-equivariant, we have

(4.3) γpUpeqq “ Upγ ˝ eq for any γ P GL2pK8q.

From the definition, for any v P T0 we obtain

(4.4) P1pK8q “ Upeq \ Up´eq, P1pK8q “
ž

opeq“v

Upeq.

Moreover, for any e P T o
1 we have

(4.5) Upeq “
ž

ope1q“tpeq, e1‰´e

Upe1q.
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Lemma 4.18 ([FvdP1], (V.1.13)).

Upe0q “ tpx1 : x2q P P1pK8q | |x1| ă |x2|u.

Via the identification (2.1), this implies

Upe0q “ tx P K8 | |x| ą 1u Y t8u “ D1p0, qq.

Proof. Let f1 “ p1, 0q, f2 “ p0, 1q be the standard basis of V8 and let

M0 “ O8f1 ‘ O8f2, M1 “ O8π8f1 ‘ O8f2

be representatives of the vertices v0 and v1, respectively, By the proof
of Lemma 2.8, an element of P1pK8q lies in Upe0q if and only if it
corresponds to the line K8 bO8 N with some direct summand N of the
O8-module M0 which is contained also in M1. It is the same as saying
N “ O8px1f1 ` x2f2q with some x1 P m8 and x2 P Oˆ

8. This yields
the lemma. □

Note that Lemma 4.18 and (4.3) yield Upeq P DCDpK8q for any
e P T o

1 .

Definition 4.19. We denote by Upeq P DCDpC8q the extension of
Upeq over C8. Namely,

Upeq “

"

tz P C8 | |z ´ a| ď ρu pUpeq “ Dpa, ρqq,
tz P C8 | |z ´ a| ě ρu Y t8u pUpeq “ D1pa, ρqq.

For any edges e, e1 P T o
1 , the definition of Upeq implies

(4.6) Upeq Ě Upe1q, Upeq Ě Upe1q if ope1q “ tpeq.

Moreover, by (4.3) and Lemma 4.10 we have

(4.7) γpUpeqq “ Upγ ˝ eq for any γ P GL2pK8q.

Lemma 4.20. The map e ÞÑ Upeq defines a GL2pK8q-equivariant bi-
jection T o

1 Ñ DCDpK8q.

Proof. By Lemma 4.18, this map sends e0 to D
1p0, qq. Then the lemma

follows from (2.3) and Corollary 4.12. □

Example 4.21. By Example 2.7 and Lemma 4.18, the closed discs
corresponding to edges whose origin is v0 are

Upe0q “ tx P K8 | |x| ě qu Y t8u,
ˆˆ

1 ´λ
0 1

˙

J

˙

pUpe0qq “ tx P K8 | |x ` λ| ď q´1u pλ P Fqq.
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Example 4.22. For the edge ei, we have

Upeiq “

ˆ

π´i
8 0
0 1

˙

pUpe0qq “ tx P K8 | |x| ě qi`1u Y t8u.

This yields

Up´eiq “ tx P K8 | |x| ď qiu.

Lemma 4.23. Let H “ twiuiě0 be a half-line in T and let e1
i “ pwi Ñ

wi`1q. Then we have

tlimpHqu “
č

iě0

Upe1
iq.

Proof. By Lemma 2.10, translating by the action of GL2pK8q we may
assume H “ tviuiPZě0 . Then we have limpHq “ 8 by Example 2.12.
Now Example 4.22 yields

Upeiq “ tz P C8 | |z| ě qi`1u Y t8u,

from which the lemma follows. □

Definition 4.24. For any e P T o
1 and a P K8, define

ρpeq “

"

ρ pUpeq “ Dpa, ρqq,
ρ´1 pUpeq “ D1pa, ρqq.

Note that when Upeq “ Dp8, ρq “ D1p0, ρ´1q we have ρpeq “ ρ.

By Lemma 4.3, we see that ρpeq depends only on e.

Lemma 4.25. Suppose that e, e1 P T o
1 satisfy Upeq Ě Upe1q. Let H “

twnuně0 P Hpeq and H 1 “ tw1
nuně0 P Hpe1q be half-lines satisfying

limpHq “ limpH 1q. Then we have e1 “ pwm Ñ wm`1q with some
m ě 0.

Proof. The assumption limpHq “ limpH 1q shows that H and H 1 agree
except finitely many vertices. On the other hand, let P 2 “ tw2

numn“0

be the unique path without backtracking which satisfies w2
0 “ w0 and

w2
m “ w1

0. Since T has no circuit, we have either H 1 “ twnuněm, orm ą

0 and H “ tw1
nuněm. In the former case, we have e1 “ pwm Ñ wm`1q.

In the latter case, any half-line which starts from w1
0 and does not pass

w1
1 defines an element of Upe1qzUpeq, which is a contradiction. □

Lemma 4.26. Suppose that e, e1
1, . . . , e

1
r P T o

1 satisfy

Upeq “

r
ž

i“1

Upe1
iq.
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Then for any half-line H “ twnuně0 P Hpeq, there exists unique i “

ipHq P t1, . . . , ru such that e1
i “ pwn Ñ wn`1q with some integer n ě 0.

Moreover, the map

Hpeq Ñ t1, . . . , ru, H ÞÑ ipHq

is surjective.

Proof. Take a unique i satisfying limpHq P Upe1
iq. By Lemma 4.25, we

see that H passes through e1
i.

Suppose that i, j P t1, . . . , ru satisfy the condition of the lemma.
Then H passes through both of e1

i and e1
j. Thus we obtain limpHq P

Upe1
iq X Upe1

jq, which is a contradiction.
Take any i P t1, . . . , ru and any x P Upe1

iq. Let H P Hpeq be the
half-line representing x P Upeq. By Lemma 4.25, the half-line H passes
through e1

i and ipHq “ i. This concludes the proof of the lemma. □

4.3. Explicit description of Upeq. For any integer n ě 0, let

T0pnq “ tv P T0 | dpv0, vq “ nu,

T o
1 pnq “ te P T o

1 | opeq P T0pnq, tpeq P T0pn ` 1qu.

Then we have

(4.8) P1pK8q “
ž

ePT o
1 pnq

Upeq

and by Example 4.22 the only disc appearing in this decomposition
and containing 8 is Upenq.

Definition 4.27. For any local O8-algebra R and a free R-module M
of rank two, we denote by P1pMq the set of direct summand of rank
one of the R-module M .

For the O8-lattice M0 “ O8f1 ‘ O8f2 in V8, write P1pO8q “

P1pM0q.

Consider the natural reduction map

pn :M0 Ñ M0{πn8M0.

Note that for any integers a, b P r0, ns, if |a´ b| “ n then pa, bq “ pn, 0q

or p0, nq. Now the definition of the distance shows that the map

(4.9) P1pM0{π
n
8M0q Ñ T0pnq, N̄ ÞÑ rp´1

n pN̄qs

is a GL2pO8q-equivariant bijection, and this induces a bijection

(4.10) P1pM0{πn`1
8 M0q Ñ T o

1 pnq

by sending N̄ to the unique edge e P T o
1 pnq satisfying tpeq “ rp´1

n`1pN̄qs.
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Definition 4.28. Let L be K8 or C8. For any rational number s ě 0,
put M0,L “ M0 bO8 OL and

rs,L : P1pLq “ P1pOLq Ñ P1pM0,L{měs
L M0,Lq.

We also write rs “ rs,K8 .

Definition 4.29. A subset Λ of P1pK8q is called a complete set of
representatives modulo πn8 if the restriction to Λ of the natural map

rn : P1pK8q “ P1pO8q Ñ P1pM0{π
n
8M0q,

is a bijection.

Definition 4.30. Let n ě 0 be an integer and let Λ be a complete
set of representatives modulo πn`1

8 . We denote the composite of the
inverse maps of rn`1 and (4.10) by

cΛ : T o
1 pnq Ñ Λ,

which is a bijection.

Lemma 4.31. Let n ě 0 be any integer and let Λ be any complete set
of representatives modulo πn`1

8 . For any e P T o
1 pnq, we have

cΛpeq P Upeq.

Proof. Write x :“ cΛpeq “ px1 : x2q with maxt|x1|, |x2|u “ 1. Let
f1 “ p1, 0q and f2 “ p0, 1q be the standard basis of V8 and let N “

O8px1f1 ` x2f2q, which is a direct summand of the O8-module M0.
By the definition of the map (4.10), if we write e “ pv Ñ wq then we

have w “ rN ` πn`1
8 M0s. For any j ě 0, put wj “ rN ` πj8M0s. Then

H “ twjujě0 is the unique half-line in T starting from v0 which satisfies
limpHq “ x. Since e is the unique element of T o

1 pnq satisfying tpeq “ w,
it follows that H passes through e. Since limpHq “ px1 : x2q “ x, we
have x P Upeq. □

Definition 4.32. For any e P T o
1 pnq, we denote by P pv0, eq “ twiu

n`1
i“0

be the unique path from v0 passing through e. This means that wi and
wi`1 are adjacent vertices for any i ď n, w0 “ v0 and e “ pwn Ñ wn`1q.
We denote by ipeq the maximal integer i ď n ` 1 satisfying wi “ vi.

Lemma 4.33. Let n ě 0 be any integer and let e P T o
1 pnq. Then we

have

ρpeq “

"

q2ipeq´n´1 pe ‰ enq,
q´n´1 pe “ enq,

ipeq “

"

maxt0, logq |cΛpeq|u pe ‰ enq,
n ` 1 pe “ enq.
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In particular, for any complete set of representatives Λ modulo πn`1
8

we have

Upeq “

"

DpcΛpeq, q2ipeq´n´1q pe ‰ enq,
Dp8, q´n´1q pe “ enq

and |cΛpeq| ď qn if e ‰ en.

Proof. Since the case of e “ en follows from Example 4.22, we may
assume e ‰ en. Then we have ipeq ď n. By Lemma 4.31 the last
assertion follows from the assertions on ρpeq and ipeq. It is enough to
show these assertions. For this we proceed by induction on n.

Suppose n “ 0. Since e ‰ e0, we have ipeq “ 0. Example 4.21 shows
Upeq “ Dpλ, q´1q for some λ P Fq and ρpeq “ q´1. Lemma 4.31 yields
|cΛpeq| “ 1 and the lemma follows for this case.

Assume that n ě 1 and the lemma holds for any element of T o
1 pn´1q.

Write P pv0, eq “ twiu
n`1
i“0 as above.

First suppose wn ‰ vn. Then ipeq ď n ´ 1 and the edge e1 “

pwn´1 Ñ wnq lies in T o
1 pn ´ 1q and is not equal to en´1. Hence 8 R

Upe1q and ipe1q “ ipeq. By the induction hypothesis we have Upe1q “

Dpa1, q2ipeq´nq with a1 “ cΛpe1q satisfying ipe1q “ maxt0, logq |a1|u. Then
(4.5) yields

Upe1q “ Dpa1, q2ipeq´nq “
ž

e2PT o
1 pnq, ope2q“wn

Upe2q.

Namely, Dpa1, q2ipeq´nq is the disjoint union of q distinguished closed
discs tDpal, ρlqu

q
l“1 with some al P Dpa1, q2ipeq´nq and ρl P qZ satisfying

ρl ă q2ipeq´n. This forces ρl “ q2ipeq´n´1 for any l.
By applying Lemma 4.31 to e2 “ e, we obtain Upeq “ Dpa, q2ipeq´n´1q

with a “ cΛpeq. Since Upeq Ď Upe1q, we have |a ´ a1| ď q2ipeq´n.
If |a1| ď 1 then ipe1q “ ipeq “ 0 and a P Dpa1, q´nq, which yields |a| ď

1 and maxt0, logq |a|u “ 0 “ ipeq. If |a1| ą 1, then |a1| “ qipe
1q “ qipeq.

Since ipeq ď n ´ 1, we have 2ipeq ´ n ă ipeq and |a| “ qipeq.
Next suppose wn “ vn, which implies en´1 “ pwn´1 Ñ wnq. Since

e ‰ en, we have ipeq “ n and (4.5) shows

tx P K8 | |x| “ qnu “ Upen´1qzUpenq “
ž

e2PT o
1 pnq, ope2q“wn, e2‰en

Upe2q.

Thus it is the disjoint union of q´1 distinguished closed discs tDpal, ρlqu
q´1
l“1

with some al P K8 and ρl P qZ satisfying ρl ă qn “ |al|. This forces
ρl “ qn´1 for any l. Since cΛpeq P Upeq by Lemma 4.31, we also obtain
|cΛpeq| “ qn “ qipeq. This concludes the proof of the lemma. □
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We give an example Λn of the complete set of representatives modulo
πn`1

8 . For any integer i P r0, ns we define Λi,n Ď K8 by

Λi,n “

"

Fq ` Fqπ8 ` ¨ ¨ ¨ ` Fqπn8 pi “ 0q,
Fˆ
q π

´i
8 ` Fqπ´i`1

8 ` ¨ ¨ ¨ ` Fqπn´2i
8 pi ą 0q

and put

Λn “ t8u \

n
ž

i“0

Λi,n Ď P1pK8q.

Lemma 4.34. For any integer n ě 0, the subset Λn is a complete set
of representatives modulo πn`1

8 .

Proof. Put O8,n`1 “ O8{πn`1
8 O8. Since we have

|Λn| “ |P1pM0{πn`1
8 M0q| “ qn`1 ` qn,

it is enough to show that the restriction to Λn of the map

rn : P1pK8q “ P1pO8q Ñ P1pM0{π
n
8M0q,

is surjective.
Let f1 “ p1, 0q and f2 “ p0, 1q. Take any N̄ P P1pM0{πn`1

8 M0q and
x1, x2 P O8 such that the image of x1f1`x2f2 inM0{π

n`1
8 M0 generates

N̄ .
If |x1| “ 1, then we may assume x1 “ 1 and x2 P Λ0,n, which implies

that x2 P Λ0,n satisfies rn`1pp1 : x2qq “ N̄ . If |x1| ď q´n´1, then we
may assume px1, x2q “ p0, 1q and rn`1p8q “ N̄ .

On the other hand, if |x1| P rq´n, q´1s, we may assume x1 “ πi8 with
some integer i P r1, ns and x2 P Oˆ

8. Note that for any a, b P Oˆ
8,

we have Oˆ
8,n`1pπ

i
8f1 ` af2q “ Oˆ

8,n`1pπ
i
8f1 ` bf2q if and only if a P

bp1 ` πn`1´i
8 O8q, which means a ” b mod πn`1´i

8 . This shows that we
may assume x2 P πi8Λi,n and thus rn`1pp1 : π´i

8 x2qq “ N̄ . □

4.4. Description of Upeq via projectivized closed discs. Let L be
K8 or C8.

Definition 4.35. For any α P P1pLq, its unimodular coordinate is
α “ pα1 : α2q with maxt|α1|, |α2|u “ 1.

Lemma 4.36. For any z P P1pC8q, the map

P1pLq Ñ Rě0, α ÞÑ |z, α| :“ |z1α2 ´ z2α1|

is well-defined and continuous, where z “ pz1 : z2q and α “ pα1 : α2q

are unimodular coordinates.



34 SHIN HATTORI

Proof. Since a unimodular coordinate is unique up to a scalar multiple
by Oˆ

L , we see that |z, α| is well-defined.
For the continuity, consider the natural map

g : L2ztp0, 0qu Ñ P1pLq.

Since the translation by the action of Lˆ on L2ztp0, 0qu is a homeo-
morphism, the continuous map g is open. Put

U1 “ Oˆ
L ˆ pOLzt0uq, U2 “ pOLzt0uq ˆ Oˆ

L .

For any i “ 1, 2, the map

wi : Ui Ñ Rě0, pα1, α2q ÞÑ |z1α2 ´ z2α1|

is continuous. For any open subset U Ď Rě0, we have

|z,´|´1pUq “ gpw´1
1 pUqq Y gpw´1

2 pUqq,

which is open. □
Definition 4.37. Let L be K8 or C8. For any α P P1pLq and any
ρ P qQ, let

DLpα, ρq “ tz P P1pLq | |z, α| ď ρu,

D˝
Lpα, ρq “ tz P P1pLq | |z, α| ă ρu.

We write DK8pα, ρq “ Dpα, ρq and D˝
K8

pα, ρq “ D˝pα, ρq.

Note that we have

α P D˝
Lpα, ρq Ď DLpα, ρq.

Lemma 4.38. Let s ě 0 be any rational number. Let α P P1pLq and
let ρ P qQ.

(1) the disc DLpα, ρq depends only on rs,Lpαq if ρ ě q´s.
(2) the disc D˝

Lpα, ρq depends only on rs,Lpαq if ρ ą q´s.

Proof. Take any α, β P P1pLq with unimodular coordinates α “ pα1 :
α2q and β “ pβ1 : β2q. Then rs,Lpαq “ rs,Lpβq if and only if

OL,spα1f1 ` α2f2q “ OL,spβ1f1 ` β2f2q.

This is the same as saying that there exists c P Oˆ
L satisfying

cα1 ” β1, cα2 ” β2 mod měs
L .

From this it follows that for any unimodular coordinate z “ pz1 : z2q
we have

|z1α2 ´ z2α1| ď ρ ô |z1β2 ´ z2β1| ď ρ pq´s ď ρq,

|z1α2 ´ z2α1| ă ρ ô |z1β2 ´ z2β1| ă ρ pq´s ă ρq.

This concludes the proof. □
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Lemma 4.39. For any α P P1pLq and any positive rational number
s ą 0, we have

DLpα, q´sq “ tz P P1pLq | rs,Lpzq “ rs,Lpαqu.

Proof. By Lemma 4.38, if z P P1pLq satisfies rs,Lpzq “ rs,Lpαq then we
have z P DLpz, q´sq “ DLpα, q´sq. Conversely, take any z P DLpα, q´sq.
Let z “ pz1 : z2q and α “ pα1 : α2q be unimodular coordinates. Then
we have z1α2 ´ z2α1 P měs

L . If |α1| “ 1, then the assumption s ą 0
implies |z1| “ 1 and

OL,spz1f1 ` z2f2q “ OL,spα1z1f1 ` α1z2f2q

“ OL,spα1z1f1 ` α2z1f2q “ OL,spα1f1 ` α2f2q,

which shows rs,Lpzq “ rs,Lpαq. The case of |α2| “ 1 can be treated
similarly. □

Corollary 4.40. Let s ą 0 be any positive rational number. For any
z, z1, z2 P P1pLq, we have

|z, z1|, |z1, z2| ď q´s ñ |z, z2| ď q´s.

Proof. Since s ą 0, Lemma 4.39 and the assumption show

rs,Lpzq “ rs,Lpz1q “ rs,Lpz2q,

which yields |z1, z2| ď q´s. □

Lemma 4.41. Let n ě 0 be any integer and let ρ P qQ X rq´n´1, q´nq.
For any integer i P r0, ns and any a P K8 with i “ maxt0, logq |a|u, we
have

DLpa, q2iρq “ DLpα, ρq, α “ p1 : aq.

Moreover, for any ρ ă 1 we have DLp8, ρq “ DLp8, ρq.

Proof. If i “ 0, then α “ p1 : aq is a unimodular coordinate. Since
ρ ă 1, if z “ pz1 : z2q is a unimodular coordinate then

|z1a ´ z2| ď ρ ô

ˆ

|z1| “ 1 and

ˇ

ˇ

ˇ

ˇ

z2
z1

´ a

ˇ

ˇ

ˇ

ˇ

ď ρ

˙

.

Since |a| ď 1, the condition | z2
z1

´ a| ď ρ implies | z2
z1

| ď 1 and |z1| “ 1.
This yields the lemma for this case.

If i P r1, ns, then |a| “ qi. Hence α “ pπi8, π
i
8aq is a unimodular

coordinate with |πi8a| “ 1 and for any unimodular coordinate z “ pz1 :
z2q we have

|z1pπ
i
8aq ´ z2pπ

i
8q| ď ρ ô

ˆ

|z1| “ q´i and

ˇ

ˇ

ˇ

ˇ

z2
z1

´ a

ˇ

ˇ

ˇ

ˇ

ď q2iρ

˙

.
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In the latter condition |z1| “ q´i is superfluous, since |a| “ qi and
ˇ

ˇ

ˇ

z2
z1

´ a
ˇ

ˇ

ˇ
ď q2iρ force | z2

z1
| “ qi, which yields |z2| “ 1 and |z1| “ q´i.

Thus the lemma follows also for this case.
Finally, for 8 “ p0 : 1q we have

|z1| ď ρ ô

ˆ

|z2| “ 1 and

ˇ

ˇ

ˇ

ˇ

z1
z2

ˇ

ˇ

ˇ

ˇ

ď ρ

˙

,

which yields the last assertion. □
Corollary 4.42. Let n ě 0 be an integer and let Λ be a complete set
of representatives modulo πn`1

8 . For any e P T o
1 pnq, we have

Upeq “ DpcΛpeq, q´n´1q, Upeq “ DC8pcΛpeq, q´n´1q.

Proof. Write cΛpeq “ px1 : x2q with a unimodular coordinate. As we
saw in the proof of Lemma 4.31, the direct summand N “ O8px1f1 `

x2f2q of M0 corresponds to a half-line starting v0 and passing through
e. In particular, we have tpeq “ rN ` πn`1

8 M0s.
Then x1 “ px1

1 : x1
2q P P1pK8q of unimodular coordinate lies in

Upeq if and only if the half-line starting from v0 corresponding to the
direct summand N 1 “ O8px1

1f1 ` x1
2f2q passes through tpeq, that is

N ` πn`1
8 M0 “ N 1 ` πn`1

8 M0. This is the same as saying rn`1pxq “

rn`1px
1q. By Lemma 4.39, this is equivalent to x1 P Dpx, q´n´1q, and

we obtain the first equality of the corollary.
By Lemma 4.33 and Lemma 4.41, we see that DpcΛpeq, q´n´1q is an

element of DCDpK8q and its extension over C8 is DC8pcΛpeq, q´n´1q.
This yields the second equality. □

5. Drinfeld upper half plane

We call
Ω “ P1pC8qzP1pK8q “ C8zK8

the Drinfeld upper half plane.

5.1. Coverings of Ω associated with vertices.

Definition 5.1. For any v P T0, define

Upvq “ P1pC8qz
ž

opeq“v

Upeq.

Example 5.2. By Example 4.21, we can write

Upv0q “ P1pC8qz

˜

ž

λPFq

DC8pλ, q´1q \ D1
C8

p0, qq

¸

“ tz P C8 | q´1 ă |z| ă q, |z ´ λ| ą q´1 for all λ P Fˆ
q u.



NOTES ON DRINFELD MODULAR FORMS 37

By (4.7), we have

γpUpvqq “ Upγ ˝ vq for any γ P GL2pK8q.

Lemma 5.3.

tγ P GL2pK8q | γpUpv0qq “ Upv0qu “ GL2pO8qKˆ
8.

Proof. Take any γ P GL2pK8q. Then γ stabilizes Upv0q if and only if
it stabilizes

š

λPFq
DC8pλ, q´1q \D1

C8
p0, qq. Since γ acts on DCDpC8q,

this is the same as saying that γ stabilizes the subset Sv0 of DCDpC8q

consisting of these discs.

Let γλ “

ˆ

λ 1
1 0

˙

. By Lemma 4.8, we have

DC8pλ, q´1q “

ˆ

π8 λ
0 1

˙

pDC8p0, 1qq

“

ˆ

π8 λ
0 1

˙ ˆ

0 1
π8 0

˙

pD1
C8

p0, qqq “ γλpD1
C8

p0, qqq.

By Corollary 4.12, we have the identification

Sv0 “

˜˜

ž

λPFq

γλK0pπ8q \ K0pπ8q

¸

Kˆ
8

¸

{K0pπ8qKˆ
8.

Now the bijection

GL2pO8q{K0pπ8q Ñ P1pFqq, γ ÞÑ γ

ˆ

1
0

˙

yields GL2pO8q “
š

λPFq
γλK0pπ8q \ K0pπ8q and we obtain

Sv0 “ GL2pO8qKˆ
8{K0pπ8qKˆ

8.

Thus the stabilizer agrees with GL2pO8qKˆ
8. □

Lemma 5.4.

Upvq X P1pK8q “ H.

Proof. Translating by the action of GL2pK8q, we may assume v “ v0.
Take any x P Upv0q X P1pK8q. Then x P K8. Since q

´1 ă |x| ă q, we
have |x| “ 1. Write x “

ř

iě0 aiπ
i
8 with ai P Fq and a0 ‰ 0. Then we

have |x ´ a0| ď q´1, which is a contradiction. □
Lemma 5.5. Let a, a1 P K8 and ρ, ρ1 P qZ.

(1) If Dpa, ρq Ľ Dpa1, ρ1q, then |a ´ a1| ď ρ and ρ ě qρ1.
(2) If D1pa, ρq Ľ Dpa1, ρ1q, then |a ´ a1| ě maxtρ, qρ1u.
(3) If D1pa, ρq Ľ D1pa1, ρ1q, then |a ´ a1| ď q´1ρ1 and ρ1 ě qρ.
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Proof. For (1), the assumption yields |a ´ a1| ď ρ and ρ ą ρ1, since
ρ ď ρ1 would imply Dpa, ρq Ď Dpa1, ρ1q. Since ρ, ρ1 P qZ, this forces
ρ ě qρ1.

For (2), the assumption means

D˝pa, ρq X Dpa1, ρ1q “ Dpa, q´1ρq X Dpa1, ρ1q “ H

and thus |a ´ a1| ą maxtq´1ρ, ρ1u, which forces |a ´ a1| ě maxtρ, qρ1u.
For (3), the assumption means Dpa, q´1ρq Ĺ Dpa1, q´1ρ1q and (1)

concludes the proof. □

Lemma 5.6. If e, e1 P T o
1 satisfy Upe1q Ĺ Upeq, then we have

P1pC8qzUp´e1q Ď Upeq.

Proof. Suppose Upeq “ Dpa, ρq and Upe1q “ Dpa1, ρ1q with some a, a1 P

K8 and ρ, ρ1 P qZ. Then Lemma 5.5 (1) yields |a ´ a1| ď ρ and ρ ě

qρ1. Since Up´e1q “ D1pa1, qρ1q, for any z P P1pC8qzUp´e1q we have
|z ´ a1| ă qρ1 and

|z ´ a| “ |z ´ a1 ` pa1 ´ aq| ď maxtqρ1, ρu “ ρ,

which gives z P Upeq.
Suppose Upeq “ D1pa, ρq and Upe1q “ Dpa1, ρ1q with some a, a1 P K8

and ρ, ρ1 P qZ. Then Lemma 5.5 (2) yields |a´a1| ě maxtρ, qρ1u. Since
Up´e1q “ D1pa1, qρ1q, for any z P P1pC8qzUp´e1q we have |z ´ a1| ă qρ1

and

|z ´ a| “ |z ´ a1 ` pa1 ´ aq| “ |a1 ´ a| ě maxtρ, qρ1u ě ρ.

Hence z P Upeq.
Suppose Upeq “ D1pa, ρq and Upe1q “ D1pa1, ρ1q with some a, a1 P K8

and ρ, ρ1 P qZ. Then Lemma 5.5 (3) yields |a ´ a1| ď q´1ρ1 and ρ1 ě

qρ. Since Up´e1q “ Dpa1, q´1ρ1q, for any z P P1pC8qzUp´e1q we have
|z ´ a1| ą q´1ρ1 and

|z ´ a| “ |z ´ a1 ` pa1 ´ aq| “ |z ´ a1| ą q´1ρ1 ě ρ,

which gives z P Upeq. This concludes the proof. □

Definition 5.7. For any e P T o
1 , put

U‹peq :“

"

D˝
C8

pa, q
1
3ρq pUpeq “ Dpa, ρqq,

D1˝
C8

pa, q´ 1
3ρq pUpeq “ D1pa, ρqq.

Then we have Upeq Ď U‹peq and P1pK8q X U‹peq “ P1pK8q X Upeq.

Lemma 5.8. U‹peq is independent of the choice of a center a of Upeq.
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Proof. Suppose Upeq “ Dpa, ρq “ Dpb, ρq with some a, b P K8 and ρ P

qZ, so that |a´ b| ď ρ. Then we have |a´ b| ă q
1
3ρ and D˝

C8
pa, q

1
3ρq “

D˝
C8

pb, q
1
3ρq.

Suppose Upeq “ D1pa, ρq “ D1pb, ρq with some a, b P K8 and ρ P qZ,

so that |a´b| ă ρ and thus |a´b| ď q´1ρ. Then we have |a´b| ă q´ 1
3ρ

and D1˝
C8

pa, q´ 1
3ρq “ D1˝

C8
pb, q´ 1

3ρq. This concludes the proof. □
Lemma 5.9. If e, e1 P T o

1 satisfy Upeq X Upe1q “ H, then U‹peq X

U‹pe1q “ H.

Proof. Since 8 P D1pa, ρq, we may assume Upeq “ Dpa, ρq with some
a P K8 and ρ P qZ.

Suppose Upe1q “ Dpa1, ρ1q with some a1 P K8 and ρ1 P qZ. If U‹peq X

U‹pe1q ‰ H, then for some z P C8 we have

|z ´ a| ď q
1
3ρ, |z ´ a1| ď q

1
3ρ1,

so that
|a ´ a1| “ |pz ´ a1q ´ pz ´ aq| ď q

1
3 maxtρ, ρ1u.

Since a, a1 P K8, it forces |a ´ a1| ď maxtρ, ρ1u and thus Dpa, ρq X

Dpa1, ρ1q ‰ H, which is a contradiction.
Suppose Upe1q “ D1pa1, ρ1q with some a1 P K8 and ρ1 P qZ. Then the

assumption Upeq X Upe1q “ H yields

Dpa, ρq Ď D˝pa1, ρ1q “ Dpa1, q´1ρ1q,

which implies |a ´ a1| ď q´1ρ1. Moreover, for any ϖρ P K8 with
|ϖρ| “ ρ, we have |ϖρ ` a ´ a1| ď q´1ρ1 and thus ρ ď q´1ρ1.

If z P C8 satisfies |z ´ a| ď q
1
3ρ, then we have

|z ´ a1| “ |z ´ a ` pa ´ a1q| ď maxtq
1
3ρ, q´1ρ1u ă q´ 1

3ρ1,

which yields U‹peq X U‹pe1q “ H. This concludes the proof. □
Lemma 5.10. If e ‰ e1 P T o

1 satisfy Upeq Ľ Upe1q, then Upeq Ě U‹pe1q.

Proof. First suppose Upeq “ Dpa, ρq and Upe1q “ Dpa1, ρ1q for some
a, a1 P K8 and ρ, ρ1 P qZ. Then Lemma 5.5 (1) yields |a ´ a1| ď ρ and

ρ ě qρ1. If z P C8 satisfies |z ´ a1| ď q
1
3ρ1, then we have

|z ´ a| “ |z ´ a1 ` pa1 ´ aq| ď maxtq
1
3ρ1, ρu “ ρ

and the lemma follows for this case.
Suppose Upeq “ D1pa, ρq and Upe1q “ Dpa1, ρ1q for some a, a1 P K8

and ρ, ρ1 P qZ. Then Lemma 5.5 (2) yields |a ´ a1| ě maxtρ, qρ1u. If

z P C8 satisfies |z ´ a1| ď q
1
3ρ1, then the inequality q

1
3ρ1 ă qρ1 yields

|z ´ a| “ |z ´ a1 ` pa1 ´ aq| “ |a1 ´ a| ě ρ
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and the lemma follows for this case.
Finally, suppose Upeq “ D1pa, ρq and Upe1q “ D1pa1, ρ1q for some

a, a1 P K8 and ρ, ρ1 P qZ. Then Lemma 5.5 (3) yields |a ´ a1| ď q´1ρ1

and ρ1 ě qρ. If z P C8 satisfies |z ´ a1| ě q´ 1
3ρ1, then the inequality

q´1ρ1 ă q
´1
3 ρ1 yields

|z ´ a| “ |z ´ a1 ` pa1 ´ aq| “ |z ´ a1| ě q´ 1
3ρ1 ě q

2
3ρ ą ρ,

and the lemma also follows for this case. □

Definition 5.11. For any v P T0, we define

U‹pvq :“ P1pC8qz

¨

˝

ž

opeq“v

U‹peq

˛

‚,

where the union on the right-hand side is disjoint by Lemma 5.9. By
Lemma 5.4, we have

(5.1) U‹pvq Ď Upvq, U‹pvq X P1pK8q “ Upvq X P1pK8q “ H.

Lemma 5.12.

Ω “
ď

vPT0

Upvq “
ď

vPT0

U‹pvq.

Proof. By (5.1), it is enough to show Ω Ď
Ť

vPT0 U
‹pvq.

Take any z P Ω and suppose z R U‹pvq for any v P T0. This means
that for any v P T0 there exists e P T o

1 with opeq “ v satisfying z P

U‹peq.
Fix w0 P T0. Then we can find e1

0 “ pw0 Ñ w1q P T o
1 satisfying

z P U‹pe1
0q. Similarly, we can find e1

1 “ pw1 Ñ w2q P T o
1 satisfying

z P U‹pe1
1q. Since Lemma 5.9 implies U‹pe1

0q X U‹p´e1
0q “ H, we have

w2 ‰ w0. Repeating this, we can find a half-line H “ twiuiě0 in T
satisfying z P U‹pe1

iq with e1
i “ pwi Ñ wi`1q for any i.

Since Upe1
iq Ľ Upe1

i`1q, Lemma 5.10 yields

Upe1
iq Ě U‹pe1

i`1q Ě Upe1
i`1q

for any i ě 0. By Lemma 4.23, we obtain

z P
č

iě1

U‹pe1
iq Ď

č

iě0

Upe1
iq “ tlimpHqu Ď P1pK8q,

which is a contradiction. □
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5.2. Annuli in P1pC8q associated with edges.

Definition 5.13. For any e P T o
1 , define

Vpeq “ Upopeqq X Uptpeqq.

Note Vpeq “ Vp´eq. By (4.6) and Definition 5.1, we obtain

Vpeq “ P1pC8qz pUpeq \ Up´eqq .

By (4.4), either of Upeq and Up´eq equals Dpa, ρq with some a P K8

and ρ P qZ, and the other is its complement D1pa, qρq in P1pK8q. Hence
we have

tUpeq,Up´equ “ tDC8pa, ρq, D1
C8

pa, qρqu.

Thus we obtain

Vpeq “ tz P C8 | ρ ă |z ´ a| ă qρu Ď Ω.

In particular, Vpeq is an open annulus defined over K8.

Example 5.14. By Example 4.22, we have

Vpe0q “ tz P C8 | 1 ă |z| ă qu.

Lemma 5.15. For any v, v1 P T0, we have

Upvq X Upv1q ‰ H ô dpv, v1q ď 1,

in which case Upvq “ Upv1q if v “ v1 and Upvq XUpv1q “ Vpeq “ Vp´eq
with e “ pv Ñ v1q otherwise.

Proof. It is enough to show Upvq XUpv1q “ H if dpv, v1q ě 2. Translat-
ing by the action of GL2pK8q, we may assume v “ v0 and v1 “ γ ˝ v0
with some γ P GL2pK8q. By the elementary divisor theorem and

(2.2), we may assume γ “

ˆ

πm8 0
0 πn8

˙

with some integers m,n ě 0. If

z P Upv0q and γpzq P Upv0q, then we have

q´1 ă |z| ă q and q´1 ă |πm´n
8 z| ă q,

which occurs only if ´1 ď m ´ n ď 1, namely dpv, v1q ď 1. This
concludes the proof. □
5.3. Irrational absolute value.

Definition 5.16. For any z P C8, define the irrational absolute value
of z by

|z|i “ inf
aPK8

|z ´ a|.

Note that for any z P C8 and a P K8 we have

(5.2) |a| ą |z| ñ |z ´ a| “ |a| ą |z|, |a| ă |z| ñ |z ´ a| “ |z|.
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Lemma 5.17. For any z P C8, we have |z|i “ |z´a| for some a P K8.

Proof. From (5.2), it follows that |z|i is the infimum of |z ´ a| on the
compact set ta P K8 | |a| ď |z|u, which is attained by some a in this
set. □
Lemma 5.18 ([DH], Proposition 5.2). Let z P C8.

(1) |z|i “ 0 if and only if z P K8.
(2) For any c P K8, we have |cz|i “ |c||z|i.
(3) If |z| R qZ, then |z|i “ |z|.
(4) Suppose |z| “ 1 and let z̄ P F̄q be the residue class of z. Then

|z|i “ |z| “ 1 if and only if z̄ R Fq.
Proof. The first assertion follows from Lemma 5.17, and the second
assertions is clear. For the third, if |z| R qZ then |z| ‰ |a| for any
a P K8. Thus we have |z ´ a| “ maxt|z|, |a|u ě |z| and the equality
holds for a “ 0. This implies |z|i “ |z|. For the fourth, take any
a P K8. If |z| “ |a|, then |z ´ a| ă |z| “ 1 if and only if z̄ “ ā P Fq.
Combined with (5.2), this shows the fourth assertion. □
Definition 5.19. For any r, s P Q, let

Ωr “ tz P C8 | |z|i ě q´ru, Ωr,s “ tz P Ωr | |z| ď qsu.

Then Lemma 5.18 (1) shows Ωr,s Ď Ωr Ď Ω and

Ωr “
ď

sPZě0

Ωr,s, Ω “
ď

rPZě0

Ωr “
ď

r,sPZě0

Ωr,s.

Lemma 5.20. For any rational numbers r, s with s ě ´r, there exists
a finite set J Ď K8 satisfying

$

’

’

’

&

’

’

’

%

P1pK8q “ D˝p8, q´sq \
ž

aPJ

D˝pa, q´rq,

Ωr,s “ P1pC8qz

˜

D˝
C8

p8, q´sq \
ž

aPJ

D˝
C8

pa, q´rq

¸

.

Proof. Since q´pr`1q ă q´r ď qs, for any a P Dp0, qsq Lemma 4.2 yields
Dpa, q´pr`1qq Ď Dp0, qsq. Thus we can find a finite set J Ď K8 satisfy-
ing

P1pK8q “ D˝p8, q´sq \
ž

aPJ

D˝pa, q´rq.

This means that for any b P K8 we have |b| ą qs or |a ´ b| ă q´r for
some a P J .

Since the union in the first equality of the lemma is disjoint, we have
|a| ď qs and |a´ a1| ě q´r for any a, a1 P J . Since s ě ´r, this implies
that the union in the second equality of the lemma is also disjoint.
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We show the latter equality in the lemma. It is clear that Ωr,s is
contained in the set on the right-hand side. Conversely, take any z P C8

satisfying |z| ď qs and |z ´ a| ě q´r for any a P J . Suppose |z|i ă q´r.
Then we have |z ´ b| ă q´r for some b P K8.

If |b| ą qs, then we have |z ´ b| “ |b| ą qs ě q´r, which contradicts
|z ´ b| ă q´r. Thus we obtain |a ´ b| ă q´r for some a P J and
|z ´ a| ă q´r, which is a contradiction. This shows |z|i ě q´r and
z P Ωr,s. □

5.4. Rigid analytic structure of Ω.

Lemma 5.21. Let α P P1pK8q and let Y be any affinoid variety over
C8. Let φ : Y Ñ P1

C8
ztαu be any morphism of rigid analytic varieties

over C8. Then we have

φpY q Ď P1
C8

zDC8pα, q´mq

for some integer m.

Proof. First suppose α “ 8, so that

DC8pα, q´mq “ tz P C8 | |z| ě qmu Y t8u.

Put A1 “ SpecpC8rT sq so that P1
C8

zt8u is its analytification. By the
maximal modulus principle on Y for the function φ˚pT q, there exists a
positive rational number s ą 0 satisfying

|φpyq| ď qs for any y P Y.

Then any integer m satisfying s ă m has the desired property.

Suppose α ‰ 8. We can find γ “

ˆ

a b
c d

˙

P SL2pK8q satisfying

γpαq “ 8. Then cα ` d “ 0. For any ρ P qQ satisfying ρ|ac| ă 1,
Lemma 4.8 yields

γpDC8pα, ρqq “ D1
C8

ˆ

a

c
,

1

ρ|c|2

˙

“ D1
C8

ˆ

0,
1

ρ|c|2

˙

“ DC8

`

8, ρ|c|2
˘

.

Applying the lemma for α “ 8 to the morphism

γ ˝ φ : Y Ñ P1
C8

ztαu Ñ P1
C8

zt8u,

we can find an integer m1 satisfying γpφpY qq X DC8p8, q´m1

q “ H.
Then the lemma holds for any integerm satisfying qm ě maxtqm

1

|c|2, |ac|u.
□

Lemma 5.22. For any r, s P Z, the subset Ωr,s is an admissible affi-
noid open subset of P1

C8
, and Ωr is an admissible open subset of P1

C8
.

Moreover, tΩr,susPZ is an admissible open covering of Ωr.
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Proof. Since Ωr,s Ď Ωr Ď A1
C8

and A1
C8

is an open subvariety of P1
C8

,
it is enough to show that Ωr,s and Ωr are admissible open subsets of
A1

C8
.

Note that tDC8p0, qsqusPZě0 is an admissible open covering of A1,an
C8

and Ωr,s “ Ωr X DC8p0, qsq. Since Ωr,s is a rational subdomain of
DC8p0, qsq, it is an affinoid variety over C8. The property pG2q of
[BGR, §9.1.2] implies that Ωr is an admissible open subset of A1

C8
, and

thus so is Ωr,s. The last assertion follows from [BGR, Definition 9.1.1/1
(iv)]. □
Lemma 5.23. Let Y be an affinoid variety over C8 and let φ : Y Ñ

P1
C8

be any morphism of rigid analytic varieties over C8 satisfying
φpY q Ď Ω. Then φ factors through Ωr,s with some integers r, s ě 0.

Proof. By Lemma 5.21, for any b P P1pK8q we can find a positive
integer nb satisfying

φpY q Ď P1
C8

zDC8pb, q´nbq.

Since P1pK8q is compact, there exists a finite subset I of P1pK8q sat-
isfying

P1pK8q “
ď

bPI

Dpb, q´nbq.

In particular, we have 8 P I.
Let n “ maxtnb | b P Iu ą 0 and let Jn,n be the finite subset of K8

as in Lemma 5.20 for pr, sq “ pn, nq. For any a P Jn,n Y t8u, we have
a P Dpb, q´nbq for some b P I. Then

$

&

%

|a ´ b| ď q´nb , D˝
C8

pa, q´nq Ď DC8pb, q´nbq pa, b ‰ 8q,
|a| ě qn8 , D˝

C8
pa, q´nq Ď DC8p8, q´n8q pa ‰ 8, b “ 8q,

D˝
C8

p8, q´nq Ď DC8p8, q´n8q pa, b “ 8q.

This yields

φpY q Ď
č

bPI

`

P1
C8

zDC8pb, q´nbq
˘

Ď Ωn,n,

which concludes the proof. □
Proposition 5.24. The subset Ω is an admissible open subset of P1

C8
.

Moreover,
tΩrurPZě0 , tΩr,sur,sPZě0

are admissible open coverings of Ω.

Proof. The definition of P1
C8

[BGR, Example 9.3.4/3] shows that

P1
C8

“ SppC8xzyq Y SppC8xwyq, w “ 1{z

is an admissible open covering. Let D be one of these closed unit discs.
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To show the proposition, by combining [BGR, Definition 9.1.1/1
(iii)(iv)] with the properties pG1q and pG2q of [BGR, §9.1.2], it is enough
to show that D X Ω is an admissible open subset of D and tD X

Ωr,sur,sPZě0 is an admissible open covering of DXΩ. Note that DXΩr,s

is a rational subdomain of D.
For this, consider a morphism φ : Y Ñ D of affinoid varieties over

C8 satisfying φpY q Ď D X Ω. By Lemma 5.23, there exist integers
r, s ě 0 such that φpY q Ď D X Ωr,s. Then [BGR, Proposition 9.1.4/2
(i)] implies that DXΩ is an admissible open subset of D, and combined
with this, [BGR, Proposition 9.1.4/2 (ii)] shows that tD X Ωr,sur,sPZě0

is an admissible open covering of D X Ω. □

Remark 5.25. Proposition 5.24 and the property pG2q of [BGR, §9.1.2]
imply that

tΩrurPZ, tΩr,sur,sPZ

are also admissible open coverings of Ω, since the coverings of the propo-
sition gives refinements of them.

Lemma 5.26. Let QpXq be an element of C8pXq without poles in Ω.
Then the function

Ω Ñ C8, z ÞÑ Qpzq

is an element of OpΩq.

Proof. Let S be the set of poles of QpXq. Then S is finite and the
scheme P1

C8
zS is locally of finite type over C8. From [Con, Theorem

5.2.1.1], we see that the analytification pP1
C8

zSqan is an open subvari-
ety of pP1

C8
qan which contains Ω as an open subvariety. Since Qpzq is

a rational function on P1
C8

zS, it defines a rigid analytic function on
pP1

C8
qan and thus that on Ω. □

Let γ “

ˆ

a b
c d

˙

P GL2pK8q. Since the action of γ on P1pC8q

preserves P1pK8q, we have a bijection

γ : Ω Ñ Ω, z ÞÑ
az ` b

cz ` d
.

Corollary 5.27. The map γ : Ω Ñ Ω is a morphism of rigid analytic
varieties over C8.

Proof. Since the map γ : P1pC8q Ñ P1pC8q is induced via (2.1) by the
morphism

P1
C8

Ñ P1
C8
, px : yq ÞÑ pdx ´ cy : ´bx ` ayq
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of projective schemes over C8, it is analytic. By Proposition 5.24, the
map γ : Ω Ñ Ω is the restriction of this map to an admissible open
subset and thus it is also analytic. □
5.5. Admissibility of the covering tUpvquvPT0.

Lemma 5.28. For any v P T0, the subset Upvq Ď Ω is an admissi-
ble open subset. Moreover, U‹pvq Ď Ω is an admissible affinoid open
subset.

Proof. Consider the admissible affinoid open covering tΩr,sur,sě0 of Ω.
For any r, s ě 0, the subset Ωr,s XUpvq is obtained by omitting finitely
many distinguished closed discs from the affinoid variety Ωr,s. Since
the centers of there discs do not lie in Ωr,s, each of these closed discs is
defined by

tx P Ωr,s | |fpxq| ď 1u or tx P Ωr,s | |fpxq| ě 1u

with some f P OpΩr,sq. Now [BGR, Proposition 9.1.4/5] implies that
Ωr,s X Upvq is an admissible open subset of Ωr,s. Then [BGR, §9.1.2,
pG1q] yields the lemma for Upvq.

For U‹pvq, by the same reason the subset Ωr,s X U‹pvq is a rational
subdomain of Ωr,s, which implies that U‹pvq is an admissible open
subset of Ω. On the other hand, U‹pvq is also obtained from a closed
disc in A1

C8
by omitting finitely many open discs of type D˝

C8
pa, ρq

with a P K8. This implies that U‹pvq is a rational subdomain of a
closed disc, which is an affinoid variety. This concludes the proof of
the lemma. □
Lemma 5.29. For any non-negative integers r, s ě 0, the set

tv P T0 | Upvq X Ωr,s ‰ Hu

is finite.

Proof. By Lemma 5.20, we can find a finite subset J Ď K8 satisfying

P1pK8q “ D˝p8, q´sq \
ž

aPJ

D˝pa, q´rq,

Ωr,s “ P1pC8qz

˜

D˝
C8

p8, q´sq \
ž

aPJ

D˝
C8

pa, q´rq

¸

.

Write

D˝p8, q´sq “ Dp8, q´s´1q “ Upe8q, D˝pa, q´rq “ Dpa, q´r´1q “ Upeaq

with some e8, ea P T o
1 , and put Λ “ te8, ea pa P Jqu.

Let v P T0. Suppose that there exist e P Λ and a half-line H “

twnuně0 P Hpeq satisfying v “ wm for some integer m ě 2. Put
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ẽ “ pwm´1 Ñ wmq. Since ẽ ‰ e “ pw0 Ñ w1q, we have Upẽq Ĺ Upeq.
Since op´ẽq “ v, Lemma 5.6 yields

Upvq Ď P1pC8qzUp´ẽq Ď Upeq and Upvq X Ωr,s “ H.

On the other hand, since we have

Up´e8q “
ž

aPJ

Upeaq,

Lemma 4.26 implies that any half-line in Hp´e8q meets ea for some
a P J . Let X be the set of vertices such that these half-lines pass
through up to tpeaq. Then X is finite and we have Upvq XΩr,s “ H for
any v R X. This concludes the proof. □

Proposition 5.30. The coverings

tUpvquvPT0 , tU‹pvquvPT0

of Lemma 5.12 are admissible open coverings of Ω.

Proof. By (5.1) and [BGR, §9.1.2, pG2q], it is enough to show the lemma
for tU‹pvquvPT0 . By Proposition 5.24 combined with [BGR, Definition
9.1.1/1 (iii)] and [BGR, §9.1.2, pG2q], we are reduced to showing that
for any integers r, s ě 0, the covering

(5.3) tΩr,s X U‹pvquvPT0

is an admissible open covering of the affinoid variety Ωr,s.
For this, Lemma 5.29 and U‹pvq Ď Upvq imply that the covering

(5.3) has a finite refinement. Since Ωr,s X U‹pvq is obtained from Ωr,s

by omitting finitely many open discs, it is a rational subdomain of
Ωr,s. Thus the covering (5.3) has a refinement which is an admissible
open covering of Ωr,s. Hence [BGR, §9.1.2, pG2q] implies that (5.3) is
admissible. □

6. Drinfed modular forms

6.1. Carlitz exponential.

Definition 6.1. We say an additive subgroup a of K is fractional
almost-ideal if it contains a fractional ideal b of A such that the index
ra : bs is finite [Böc, Definition 3.26]. When b can be chosen to be
nonzero, we say the fractional almost-ideal a is proper.

Lemma 6.2. Let a be any proper fractional almost-ideal of K. Then
there exists Na P Z such that for any integer r ď Na, we have

a ` tz P C8 | |z| ă q´ru “ K8 ` tz P C8 | |z| ă q´ru.
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Proof. Replacing a by a nonzero fractional ideal it contains, we may
assume that a is a nonzero fractional ideal of A. Take any b ‰ 0 P A
satisfying ba Ď A and any c ‰ 0 P ba. Put Na “ degpbq ´ degpcq. For
any integer r ď Na, we have ´r ` degpbq ´ degpcq ě 0 and thus

A`tz P C8 | |z| ă q´r`degpbq´degpcqu “ K8`tz P C8 | |z| ă q´r`degpbq´degpcqu.

Multiplying c, we obtain

cA ` tz P C8 | |z| ă q´r`degpbqu “ K8 ` tz P C8 | |z| ă q´r`degpbqu.

Since cA Ď ba, this yields

ba ` tz P C8 | |z| ă q´r`degpbqu “ K8 ` tz P C8 | |z| ă q´r`degpbqu.

Then the lemma follows by multiplying b´1. □

Definition 6.3. Let Λ Ď C8 be an additive subgroup. We say Λ is
a lattice in C8 if it is discrete, namely for any ρ P Rą0 the subset
ΛXDC8p0, ρq is finite. We say an Fq-subspace Λ Ď C8 is an Fq-lattice
if its underlying additive group is a lattice in C8.

For any lattice Λ Ď C8 and any ρ P Rą0, let

Λďρ “ tλ P Λ | |λ| ď ρu, Λăρ “ tλ P Λ | |λ| ă ρu.

Then Λďρ Ď Λďρ1

and Λăρ Ď Λăρ1

for any ρ ď ρ1.

Lemma 6.4. Any fractional almost-ideal a Ď K is a lattice in C8.

Proof. Let ρ P Rą0. Take b ‰ 0 P A satisfying ba Ď A. For any a P A
satisfying a

b
P a, we have a

b
P aďρ if and only if degpaq ď logqpρ|b|q,

which implies that aďρ is a finite set. This concludes the proof. □

For any lattice Λ Ď C8, define

eΛ,npXq :“ X
ź

λPΛďqnzt0u

ˆ

1 ´
X

λ

˙

P C8rXs.

Definition 6.5. For any ρ P qQ, put

Tρ “

#

ÿ

ně0

anX
n P C8rrXss

ˇ

ˇ

ˇ

ˇ

ˇ

lim
nÑ8

|an|ρn “ 0

+

.

Then the C8-algebra Tρ is an affinoid algebra with the ρ-Gauss norm

|f |ρ “ maxt|an|ρn | n ě 0u.

By [BGR, Proposition 6.1.5/2], the ρ-Gauss norm is a valuation on
Tρ.
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Lemma 6.6. Let pG, |´|q be a normed group [BGR, Definition 1.1.3/1].
Then a sequence tanuně0 in G is a Cauchy sequence if and only if

lim
nÑ8

|an ´ an`1| “ 0.

Proof. Suppose that tanuně0 is Cauchy. Then for any ε ą 0 there
exists N P Zě0 such that for any n,m ě N we have |an ´ am| ă ε. In
particular, for any n ě N we have |an ´ an`1| ă ε, which means the
equality of the lemma.

Conversely, suppose that we have limnÑ8 |an ´ an`1| “ 0. Then for
any ε ą 0, there exists N P Zě0 such that for any n ě N we have
|an ´ an`1| ă ε. In particular, for any m ě n, this yields

|an ´ am| “ |pan ´ an`1q ` pan`1 ´ an`2q ` ¨ ¨ ¨ ` pam´1 ´ amq| ă ε,

which means that tanuně0 is Cauchy. □
Lemma 6.7. For any lattice Λ Ď C8 and any ρ P qQ, the sequence
teΛ,npXquně0 converges in the affinoid algebra Tρ.

Proof. We show that teΛ,npXquně0 is a Cauchy sequence. Fix a positive

integer d ě logq ρ. For any λ P ΛzΛďqd , we have
ˇ

ˇ

ˇ

ˇ

X

λ

ˇ

ˇ

ˇ

ˇ

ρ

“
ρ

|λ|
ă 1,

ˇ

ˇ

ˇ
1 ´

z

λ

ˇ

ˇ

ˇ

ρ
“ 1.

Thus for any positive integer n ě d we have

|eΛ,npXq|ρ “ |eΛ,dpXq|ρ

ź

aPΛďqnzΛďqd

ˇ

ˇ

ˇ

ˇ

1 ´
X

a

ˇ

ˇ

ˇ

ˇ

ρ

“ |eΛ,dpXq|ρ.

On the other hand, for any integers n, n1 satisfying n1 ě n ě d, we
have

|eΛ,n1pXq ´ eΛ,npXq|ρ “ |eΛ,npXq|ρ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ź

λPΛďqn
1
zΛďqn

ˆ

1 ´
X

λ

˙

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ρ

ă |eΛ,dpXq|ρq
d´n.

Since limnÑ8 q
d´n “ 0, the lemma follows from Lemma 6.6. □

Definition 6.8. For any lattice Λ Ď C8 and any ρ P qQ, consider the
limit

lim
nÑ8

eΛ,npXq

in the affinoid algebra Tρ. Since for any ρ ă ρ1 the natural map Tρ Ñ Tρ1

is continuous, the limit is independent of the choice of ρ and defines an
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element

expΛpXq P
č

ρPqQ

Tρ “: C8ttXuu “ OpA1,an
C8

q,

where C8ttXuu is the ring of entire series (that is, series of infinite
radius of convergence). We call expΛpXq the Carlitz exponential for
the lattice Λ.

Note that expΛpXq has the constant term zero and the linear term
X.

For any z P C8 satisfying |z| ď ρ, the map

Tρ Ñ C8, fpXq ÞÑ fpzq

is well-defined and continuous. This implies

expΛpzq “ lim
nÑ8

eΛ,npzq.

Lemma 6.9. We have

expΛpX ` Y q “ expΛpXq ` expΛpY q.

Moreover, if Λ is an Fq-lattice, then we also have

expΛpcXq “ c expΛpXq for any c P Fq
and expΛpXq can be written as

expΛpXq “ X `
ÿ

ną0

anX
qn , an P C8.

Proof. Take any integer n ě 0. Since eΛ,npXq is separable and the set
of roots of eΛ,npXq in C8 is the additive subgroup Λďqn of C8, [Gos2,
Theorem 1.2.1] implies that eΛ,npXq is additive. Moreover, if Λ is an
Fq-lattice, then Λďqn Ď C8 is an Fq-subspace and by [Gos2, Corollary
1.2.2] we see that eΛ,npXq is Fq-linear. Then the lemma follows by
taking the limit. □

Lemma 6.10. Let ρ P Qą0. Let fpXq P C8rrXss be a rigid analytic
function on DC8p0, ρq satisfying fp0q “ 0. Let σ “ |f |sup, the supre-
mum norm on DC8p0, ρq. Note that σ P Qě0 by the maximum modulus
principle. Then we have

fpDC8p0, ρqq “ DC8p0, σq, fpD˝
C8

p0, ρqq “ D˝
C8

p0, σq.

Proof. By composing f with the isomorphism of rigid analytic varieties

DC8p0, 1q » DC8p0, ρq, x ÞÑ ϖx

with ϖ P C8 satisfying |ϖ| “ ρ, we may assume ρ “ 1.
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Let us show the first equality. Since |fpxq| ď σ for any x P DC8p0, 1q,
we have fpDC8p0, 1qq Ď DC8p0, σq. Conversely, take any y P DC8p0, σq.
Write

fpXq “
ÿ

ně1

anX
n, an P C8

and consider its Newton polygon. By [BGR, Corollary 5.1.4/6], we
have σ “ maxt|an| | n ě 1u. Thus the Newton polygon of fpXq ´ y
has at least one segment of slope ď 0, which corresponds to an element
x P DC8p0, 1q satisfying fpxq “ y. This yields the first equality.

For the second equality, take any x P D˝
C8

p0, 1q. Let b be the y-
intercept of the tangent line of the Newton polygon of slope ´v8pxq.
Then we have v8pfpxqq ě b, which implies fpD˝

C8
p0, 1qq Ď D˝

C8
p0, σq.

By inspecting the Newton polygon, it also follows that if |y| ă σ, then
any x P DC8p0, 1q with fpxq “ y satisfies |x| ă 1. This concludes the
proof. □

Definition 6.11. For any lattice Λ Ď C8 and any ρ P Rą0, we put

σΛ,ρ :“ ρ
ź

0‰aPΛăρ

ρ

|a|
.

Then we have σΛ,ρ ě ρ.

Lemma 6.12. For any lattice Λ Ď C8 and any ρ P qQ, we have

σΛ,ρ “ supt| expΛpzq| | z P DC8p0, ρqu.

In particular, if ρ ě ρ1 then σΛ,ρ ě σΛ,ρ1.

Proof. By [BGR, Proposition 6.1.5/5], the supremum norm of expΛpXq

onDC8p0, ρq coincides with | expΛpXq|ρ, which is equal to limnÑ8 |eΛ,npXq|ρ
by continuity.

Take any positive integer n ě logq ρ. Note that |1 ´ X
λ

|ρ “ 1 for any
λ P ΛzΛďρ. Since the ρ-Gauss norm is a valuation, we have

|eΛ,npXq|ρ “ ρ
ź

0‰λPΛďρ

ˇ

ˇ

ˇ

ˇ

1 ´
X

λ

ˇ

ˇ

ˇ

ˇ

ρ

“ ρ
ź

0‰λPΛăρ

ˇ

ˇ

ˇ

ˇ

1 ´
X

λ

ˇ

ˇ

ˇ

ˇ

ρ

ź

λPΛ, |λ|“ρ

ˇ

ˇ

ˇ

ˇ

1 ´
X

λ

ˇ

ˇ

ˇ

ˇ

ρ

“ ρ
ź

0‰λPΛăρ

ρ

|λ|
“ σΛ,ρ.

By taking the limit, the equality of the lemma follows. If ρ ě ρ1, then
we have DC8p0, ρq Ě DC8p0, ρ1q, which yields the last assertion. □
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Corollary 6.13. For any lattice Λ Ď C8 and any ρ P qQ, we have

expΛpDC8p0, ρqq “ DC8p0, σΛ,ρq, expΛpD˝
C8

p0, ρqq “ D˝
C8

p0, σΛ,ρq.

Proof. This follows from Lemma 6.10 and Lemma 6.12. □
Lemma 6.14. For any lattice Λ Ď C8, the sequence of additive groups

0 // Λ // C8

expΛ // C8
// 0

is exact.

Proof. First we show KerpexpΛq “ Λ. For any λ P Λ, we have eΛ,npλq “

0 for all n ě logqp|λ|q and thus expΛpλq “ 0. Conversely, for any
z P C8zΛ we have eΛ,npzq ‰ 0 for all n. As in the proof of Lemma
6.7, we can show that the absolute value |eΛ,npzq| is stable for any n
satisfying |z| ă qn. This yields expΛpzq ‰ 0.

On the other hand, since σΛ,ρ ě ρ we have limρÑ8 σΛ,ρ “ 8. Thus
Corollary 6.13 implies that expΛ is surjective. This concludes the proof.

□
Definition 6.15. Let Ga “ SpecpC8rXsq be the additive group. We
denote by C the Drinfeld module of rank one defined by the homomor-
phism of Fq-algebras

ΦC : A Ñ EndpGaq, t ÞÑ pX ÞÑ tX ` Xqq

and call it the Carlitz module. For any a P A, we write ΦC
a pXq :“

ΦCpaq˚pXq.

Definition 6.16. We fix once and for all a pq´ 1q-st root of ´t in C8

and put

π̄ :“ p´tq
q

q´1

ź

ně1

p1 ´ t1´qnq´1.

We call π̄ the Carlitz period.
Note that π̄A is an Fq-lattice in C8. We define

eCpXq :“ expπ̄ApXq “ π̄ expApπ̄´1Xq.

Proposition 6.17. For any a P A, we have

π̄ expApaXq “ ΦC
a pπ̄ expApXqq

in the ring C8ttXuu.

Proof. By [Gos2, Proposition 3.3.1], we have

eCpaXq “ ΦC
a peCpXqq,

from which we obtain

π̄ expApaXq “ eCpaπ̄Xq “ ΦC
a peCpπ̄Xqq “ ΦC

a pπ̄ expApXqq.

□
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6.2. Quotient by a discrete group action. LetK be a field equipped
with a complete non-Archimedean valuation | ´ | : K Ñ Rě0. Let B
be an affinoid algebra over K and let G be a finite group which acts
on the K-affinoid variety SppBq from the left. Write the induced right
action of g P G on B as b ÞÑ b|g. We denote by

BG :“ tb P B | b|g “ b for any g P Gu

the subring of G-invariants in B.

Lemma 6.18. (1) The ring BG is an affinoid algebra over K and
the map BG Ñ B is finite.

(2) Let π : SppBq Ñ SppBGq be the natural morphism of affinoid
varieties. Then it is a G-invariant surjection such that for any
x P SppBq the fiber π´1pπpxqq agrees with the G-orbit of x.

(3) The map π induces a bijection

GzSppBq Ñ SppBGq.

(4) For any x P SppBq and y P SppBGq, we denote by B^
x and

pBGq^
y their complete local rings at x and y, respectively. Then

the natural map

pBGq^
y Ñ p

ź

πpxq“y

B^
x qG

is an isomorphism of K-algebras.
(5) For any affinoid subdomain SppCq Ď SppBGq, we have a natural

isomorphism C Ñ pBbBG CqG. In particular, the natural mor-
phism of sheaves OSppBGq Ñ pπ˚OSppBqq

G is an isomorphism.

Proof. The assertion (1) follows from [BGR, Proposition 6.3.3/3]. Since
the map BG Ñ B is a finite injection, we see that π is surjective. Then
[Sta, Lemma 15.110.8] yields (2), which implies (3).

Consider the exact sequence of BG-modules

(6.1) 0 // BG // B //
ś

gPGB,

where the last map is given by b ÞÑ pb|g´bqgPG. For any flat BG-algebra
C, this induces the exact sequence

0 // C // B bBG
C //

ś

gPG pB bBG
Cq .

Hence we see that the natural map

C Ñ pB bBG
Cq

G

is an isomorphism. By [BGR, Proposition 7.2.2/1], this yields (5).
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Moreover, for any y P SppBGq, applying this to C “ pBGq^
y we obtain

an isomorphism

pBGq^
y Ñ

`

B bBG
pBGq^

y

˘G
.

Since BG-algebra B is finite, Hensel’s lemma gives a natural isomor-
phism of pBGq^

y -algebras

B bBG
pBGq^

y »
ź

πpxq“y

B^
x ,

from which (4) follows. This concludes the proof. □

Lemma 6.19 ([Dri], Proposition 6.4). Let SppCq Ď SppBq be an affi-
noid subdomain which is stable under the action of G. Then, via the
natural map SppCGq Ñ SppBGq, the affinoid variety SppCGq is an affi-
noid subdomain of SppBGq.

Proof. Consider the natural commutative diagram of affinoid varieties

SppCq
j //

πC
��

SppBq

πB
��

SppCGq
j̄

// SppBGq,

where j is an open immersion. By [BGR, Corollary 8.2.1/4], it is
enough to show that j̄ is an open immersion.

By Lemma 6.18 (3), on the underlying sets the map j̄ can be identi-
fied with the natural map GzSppCq Ñ GzSppBq. Since SppCq Ď SppBq

is G-stable, it follows that j̄ is injective.
On the other hand, let y P SppCGq and y1 “ j̄pyq. By Lemma 6.18

(2), the injection j induces a bijection π´1
C pyq Ñ π´1

B py1q. By [BGR,
Proposition 7.2.2/1 (ii)], this gives a G-equivariant isomorphism of K-
algebras

j˚ :
ź

πBpx1q“y1

B^
x1 Ñ

ź

πCpxq“y

C^
x .

Then Lemma 6.18 (4) shows that the natural map pBGq^
y1 Ñ pCGq^

y

is an isomorphism. Now [BGR, Proposition 7.3.3/5] concludes the
proof. □

Lemma 6.20 ([Dri], §6, B). Let Z be a separated rigid analytic variety
over K and let ϕ : SppBq Ñ Z be a morphism of rigid analytic varieties
over K which is G-invariant. Then there exists a unique morphism
ψ : SppBGq Ñ Z satisfying ϕ “ ψ ˝ π.
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Proof. Write X “ SppBq and Y “ SppBGq. By Lemma 6.18, the
morphism π : X Ñ Y is defined by a pair of a surjection between un-
derlying sets and an injection OY Ñ π˚OX . This gives the uniqueness
of ψ.

Let us show the existence of ψ. Let Z “
Ť

iPI Zi be an admissible
affinoid open covering, so that Xi :“ ϕ´1pZiq is a G-stable admissible
open subset of X and tXiuiPI forms an admissible open covering of
X. By [BGR, Proposition 9.1.4/2 (ii)], the latter covering has a finite
subcovering.
Since Z is separated, the diagonal map ∆Z : Z Ñ Z ˆ Z is a closed

immersion and the cartesian diagram

Xi

��

� � // X
ϕ //

pid,ϕq

��

Z

∆Z

��
X ˆ Zi

� � // X ˆ Z
ϕˆid

// Z ˆ Z

implies that Xi is an affinoid variety on which G acts from the left.
Write Xi “ SppBiq. Consider the natural finite surjection

πi : Xi “ SppBiq Ñ SppBG
i q “: Yi.

Since Xi is an affinoid subdomain of X, Lemma 6.19 implies that Yi is
an affinoid subdomain of Y and we have a commutative diagram

(6.2) Xi “ SppBiq
πi //

� _

��

Yi “ SppBG
i q

� _

��
X “ SppBq π

// Y “ SppBGq.

Since Xi is G-stable, Lemma 6.18 (2) gives Xi “ π´1pYiq. Since the
covering tXiuiPI of X has a finite subcovering, we see that tYiuiPI covers
Y and has a finite subcovering. In particular, the latter covering is an
admissible open covering of Y .

Since ϕ is G-invariant, the map ϕ˚ : OpZiq Ñ Bi factors through
the subring BG

i and thus we have a morphism ψi : Yi Ñ Zi satisfying
ϕ|Xi

“ ψi ˝ πi.
Now we claim ψi|YiXYj “ ψj|YiXYj for any i, j P I. Note that Yi X Yj

is an affinoid subdomain of Y . By Lemma 6.18 (5), the morphism
π´1pYi X Yjq Ñ Yi X Yj is identified with the quotient of the affinoid
variety π´1pYi X Yjq by G. Since the map on their affinoid algebras is
injective, it is an epimorphism in the category of K-affinoid varieties.
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Moreover, the commutative diagram (6.2) and Xi “ π´1pYiq yield

π´1
i pYi X Yjq “ π´1pYi X Yjq “ π´1

j pYi X Yjq.

Thus we obtain

ψi|YiXYj ˝ π|π´1pYiXYjq “ ϕ|π´1pYiXYjq “ ψj|YiXYj ˝ π|π´1pYiXYjq.

Since π|π´1pYiXYjq : π´1pYi X Yjq Ñ Yi X Yj is an epimorphism of K-
affinoid varieties, the claim follows.

Therefore, by [BGR, Proposition 9.3.3/1] we can glue the morphisms
ψi to obtain a morphism of rigid analytic varieties ψ : Y Ñ Z satisfying
ϕ “ ψ ˝ π. This concludes the proof of the lemma. □

Definition 6.21. Let X be a separated rigid analytic variety over K.
Let Γ be a group which acts on X from the left. We say that the
action of Γ on X is discrete if there exist an admissible affinoid open
covering X “

Ť

iPI Xi and an action of Γ on I satisfying the following
conditions.

(1) For any γ P Γ and i P I, we have γpXiq “ Xγpiq.
(2) For any i P I, the subgroup

Γi “ tγ P Γ | γpXiq “ Xiu “ StabΓpiq

is finite.
(3) (a) If γ R Γi, then Xi X Xγpiq “ H.

(b) For any i, j P I, the subset

Γi,j “ tγ P Γ | Xi X γpXjq ‰ Hu

is finite.
(4) For any i P I, the subset

ΓXi :“
ď

γPΓ

γpXiq

is an admissible open subset of X, and the covering tγpXiquγPΓ

is its admissible open covering.

Let X, Γ and tXiuiPI satisfy the conditions of Definition 6.21. Then
for any i, j P I, we have

(6.3) Γj,i “ tγ´1 | γ P Γi,ju.

Moreover, the group Γi acts on Γi,j from the left, and the group Γj acts
on Γi,j from the right.

Let π : X Ñ Y :“ ΓzX be the quotient map. We will give Y a
structure of a rigid analytic variety over K.



NOTES ON DRINFELD MODULAR FORMS 57

Lemma 6.22. For any i, j P I, the natural map π : X Ñ Y induces
bijections

ΓizXi Ñ πpXiq, Γi X ΓjzXi X Xj Ñ πpXi X Xjq.

Proof. Let x, x1 P Xi. If γ P Γ satisfies γpxq “ x1, then x1 P Xi X Xγpiq

and thus γ P Γi. This concludes the proof. □

Write Xi “ SppBiq. Define a structure of an affinoid variety over K
on Yi :“ πpXiq via the bijection

ρi : SppBΓi
i q » ΓizSppBiq “ ΓizXi

π
Ñ πpXiq “ Yi,

where the first arrow is the natural bijection of Lemma 6.18 (3). Then
the natural map Xi Ñ πpXiq is identified with the underlying map of
the affinoid morphism associated with the natural inclusion BΓi

i Ñ Bi.
Note that the rigid analytic structure on πpXiq depends on the choice
of i P I.

On the other hand, since X is assumed to be separated, for any
i, j, k P I we see that XiXXj and XiXXjXXk are affinoid subdomains
of Xi. Write

Xi X Xj “ SppBi,jq, Xi X Xj X Xk “ SppBi,j,kq,

so that Bi,j “ Bj,i. Note that the affinoid subdomain Xi X Xj Ď Xi

is stable under the action of Γi X Γj. Then we have a commutative
diagram of affinoid varieties

(6.4) SppBi,jq //

��

SppB
ΓiXΓj

i,j q

ιi,j

��

SppBiq // SppBΓi
i q.

Lemma 6.23. The map ιi,j : SppB
ΓiXΓj

i,j q Ñ SppBΓi
i q is an open im-

mersion.

Proof. By Lemma 6.22, the map ιi,j is injective. Take any y P SppB
ΓiXΓj

i,j q

and write z “ ιi,jpyq. Choose x P XiXXj Ď Xi lying over y. By Lemma
6.18 (4), we have natural isomorphisms between complete local rings

pBΓi
i q^

z Ñ

˜

ź

wPΓix

B^
i,w

¸Γi

, pB
ΓiXΓj

i,j q^
y Ñ

¨

˝

ź

wPpΓiXΓjqx

B^
i,j,w

˛

‚

ΓiXΓj

.

By [BGR, Proposition 7.3.3/5], it is enough to show that the natural

map pBΓi
i q^

z Ñ pB
ΓiXΓj

i,j q^
y is an isomorphism.
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Put Γipxq :“ StabΓi
pxq and pΓi X Γjqpxq :“ StabΓiXΓj

pxq. Then we
have a commutative diagram of complete local rings

pB^
i,xqΓipxq //

��

`
ś

wPΓix
B^
i,w

˘Γi

��

pB^
i,j,xqpΓiXΓjqpxq //

´

ś

wPpΓiXΓjqxB
^
i,j,w

¯ΓiXΓj

,

where horizontal arrows are isomorphisms. Since SppBi,jq is an affinoid
subdomain of SppBiq, the natural map B^

i,x Ñ B^
i,j,x is an isomorphism.

Thus we are reduced to showing Γipxq “ pΓi X Γjqpxq.
Since pΓi X Γjqpxq Ď Γipxq, it is enough to show the reverse con-

tainment. Let γ P Γi satisfy γpxq “ x. Since x P Xj and x “ γpxq P

Xj XXγpjq, Definition 6.21 (3) yields γ P Γj and γ P pΓi XΓjqpxq. This
concludes the proof. □

Consider the natural bijection

ρi,j : SppB
ΓiXΓj

i,j q » Γi X ΓjzSppBi,jq “ Γi X ΓjzXi X Xj
π

Ñ πpXi X Xjq,

so that ρi,j “ ρj,i. We have a commutative diagram of sets

(6.5) SppBi,jq //

��

SppB
ΓiXΓj

i,j q

ιi,j

��

„

ρi,j // πpXi X Xjq

��
SppBiq // SppBΓi

i q „

ρi // πpXiq,

where the composites of horizontal arrows are π and the right vertical
arrow is the natural inclusion. Then Lemma 6.23 and [BGR, Corollary
8.2.1/4] imply that πpXi X Xjq is an affinoid subdomain of πpXiq via
the affinoid map ιi,j.

For any i P I, define an equivalence relation „i on I by

j „i k ô πpXi X Xjq “ πpXi X Xkq.

Though the rigid analytic structure on πpXi X Xjq depends on the
choice of a representative of the class of j, the universality of affi-
noid subdomains implies that it is unique up to a unique isomorphism.
Namely, for any j, k P I satisfying j „i k, we have a unique isomor-

phism ηi,j,k : SppB
ΓiXΓj

i,j q Ñ SppBΓiXΓk
i,k q which makes the following
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diagram commutative.

SppB
ΓiXΓj

i,j q
ιi,j //

ηi,j,k ≀
��

SppBΓi
i q

SppBΓiXΓk
i,k q

ιi,k

88rrrrrrrrrrr

By the uniqueness, for any j, k, l in the same class, we have

(6.6) ηi,j,k “ ηi,l,k ˝ ηi,j,l.

Thus we may fix one of these mutually compatible rigid analytic struc-
tures. For this, fix a complete set of representatives Ipiq of the quotient
set I{„i. For any j P I, let ji P Ipiq be the unique element satisfying
j „i ji. We consider πpXi X Xjq as an affinoid variety via ιi,ji , so that

the affinoid ring of πpXiXXjq is B
ΓiXΓji
i,ji

. Then it follows that the map
ρi,j can be extended to an isomorphism of affinoid varieties satisfying
the commutative diagram

SppB
ΓiXΓji
i,ji

q
ρi,ji

„
//

ηi,ji,j ≀
��

πpXi X Xjq

SppB
ΓiXΓj

i,j q.

ρi,j

88ppppppppppp

By (6.6), this shows that for any j, k P I satisfying j „i k, we also have
the commutative diagram

(6.7) SppB
ΓiXΓj

i,j q
ρi,j //

ηi,j,k ≀
��

πpXi X Xjq

SppBΓiXΓk
i,k q.

ρi,k

77pppppppppppp

Lemma 6.24. For any i, j, k P I, the subset πpXi X Xj X Xkq is an
affinoid subdomain of πpXiq such that all affinoid maps into πpXiXXjX

Xkq are represented by an open immersion SppB
ΓiXΓjXΓk

i,j,k q Ñ SppBΓi
i q.

Proof. This follows similarly to Lemma 6.23. □

As before, by choosing one of the mutually compatible rigid analytic
structures on πpXi X Xj X Xkq as an affinoid subdomain of πpXiq, we
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obtain a commutative diagram of affinoid varieties

(6.8) SppB
ΓiXΓjXΓk

i,j,k q

��

ρi,j,k

„
// πpXi X Xj X Xkq

��
SppB

ΓiXΓj

i,j q ρi,j

„ // πpXi X Xjq,

where the left vertical arrow is induced by the natural map B
ΓiXΓj

i,j Ñ

B
ΓiXΓjXΓk

i,j,k and the underlying map of the right vertical arrow is the
natural inclusion.

Lemma 6.25. For any i, j P I, we have

Yi,j :“ πpXiq X πpXjq “
ž

γPΓizΓi,j{Γj

πpXi X Xγpjqq.

In particular, Yi,j is an affinoid subdomain of Yi “ πpXiq.

Proof. First note that

πpXiqXπpXjq “ πpXiXΓXjq “
ď

γPΓ

πpXiXXγpjqq “
ď

γPΓi,j

πpXiXXγpjqq.

Moreover, for any γ P Γi,j, the set πpXi X Xγpjqq depends only on the
image of γ in ΓizΓi,j{Γj.

Let γ, δ P Γi,j. If πpXi X Xγpjqq X πpXi X Xδpjqq ‰ H, then we can
find x P Xi X Xγpjq, x

1 P Xi X Xδpjq and µ P Γ satisfying µpxq “ x1.
Then x1 P Xi X Xδpjq X Xµpiq X Xµγpjq, so that µ P Γi and µγ P δΓj.
This yields γ P ΓiδΓj and thus πpXi X Xγpjqq “ πpXi X Xδpjqq. Hence
we obtain the claimed decomposition. The last assertion follows from
[BGR, Proposition 7.2.2/9]. □

For any i, j P I and γ P Γi,j, consider the isomorphism of affinoid
varieties

γ´1 : Xi X Xγpjq Ñ Xj X Xγ´1piq.

Since Γγ´1piq “ γ´1Γiγ and Γγpjq “ γΓjγ
´1, this induces an isomor-

phism of affinoid varieties

γ´1 : SppB
ΓiXΓγpjq

i,γpjq
q Ñ SppB

ΓjXΓγ´1piq

j,γ´1piq q.

Hence, there exists a unique isomorphism of affinoid varieties

θi,j,γ : πpXi X Xγpjqq Ñ πpXj X Xγ´1piqq
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that makes the following diagram commutative:

πpXi X Xγpjqq
θi,j,γ // πpXj X Xγ´1piqq

SppB
ΓiXΓγpjq

i,γpjq
q

γ´1
//

ρi,γpjq ≀

OO

SppB
ΓjXΓγ´1piq

j,γ´1piq q.

ρj,γ´1piq≀

OO

Then the uniqueness yields

(6.9) θ´1
i,j,γ “ θj,i,γ´1 .

Since the composite of ρi,γpjq with the natural map SppBi,γpjqq Ñ SppB
ΓiXΓγpjq

i,γpjq
q

is π, it follows that θi,j,γ “ id on the level of underlying sets.

Lemma 6.26. For any i, j P I and γ P Γ, the following diagram is
commutative.

SppBΓi
i q

γ´1

// SppB
Γγ´1piq

γ´1piq q

SppB
ΓiXΓγpjq

i,γpjq
q

ιi,γpjq

OO

γ´1
// SppB

Γγ´1piq
XΓj

γ´1piq,j q

ιγ´1piq,j

OO

In particular, for any γ P Γi we have j „i γpjq and ηi,γpjq,j “ γ´1.

Proof. Since the natural map SppBi,γpjqq Ñ SppB
ΓiXΓγpjq

i,γpjq
q is an epimor-

phism in the category of affinoid varieties, by (6.4) the lemma follows
from the commutative diagram

SppBiq
γ´1

// SppBγ´1piqq

SppBi,γpjqq
?�

OO

γ´1
// SppBγ´1piq,jq.

?�

OO

□

Lemma 6.27. For any i, j P I, the morphism θi,j,γ depends only on
the class of γ in the coset space ΓizΓi,j{Γj.
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Proof. Take any γ P Γi,j, µ P Γi and ν P Γj. Put δ “ µγν. By Lemma
6.26 and (6.7), we have the commutative diagram of affinoid varieties

πpXi X Xδpjqq πpXj X Xδ´1piqq

SppB
ΓiXΓδpjq

i,δpjq
q

δ´1
//

ρi,δpjq

OO

µ´1

��

SppB
ΓjXΓδ´1piq

j,δ´1piq q

ρj,δ´1piq

OO

SppB
ΓiXΓγpjq

i,γpjq
q

γ´1
//

ρi,γpjq

66

SppB
ΓjXΓγ´1piq

j,γ´1piq q.

ν´1

OO
ρj,γ´1piq

hh

This yields θi,j,δ “ θi,j,γ . □
Since the set Γi,j is finite, the disjoint union of Lemma 6.25 is an

admissible open covering of the affinoid variety Yi,j. Hence, by (6.3)
and Lemma 6.27 we obtain an isomorphism of affinoid varieties

θi,j “
ž

γPΓizΓi,j{Γj

θi,j,γ : Yi,j Ñ Yj,i.

For any i, j, k P I, the intersection Yi,j,k :“ Yi,j X Yi,k of two affinoid
subdomains of Yi is an affinoid subdomain of Yi,j.

Lemma 6.28. The system tθi,jui,jPI of isomorphisms satisfies the con-
ditions of [BGR, Proposition 9.3.2/1]. Namely,

(1) θi,j ˝ θj,i “ id, θi,i “ id.
(2) The map θi,j induces isomorphisms θi,j,k : Yi,j,k Ñ Yj,i,k satisfy-

ing θi,j,k “ θk,j,i ˝ θi,k,j.

Proof. Note that tidu is a complete set of representatives of the coset
space ΓizΓi,i{Γi. Moreover, for any complete set of representatives Ii,j
of the coset space ΓizΓi,j{Γj, (6.3) implies that tγ´1 | γ P Ii,ju is a
complete set of representatives of ΓjzΓj,i{Γi. Then Lemma 6.27 and
(6.9) yield (1).

Let us prove (2). Since θi,j “ id on underlying sets, we have θi,jpYi,j,kq “

πpXiqXπpXjqXπpXkq “ Yj,i,k. Hence it follows that θi,j,k : Yi,j,k Ñ Yj,i,k
is an isomorphism.

Let γ P Γi,j. Then we have a covering

πpXi X Xγpjqq X πpXkq “
ď

δPΓ

πpXi X Xγpjq X Xδpkqq.

Note that πpXi X Xγpjq X Xδpkqq ‰ H only if δ P Γi,k, and thus this
covering has a finite subcovering. Moreover, Lemma 6.24 implies that
this is an admissible open covering of the affinoid subdomain πpXi X
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XγpjqqXπpXkq “ πpXiXXγpjqqXYi,k of Yi. By Lemma 6.25, it is enough
to show the cocycle condition on each local piece πpXi XXγpjq XXδpkqq.
By Lemma 6.27, this is the same as showing that the composite

θk,j,δ´1γ ˝ θi,k,δ : πpXi X Xγpjq X Xδpkqq Ñ πpXk X Xδ´1piq X Xδ´1γpjqq

Ñ πpXj X Xγ´1piq X Xγ´1δpkqq

agrees with θi,j,γ .
By (6.8), we have the commutative diagram

πpXi X Xγpjq X Xδpkqq
θi,j,γ // πpXj X Xγ´1piq X Xγ´1δpkqq

SppB
ΓiXΓγpjqXΓδpkq

i,γpjq,δpkq
q

≀ρi,γpjq,δpkq

OO

γ´1
// SppB

ΓjXΓγ´1piq
XΓγ´1δpkq

j,γ´1piq,γ´1δpkq
q.

≀ ρj,γ´1piq,γ´1δpkq

OO

Since the composite

pδ´1γq´1 ˝ δ´1 : Xi X Xγpjq X Xδpkq Ñ Xk X Xδ´1piq X Xδ´1γpjq

Ñ Xj X Xγ´1piq X Xγ´1δpkq

agrees with γ´1, we also have the commutative diagram

SppB
ΓiXΓγpjqXΓδpkq

i,γpjq,δpkq
q

δ´1
//

γ´1 ))SSS
SSSS

SSSS
SSS

SppB
ΓkXΓδ´1piq

XΓδ´1γpjq

k,δ´1piq,δ´1γpjq
q

pδ´1γq´1

��

SppB
ΓjXΓγ´1piq

XΓγ´1δpkq

j,γ´1piq,γ´1δpkq
q.

Hence we obtain θk,j,δ´1γ ˝ θi,k,δ “ θi,j,γ on πpXi X Xγpjq X Xδpkqq. This
concludes the proof. □

Lemma 6.29. Let f : SppSq Ñ SppRq be a finite morphism of K-
affinoid varieties. Suppose that f is a monomorphism in the category
of K-affinoid varieties, in the sense that for any morphisms g1, g2 :
Z Ñ SppSq of K-affinoid varieties, the equality f ˝ g1 “ f ˝ g2 yields
g1 “ g2. Then f is a closed immersion.

Proof. Since R-algebra S is finite, it follows that S bR S is an affinoid
algebra over K. The assumption implies that for any affinoid algebra C
over K, any homomorphism SbRS Ñ C of K-algebras factors through
the natural map µ : SbRS Ñ S defined by µpabbq “ ab. In particular,
we can find a homomorphism S Ñ S bR S of K-algebras which makes
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the following diagram commutative:

S bR S
µ // S

{{ww
ww
ww
ww
w

S bR S.

Since µ is surjective, this shows that µ is an isomorphism. Now [Sta,
Lemma 10.107.1] implies that the finite map R Ñ S is an epimorphism
in the category of rings. By [Sta, Lemma 10.107.6], the map R Ñ S is
surjective. This concludes the proof. □

Proposition 6.30. Let X be a separated rigid analytic variety over K
equipped with a discrete action of a group Γ. Then there exists a sep-
arated rigid analytic variety ΓzX over K and a Γ-invariant morphism
π : X Ñ ΓzX which satisfies the following universal property: for any
separated rigid analytic variety Z over K and a Γ-invariant morphism
ϕ : X Ñ Z, there exists a unique morphism ψ : ΓzX Ñ Z satisfying
ϕ “ ψ ˝π. In particular, such a pair pΓzX, πq is unique up to a unique
isomorphism.

Proof. Let Y be the quotient set ΓzX and let π : X Ñ Y “ ΓzX be
the quotient map. Put Yi “ πpXiq and Yi,j “ Yi X Yj as before. By
Lemma 6.28 and [BGR, Proposition 9.3.2/1], there exists a structure
of a rigid analytic variety on Y such that Y “

Ť

iPI Yi is an admissible

open covering with an isomorphism SppBΓi
i q » Yi. Since we have a

commutative diagram of affinoid varieties

Xi X Xj
// πpXi X Xjq

θi,j,id“id

��
Xj X Xi

// πpXj X Xiq,

[BGR, Proposition 9.3.3/1] implies that the natural maps

Xi “ SppBiq Ñ SppBΓi
i q

ρi
Ñ πpXiq

glue to define a morphism π : X Ñ Y of rigid analytic varieties over K
whose underlying map is the quotient map.



NOTES ON DRINFELD MODULAR FORMS 65

For any i P I and γ P Γ, we have Γγpiq,i “ γΓi and BΓiXΓi
i,i “ BΓi

i .
Thus we have the commutative diagram of affinoid varieties

Xγpiq
//

γ´1

��

SppB
Γγpiq

γpiq q
ργpiq //

γ´1

��

πpXγpiqq

θγpiq,i,γ

��
Xi

// SppBΓi
i q ρi

// πpXiq.

By the construction of Y , this means that π is Γ-invariant.
Let us show the universality. Since tYiuiPI is an admissible open cov-

ering, by [BGR, Proposition 9.3.3/1] the uniqueness of the morphism
ψ can be checked on Yi, and in this case it follows from Lemma 6.20.
For the existence, by Lemma 6.20 there exists a morphism ψi : Yi Ñ Z
satisfying ϕ|Xi

“ ψi ˝ π|Xi
. For any i, j P I and γ P Γi,j, we have

ϕ|XiXXγpjq
“ ϕ|XjXXγ´1piq

˝γ´1 and this induces a commutative diagram

SppB
ΓiXΓγpjq

i,γpjq
q
� � //

γ´1

��

Yi,j
ψi|Yi,j // Z

SppB
ΓjXΓγ´1piq

j,γ´1piq q
� � // Yj,i

ψj |Yj,i

// Z.

Thus we obtain ψi|Yi,j “ ψj|Yj,i ˝ θi,j and we can find a morphism
ψ : Y Ñ Z by gluing.

Finally, we show that Y is separated over K. For this, it is enough to
show that for any i, j P I, the natural map YiXYj Ñ YiˆKYj is a closed
immersion. By Lemma 6.25, we see that YiXYj “ Yi,j is affinoid. Since
this map is a monomorphism of affinoid varieties over K, by Lemma
6.29 we reduce ourselves to showing that this map is finite. Moreover,
by Lemma 6.25 and the definition of θi,j, this map is defined, up to a
unique isomorphism, by the ring homomorphism

BΓi
i b̂KB

Γj

j Ñ
ź

γPΓizΓi,j{Γj

B
ΓiXΓγpjq

i,γpjq
, bib̂bj ÞÑ pbi ¨ bj|γ´1qγ,

where the map b ÞÑ b|γ´1 is the one induced by the affinoid map γ´1 :
Xγpjq Ñ Xj. Thus it is enough to show that for any i, j P I and γ P Γi,j,

the ring homomorphism BΓi
i b̂KB

Γj

j Ñ B
ΓiXΓγpjq

i,γpjq
on each factor is finite.
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Note that we have a commutative diagram of affinoid algebras

Bib̂KBj
// // Bi,γpjq

BΓi
i b̂KB

Γj

j
//

OO

B
ΓiXΓγpjq

i,γpjq
.

?�

OO

Since the assumption that X is separated implies that the map

Xi X Xγpjq Ñ Xi ˆK Xγpjq
1ˆγ´1

Ñ Xi ˆK Xj

is a closed immersion, the upper horizontal arrow of the diagram is

surjective. Moreover, the map BΓi
i b̂KB

Γj

j Ñ Bib̂KBj is finite. Since

B
ΓiXΓγpjq

i,γpjq
is a subring of Bi,γpjq and the affinoid algebra BΓi

i b̂KB
Γj

j is

Noetherian, we see that the BΓi
i b̂KB

Γj

j -algebra B
ΓiXΓγpjq

i,γpjq
is finite. This

concludes the proof of the proposition. □
6.3. Carlitz exponential as a uniformizer at 8. For any r, s P Q,
consider admissible open subsets Ωr and Ωr,s of P1

C8
as in Definition

5.19.

Lemma 6.31. For any fractional almost-ideal a Ď K, the action of a
on Ωr given by

a ˆ Ωr Ñ Ωr, pa, zq ÞÑ z ` a

defines a discrete action of a on the separated rigid analytic space Ωr

with respect to the admissible affinoid open covering

ta ` Ωr,s | ps, aq P Z ˆ au.

In particular, for any ps, aq P Z ˆ a, the subset

aps,aq “ tb P a | b ` a ` Ωr,s “ a ` Ωr,su

is equal to the finite group aďqs.

Proof. Note that z ÞÑ z ` a defines an automorphism of the rigid an-
alytic variety A1,an

C8
. Since |z ` a|i “ |z|i for any z P C8 and a P a, it

defines an automorphism on the open subvariety Ωr. Hence the subset
a` Ωr,s is an admissible affinoid open subset of Ωr. Moreover, Lemma
5.22 implies that the covering of the lemma is admissible.

To show that the action is discrete, we need to check the conditions
of Definition 6.21. The condition (1) follows from the definition. For
(2), take any s P Z. Since aps,aq “ aps,0q, we may assume a “ 0. Suppose
b P aps,0q. Then for any z P Ωr,s, we have |z`b| ď qs. Since |z| ď qs, this
yields |b| ď qs and b P aďqs . Conversely, if b P aďqs , then for any z P Ωr,s

we have |z ` b|i “ |z|i ě q´r and |z ` b| ď qs. Thus b ` Ωr,s Ď Ωr,s.



NOTES ON DRINFELD MODULAR FORMS 67

Since ´b P aďqs , this also yields the reverse containment and b P aps,0q.
Hence we obtain aps,0q “ aďqs , which is finite by Lemma 6.4.

For the condition (3), first suppose that b P a satisfies pb`a`Ωr,sqX

pa ` Ωr,sq ‰ H. Then for some z P Ωr,s we have b ` z P Ωr,s, which
yields |b| ď qs and b P aďqs “ aps,aq. Next for any ps, aq, ps1, a1q P Z ˆ a,
suppose that b P a satisfies pa ` Ωr,sq X pb ` a1 ` Ωr,s1q ‰ H. Then for
some z P Ωr,s and z1 P Ωr,s1 we have a ` z “ b ` a1 ` z1. This shows
that b ` a1 ´ a P a satisfies |b ` a1 ´ a| ď qs0 with s0 “ maxts, s1u and
thus b lies in the finite set a ´ a1 ` aďqs0 .

Finally, let us check the condition (4). Take any ps, aq P Z ˆ a. We
need to show that the family

tb ` a ` Ωr,s | b P au

forms an admissible covering of an admissible open subset of Ωr. Since
the map z ÞÑ z ` a defines an automorphism on Ωr, we may assume
a “ 0. By Lemma 5.22, it is enough to show that for any s1 P Z, the
family

tΩr,s1 X pb ` Ωr,sq | b P au

forms an admissible covering of an admissible open subset of Ωr,s1 . By
the condition (3), this covering has a finite subcovering. Since the
subset

Ωr,s1 X pb ` Ωr,sq “ tz P Ωr,s1 | |z ´ b| ď qsu

is a rational subdomain of the affinoid variety Ωr,s1 , the family above
has the desired property. □

Since Ωr is separated, Proposition 6.30 and Lemma 6.31 allow us to
define a structure of a separated rigid analytic variety over C8 on the
set-theoretic quotient azΩr such that the natural surjection π : Ωr Ñ

azΩr is a morphism of rigid analytic varieties over C8. By construction,

we have πpΩr,sq » SppOpΩr,sq
aďqs

q and the covering

azΩr “
ď

sPZ

πpΩr,sq

is an admissible affinoid open covering.

Since Ωr is reduced, the ring OpΩr,sq
aďqs

is reduced and azΩr is also
reduced. Moreover, the universal property of Proposition 6.30 shows
that any rigid analytic function f on Ωr which is fixed by the action of
a defines a rigid analytic function f̄ on azΩr satisfying π

˚f̄ “ f . Thus
we obtain a morphism of rigid analytic varieties over C8

expa : azΩr Ñ A1,an
C8

.
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Lemma 6.32. Let a be any proper fractional almost-ideal of K and let
Na P Z be as in Lemma 6.2. Let r P Z be any integer satisfying r ď Na.
For the map expa : C8 Ñ C8, we have

Ωr “ exp´1
a ptz P C8 | |z| ě σa,q´ruq.

Proof. By Corollary 6.13, we have expapD
˝
C8

p0, q´rqq “ D˝
C8

p0, σa,q´rq.
Since expa is additive and Kerpexpaq “ a, this yields

exp´1
a pD˝

C8
p0, σa,q´rqq “ a ` D˝

C8
p0, q´rq

“
ď

aPa

D˝
C8

pa, q´rq

“
ď

xPK8

D˝
C8

px, q´rq,

where the last equality follows from Lemma 6.2. By Lemma 5.17, the
latter set is ΩzΩr and by taking the complement the lemma follows. □

Lemma 6.32 implies that for any proper fractional almost-ideal a of
K and any r P ZďNa , the morphism expa factors through the open
subvariety

D1
C8

p0, σa,q´rqˆ “ tz P C8 | |z| ě σa,q´ru

and the resulting morphism expa : azΩr Ñ D1
C8

p0, σa,q´rqˆ is bijective.
We also have the commutative diagram of rigid analytic varieties

Ωr

π

��

expa

''OO
OOO

OOO
OOO

OO

azΩr expa

// D1
C8

p0, σa,q´rqˆ.

Lemma 6.33. Let a be any proper fractional almost-ideal of K. For
any r P ZďNa, the morphism expa : azΩr Ñ D1

C8
p0, σa,q´rqˆ is quasi-

compact.

Proof. By Lemma 6.12, the function r ÞÑ σa,q´r is decreasing. For any
t P Zăr, put

AC8p0, rσa,q´r , σa,q´tsq “ tz P C8 | σa,q´r ď |z| ď σa,q´tu.

Then tAC8p0, rσa,q´r , σa,q´tsqutPZăr is an admissible open covering of
D1

C8
p0, σa,q´rqˆ.

It is enough to show that exp´1
a pAC8p0, rσa,q´r , σa,q´tsqq is affinoid.

By Corollary 6.13 and Lemma 6.32, we have

exp´1
a pAC8p0, rσa,q´r , σa,q´tsqq “ exp´1

a pDC8p0, σa,q´tq X D1
C8

p0, σa,q´rqˆq

“ pa ` DC8p0, q´tqq X Ωr.
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Since π is surjective, we obtain

exp´1
a pAC8p0, rσa,q´r , σa,q´tsqq “ πpexp´1

a pAC8p0, rσa,q´r , σa,q´tsqqq

“ πppa ` DC8p0, q´tqq X Ωrq

“ πpDC8p0, q´tq X Ωrq

“ πpΩr,´tq “ SppOpΩr,´tq
aďq´t

q,

which is affinoid. □
Lemma 6.34. For any proper fractional almost-ideal a of K and any
r P ZďNa, the morphism expa : azΩr Ñ D1

C8
p0, σa,q´rqˆ is a locally

closed immersion [BGR, §7.3.3].

Proof. Take any z P Ωr. By [BGR, Proposition 7.3.3/4], it is enough
to show that expa defines an isomorphism between the complete local
rings at πpzq and expapzq. Note that π is given locally by taking the
quotient of an affinoid variety by a finite group. Since the action of a
on Ωr is fixed point free, the map π is etale by [Sta, Lemma 58.12.4].
Since C8 is algebraically closed, each complete local ring of azΩr is
strictly Henselian and π defines an isomorphism between the complete
local rings. Thus we are reduced to showing that expa is a locally closed
immersion.

Let w “ expapzq. Then expa defines a homomorphism of C8-algebras

exp˚
a : ÔA1,an

C8
,w » C8rrX ´ wss Ñ ÔA1,an

C8
,z » C8rrX ´ zss

which is given by exp˚
apXq “ expapXq. Hence we have

exp˚
apX ´ wq “ exp˚

apXq ´ w “ expapXq ´ expapzq “ expapX ´ zq.

Since the linear term of expapXq is nonzero, the map exp˚
a is an iso-

morphism. □
Proposition 6.35. For any proper fractional almost-ideal a of K and
any r P ZďNa, the morphism expa : azΩr Ñ D1

C8
p0, σa,q´rqˆ is an

isomorphism.

Proof. We know that the map expa is a bijection. By Lemma 6.33 and
Lemma 6.34, it is also a quasi-compact locally closed immersion. Then
[BGR, Proposition 9.5.3/5] implies that it is a closed immersion. Since
it is bijective and the target is reduced, it is an isomorphism. □
Definition 6.36. For any proper fractional almost-ideal a of K and
any z P Ω, we define

uapzq “
1

π̄ expapzq
.
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By Proposition 6.35, for any r P ZďNa it defines an isomorphism of
rigid analytic varieties

(6.10) azΩr Ñ DC8p0, |π̄|´1σ´1
a,q´rqzt0u, z ÞÑ uapzq.

Lemma 6.37. Let a ‰ 0 P A and let m “ degpaq. Write

ΦC
a pXq “ c0X ` c1X

q ` ¨ ¨ ¨ ` cmX
qm , ci P A.

Then degpciq “ pm ´ iqqi.

Proof. We proceed by induction on m. If m “ 0, then a P Fˆ
q and

ΦC
a pXq “ aX, from which the lemma follows for this case.
Suppose that the lemma holds for some m ě 0 and a P A has degree

m ` 1. For any λ P Fˆ
q , we have ΦC

λapXq “ λΦC
a pXq and thus we may

assume that a is monic. Write a “ tb ` λ, where b P A has degree m
and λ P Fq. By the induction hypothesis, we can write

ΦC
b pXq “ c0X ` c1X

q ` ¨ ¨ ¨ ` cmX
qm , degpciq “ pm ´ iqqi.

Then we have

ΦC
a pXq “ λX ` c0ptX ` Xqq ` c1ptX ` Xqqq ` ¨ ¨ ¨ ` cmptX ` Xqqq

m

“ pλ ` tc0qX ` pc0 ` tqc1qX
q ` ¨ ¨ ¨ ` pci´1 ` cit

qiqXqi ` ¨ ¨ ¨ ` Xqm`1

.

Since degpci´1q “ pm ´ i ` 1qqi´1 ă pm ´ i ` 1qqi “ degpcit
qiq, the

degree of the coefficient of Xqi is pm ´ i ` 1qqi. This concludes the
proof. □
Definition 6.38. Let a ‰ 0 P A and let m “ degpaq. Write

ΦC
a pXq “ aX ` c1X

q ` ¨ ¨ ¨ ` cmX
qm , cm P Fˆ

q .

Then we define

fapXq :“
1

ΦC
a

`

1
X

˘ “
Xqm

cm ` cm´1Xqm´qm´1
` ¨ ¨ ¨ ` aXqm´1

.

Lemma 6.39. For any a ‰ 0 P A, we have

uApazq “ fapuApzqq for any z P Ω.

Proof. Proposition 6.17 yields

uApazq “
1

π̄ expApazq
“

1

ΦC
a pπ̄ expApzqq

“
1

ΦC
a

´

1
uApzq

¯

“
1

cm
uApzqq

m `
cm´1

uApzqq
m´1 ` ¨ ¨ ¨ ` a

uApzq

“
uApzqq

m

cm ` cm´1uApzqq
m´qm´1

` ¨ ¨ ¨ ` auApzqq
m´1

“ fapuApzqq.
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□
Lemma 6.40. Let a ‰ 0 P A and let m “ degpaq. Let ρ be an element
of qQ satisfying ρ ă q´1. Consider the closed disc

DC8p0, ρq “ tu P C8 | |u| ď ρu.

Then fapuq P uq
mOpDC8p0, ρqq and

ˇ

ˇ

ˇ

ˇ

fapuq

uqm

ˇ

ˇ

ˇ

ˇ

“ 1 for any u P DC8p0, ρq.

Proof. Write

ΦC
a pXq “ c0X ` c1X

q ` ¨ ¨ ¨ ` cmX
qm

and ρ “ qr with some r P Q. For any u P DC8p0, ρq and i ă m, Lemma
6.37 implies

(6.11) |ciu
qm´qi | ď qpm´iqqi`rpqm´qiq ă 1 ô r ă ´

m ´ i

qm´i ´ 1
.

Let fpxq “ x
qx´1

, so that f 1pxq “
qxp1´x log qq´1

pqx´1q2
. If q ě 3, then f 1pxq ă 0

for any x ě 1 and

maxtfpxq | x P Zě1u “ fp1q “
1

q ´ 1
.

If q “ 2, then f 1pxq ă 0 for any x ě 2 and

maxtfpxq | x P Zě1u “ maxtfp1q, fp2qu “ 1.

Therefore, if r ă ´1 then the condition (6.11) is satisfied for any
integers m ě 0 and i ă m. By the maximum modulus principle, we
obtain

|cm´1u
qm´qm´1

` ¨ ¨ ¨ ` auq
m´1|sup ă 1 on DC8p0, ρq.

Since cm P Fˆ
q , the lemma follows. □

6.4. Uniformizers at cusps.

Definition 6.41. Let Γ be any arithmetic subgroup of GL2pKq and

UpKq “

"ˆ

1 K
0 1

˙*

. Let

Γ8 “ StabΓp8q, Γu8 “ Γ X UpKq, bΓ,8 “

"

x P K

ˇ

ˇ

ˇ

ˇ

ˆ

1 x
0 1

˙

P Γ8

*

so that we have

Γu8 “

ˆ

1 bΓ,8
0 1

˙

.



72 SHIN HATTORI

Lemma 6.42. Let Γ be any arithmetic subgroup of GL2pKq. Then we
have

Γ8 Ď

"ˆ

a b
0 d

˙

P GL2pKq

ˇ

ˇ

ˇ

ˇ

a, d P Fˆ
q

*

.

Proof. Take any γ “

ˆ

a b
c d

˙

P Γ8. The condition γp8q “ 8 implies

c “ 0.
On the other hand, by Lemma 3.4 there exists a nonzero ideal n of A

such that Γpnq Ď Γ is a subgroup of finite index. Then γn P ΓpnqXΓ8 “

Γpnq8 for some positive integer n. Then an and dn lie in Aˆ “ Fˆ
q .

Since Fq is algebraically closed in K, this yields a, d P Fˆ
q . □

Definition 6.43. Let Γ be an arithmetic subgroup of GL2pKq. By
Lemma 6.42, we have the homomorphism

δΓ,8 : Γ8 Ñ Fˆ
q ,

ˆ

a b
0 d

˙

ÞÑ ad´1.

We denote by wpΓq the order of ImpδΓ,8q.

Lemma 6.44. Let Γ be any arithmetic subgroup of GL2pKq. Then
bΓ,8 is a proper fractional almost-ideal of K which is stable under the
multiplication of any element of ImpδΓ,8q Ď Fˆ

q .

Proof. Since

ˆ

1 x
0 1

˙ ˆ

1 y
0 1

˙

“

ˆ

1 x ` y
0 1

˙

, we see that bΓ,8 is an

additive subgroup of K. By Lemma 3.4, for some nonzero ideal n of A
the arithmetic subgroup Γ contains Γpnq as a subgroup of finite index.

Since we have bΓpnq,8 “ n and for UpKq “

"ˆ

1 K
0 1

˙*

the natural

map

Γ X UpKq{Γpnq X UpKq Ñ Γ{Γpnq

is injective, we see that n is a subgroup of finite index of bΓ,8 and thus
the latter is a proper fractional almost-ideal.

Finally, the equality
ˆ

a b
0 d

˙ ˆ

1 x
0 1

˙ ˆ

a b
0 d

˙´1

“

ˆ

1 ad´1x
0 1

˙

implies that bΓ,8 is stable under ImpδΓ,8q. □
Lemma 6.45. We have

KerpδΓ,8q “ pZpFqq X ΓqΓu8,

where ZpFqq is the center of GL2pAq.
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Proof. The group on the right-hand side lies in KerpδΓ,8q. Conversely,

take any γ P KerpδΓ,8q, which can be written as γ “

ˆ

a ab
0 a

˙

“
ˆ

a 0
0 a

˙ ˆ

1 b
0 1

˙

with some a P Fˆ
q and b P K. Then γq “

ˆ

a 0
0 a

˙

P

ZpFqqXΓ and thus γ1´q “

ˆ

1 b
0 1

˙

P Γu8. This concludes the proof. □

Corollary 6.46. Let Γ be an arithmetic subgroup of GL2pKq. Let
b “ bΓ,8 and w “ wpΓq. For any r P ZďNb

, we have isomorphisms of
rigid analytic varieties

Γu8zΩr Ñ DC8p0, |π̄|´1σ´1
b,q´rqzt0u, z ÞÑ ubpzq,

Γ8zΩr Ñ DC8p0, |π̄|´wσ´w
b,q´rqzt0u, z ÞÑ ubpzqw.

Proof. Note that we have Γu8zΩr “ bzΩr and the first isomorphism
follows from (6.10).

By Lemma 6.45, the group KerpδΓ,8q acts trivially on Γu8zΩr and
thus the rigid analytic variety Γ8zΩr is the quotient of Γu8zΩr by the
action of ImpδΓ,8q. The latter group is the unique cyclic subgroup of
Fˆ
q of order w and by Lemma 6.44 it stabilizes b. Then the definition

of ebpXq yields

ubpcXq “ c´1ubpXq for any c P ImpδΓ,8q

and the isomorphism (6.10) induces the action of ImpδΓ,8q onDC8p0, σ´1
b,q´rqzt0u

given by z ÞÑ c´1z. Thus the quotient by this action is given by

DC8p0, |π̄|´1σ´1
b,q´rqzt0u Ñ DC8p0, |π̄|´wσ´w

b,q´rqzt0u, z ÞÑ zw.

This yields the second isomorphism. □

Definition 6.47. Let ν P GL2pKq and let Γ be an arithmetic subgroup
of GL2pKq. Consider the proper fractional almost-ideal bν´1Γν,8 for the
arithmetic subgroup ν´1Γν. Define

uΓ,νpzq “ ubν´1Γν,8
pzq, ũΓ,νpzq “ uΓ,νpzqwpν´1Γνq.

Lemma 6.48. Let Γ be an arithmetic subgroup of GL2pKq. Let ξ “
ˆ

A B
0 D

˙

P GL2pKq. Then we have

bξ´1Γξ,8 “ A´1DbΓ,8, wpξ´1Γξq “ wpΓq,

uΓ,ξpzq “ AD´1uΓ,idpAD´1zq, ũΓ,ξpzq “ pAD´1qwpΓqũΓ,idpAD´1zq.
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Proof. Since ξp8q “ 8, we have pξ´1Γξq8 “ ξ´1Γ8ξ. Moreover, from
the equality

ˆ

A B
0 D

˙´1 ˆ

a b
0 d

˙ ˆ

A B
0 D

˙

“

ˆ

a A´1ppa ´ dqB ` bDq

0 d

˙

,

we obtain bξ´1Γξ,8 “ A´1DbΓ,8, Impδξ´1Γξ,8q “ ImpδΓ,8q and wpξ´1Γξq “

wpΓq. The first equality yields

ubξ´1Γξ,8
pzq “ AD´1ubΓ,8

pAD´1zq,

from which the lemma follows. □

Lemma 6.49. Let Γ be an arithmetic subgroup of GL2pKq. Let ξ P

GL2pKq with ξ “

ˆ

A B
0 D

˙

. Put x “ AD´1 and y “ BD´1. Write

|x| “ qm and

b “ bΓ,8, b1 “ bξ´1Γξ,8.

Moreover, for any integer r, write

ρr “ |π̄|´1σ´1
b,q´r , ρ1

r “ |π̄|´1σ´1
b1,q´r .

Then, for any sufficiently small r, we have the commutative diagram
of isomorphisms of rigid analytic varieties

bξ´1Γξ,8zΩr

uΓ,ξ //

ξ

��

DC8p0, ρ1
rqzt0u

gξ

��
bΓ,8zΩr´m uΓ,id

// DC8p0, ρr´mqzt0u,

where gξ is the restriction of the isomorphism

gξ : DC8p0, ρ1
rq Ñ DC8p0, ρr´mq, u ÞÑ

x´1u

1 ` π̄ expbpuqx´1u
.

Proof. By Lemma 6.48, we have b1 “ x´1b and the isomorphism

Ωr Ñ Ωr´m, z ÞÑ ξpzq

induces the left vertical arrow.
For any ρ P qQ, this also yields

σb1,ρ “ ρ
ź

bPx´1b, 0ă|b|ăρ

ρ

|b|
“ ρ

ź

bPb, 0ă|b|ăρ|x|

ρ

|x´1b|

“ ρ
ź

bPb, 0ă|b|ăρ|x|

ρ|x|

|b|
“ |x|´1σb,ρ|x|.
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This implies ρ1
r “ |x|ρr´m and we have an isomorphism

DC8p0, ρ1
rq Ñ DC8p0, ρr´mq, u ÞÑ x´1u.

Hence, if r is sufficiently small so that ρr´m|π̄ expbpyq| ă 1, then we
have an isomorphism

DC8p0, ρr´mq Ñ DC8p0, ρr´mq, v ÞÑ
v

1 ` π̄ expbpyqv

and we obtain the isomorphism

gξ : DC8p0, ρ1
rq Ñ DC8p0, ρr´mq

preserving the origin.
Now Lemma 6.48 yields uΓ,ξpzq “ xuΓ,idpxzq and thus

uΓ,idpξpzqq “ uΓ,idpxz ` yq

“
1

π̄ expbpxz ` yq
“

1

π̄ expbpxzq ` π̄ expbpyq

“
1

1
uΓ,idpxzq

` π̄ expbpyq
“

1
1

x´1uΓ,ξpzq
` π̄ expbpyq

“
x´1uΓ,ξpzq

1 ` π̄ expbpyqx´1uΓ,ξpzq
“ gξpuΓ,ξpzqq.

This concludes the proof. □
Lemma 6.50. Let Γ be an arithmetic subgroup of GL2pKq which is
p1-torsion free. Then we have wpΓq “ 1.

Proof. Take any γ “

ˆ

a b
0 d

˙

P Γ8, so that a, d P Fˆ
q by Lemma 6.42.

If a ‰ d, then we have
ˆ

a b
0 d

˙q

“

ˆ

aq bpaq´1 ` aq´2d ` ¨ ¨ ¨ ` dq´1q

0 dq

˙

“

ˆ

a b
`

aq´dq

a´d

˘

0 d

˙

“

ˆ

a b
0 d

˙

and thus γq´1 “ id, which contradicts the assumption that Γ is p1-
torsion free. Hence we obtain a “ d and ImpδΓ,8q “ t1u. □

6.5. Definition of Drinfeld modular forms.

Definition 6.51. Let f : Ω Ñ C8 be a function on Ω. For any
ξ P GL2pKq and k,m P Z, define functions f |k,mξ and f |kξ on Ω by

pf |k,mξqpzq “ detpξqmpcz ` dq´kfpξpzqq, ξ “

ˆ

a b
c d

˙
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and f |kξ “ f |k,k´1ξ. We call f ÞÑ f |k,mξ and f ÞÑ f |kξ the slash
operators.

Lemma 6.52. Let ξ1, ξ2 be elements of GL2pKq. Then we have

pf |k,mξ1q|k,mξ2 “ f |k,mξ1ξ2.

Proof. Write ξi “

ˆ

ai bi
ci di

˙

. Then we have

ppf |k,mξ1q|k,mξ2qpzq “ detpξ2q
mpc2z ` d2q

´kpf |k,mξ1qpξ2pzqq

“ detpξ1ξ2q
mpc2z ` d2q

´k

ˆ

c1
a2z ` b2
c2z ` d2

` d1

˙´k

fppξ1ξ2qpzqq

“ detpξ1ξ2q
mppc1a2 ` d1c2qz ` pc1b2 ` d1d2qq´kfppξ1ξ2qpzqq

“ pf |k,mξ1ξ2qpzq

and the lemma follows. □

Lemma 6.53. For any k,m P Z, f P OpΩq and ξ P GL2pKq, we have

f |k,mξ P OpΩq.

Proof. By Corollary 5.27, the function

Ω Ñ C8, z ÞÑ fpξpzqq

is analytic. On the other hand, write ξ “

ˆ

a b
c d

˙

. Then the function

z ÞÑ cz`d is analytic and nowhere vanishing on Ω. Thus cz`d P OpΩqˆ

and the lemma follows. □

Let Γ be an arithmetic subgroup of GL2pKq and k,m P Z. Let
f : Ω Ñ C8 be a rigid analytic function on Ω satisfying

fpγpzqq “ detpγq´mpcz ` dqkfpzq for any γ “

ˆ

a b
c d

˙

P Γ.

Let ν P GL2pKq. Then Lemma 6.53 yields f |k,mν P OpΩq. For any
η P pν´1Γνqu8, we have

pf |k,mνqpηpzqq “ pf |k,mνηqpzq “ pf |k,mνqpzq.

By Corollary 6.46, we can write

(6.12) pf |k,mνqpzq “
ÿ

iPZ

cipf, νquΓ,νpzqi, cipf, νq P C8,

where
ř

iPZ cipf, νqX i converges on a punctured closed disc of some
positive radius centered at the origin.
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Definition 6.54. Let f and ν be as above. We refer to (6.12) as the
Fourier expansion of f for ν. By abuse of language, we also call it the
Fourier expansion at the cusp rνp8qs represented by νp8q, though it
depends on the choice of ν.
We say f is regular (resp. vanishes resp. vanishes twice) at the cusp

rνp8qs if cipf, νq “ 0 for any i ă 0 (resp. i ď 0 resp. i ď 1).

Definition 6.55. Let Γ be an arithmetic subgroup of GL2pKq and
k,m P Z. Let f : Ω Ñ C8 be a rigid analytic function on Ω. We say f
is a Drinfeld modular form (resp. cuspform resp. double cuspform) of
level Γ, weight k and type m if f satisfies f |k,mγ “ f , namely

(6.13) fpγpzqq “ detpγq´mpcz ` dqkfpzq for any γ “

ˆ

a b
c d

˙

P Γ,

and f is regular (resp. vanishes resp. vanishes twice) at the cusp rνp8qs

for any ν P GL2pKq.

Lemma 6.56. For any f P OpΩq satisfying (6.13) and any ν P GL2pKq,
the validity of each condition on cipf, νq for ν in Definition 6.55 de-
pends only on rνp8qs P ΓzP1pKq.

Proof. It is enough to show that if the condition holds for ν, then it

holds for γνξ with any γ P Γ and ξ “

ˆ

A B
0 D

˙

P GL2pKq. Since

pγνξq´1Γpγνξq “ pνξq´1Γpνξq and f |k,mγ “ f , we may assume γ “ id.
Replacing f by f |k,mν and Γ by ν´1Γν, we may assume ν “ id.

Consider the isomorphism gξ of Lemma 6.49. Since we have pf |k,mξqpzq “

pADqmD´kfpξpzqq and gξ preserves the vanishing order at the origin,
the lemma follows from the commutative diagram of Lemma 6.49. □

The C8-vector spaces of Drinfeld modular forms (resp. cuspforms
resp. double cuspforms) of level Γ, weight k and type m are denoted
by

Mk,mpΓq, Sk,mpΓq, S
p2q

k,mpΓq.

When m “ k ´ 1, we say a Drinfeld modular form is of level Γ and
weight k, and we drop m from the subscripts of the spaces above.

Lemma 6.57. Let Γ be an arithmetic subgroup of GL2pKq and k,m P

Z. Then we have Mk,mpΓq “ 0 if k ı 2m mod |ZpFqq X Γ|.

Proof. Take any γ “

ˆ

a 0
0 a

˙

P ZpFqq X Γ and f P Mk,mpΓq. Then we

have
fpzq “ fpγpzqq “ ak´2mfpzq,

from which the lemma follows. □
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Lemma 6.58. Let ρ P qQ and a P C8. Let f P OpDC8pa, ρqztauq.
Then f is bounded on DC8pa, ρqztau if and only if f uniquely extends
to an element of OpDC8pa, ρqq.

Proof. We may assume a “ 0 and ρ “ 1. By the maximal modulus
principle, the “if” part is clear.

Let us consider the “only if” part. Since OpDC8p0, 1qq “ C8xxy is a
PID, its element with infinitely many zeroes is zero. This implies the
uniqueness of the extension of f .

For the existence, write f “
ř

nPZ anx
n with an P C8. Let P be the

Newton polygon of f in the x-y plane and put

Pď0 “ P X tpx, yq P R2 | x ď 0u.

Let Σ be the set of slopes of Pď0 and let sl P Q be the l-th largest
element of Σ. Taking any σl P Q X psl`1, slq for l ă |Σ| and σl P Q X

p´8, s|Σ|q otherwise, we can find a sequence tσlulě1 in QzΣ satisfying
limlÑ8 σl “ ´8. In particular, there exists L ě 1 satisfying σl ď 0 for
any l ě L.

Note that, if z P Cˆ
8 satisfies t “ v8pzq ě 0 and ´t is not a slope of

P , then v8pfpzqq agrees with the y-intercept of the tangent line of P of
slope ´t. By assumption, there exists M P R satisfying v8pfpzqq ě M
for any z P Cˆ

8 with v8pzq ě 0. Then for any l ě L, the polygon Pď0

lies above the line y “ σlx ` M . Since limlÑ8 σl “ ´8, this forces
an “ 0 for any n ă 0 and thus f P C8xxy. □
Lemma 6.59. Let ρ P qQ and a P C8. Let f P OpDC8pa, ρqq. Then
fpaq “ 0 if and only if

lim
σÑ0

sup
zPDC8 pa,σqztau

|fpzq| “ 0.

Proof. We may assume a “ 0 and ρ “ 1. Write

f “
ÿ

ně0

anx
n, an P C8

with limnÑ8 |an| “ 0. If fp0q “ 0, then a0 “ 0 and we can write f “ xg
with g P C8xxy. Let |g|sup be the supremum norm of g for C8xxy. For
any σ P qQ X p0, 1s we have

sup
zPDC8 pa,σqztau

|fpzq| ď σ|g|sup

and thus the value on the left-hand side goes to zero.
Conversely, suppose that f satisfies the limit condition of the lemma

and a0 ‰ 0. Then we have |a0| ą |fpzq ´ a0| for any z ‰ 0 P C8 with
sufficiently small |z|. This implies |fpzq| “ |a0| ą 0, which contradicts
the assumption. □
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Lemma 6.60. Let Γ be an arithmetic subgroup of GL2pKq, k,m P Z,
ν P GL2pKq and s “ νp8q. Let f P OpΩq satisfying (6.13).

(1) f is regular at the cusp rss if and only if

sup
zPΩr

|pf |k,mνqpzq| ă `8

for some sufficiently small integer r.
(2) f vanishes at the cusp rss if and only if

lim
rÑ´8

sup
zPΩr

|pf |k,mνqpzq| “ 0.

Proof. Let b “ bν´1Γν,8 and let r be any integer satisfying r ď Nb. Put

ρ “ |π̄|´1σ´1
b,q´r .

By Corollary 6.46 we have an isomorphism

pν´1Γνqu8zΩr Ñ DC8p0, ρqzt0u, z ÞÑ u “ uΓ,νpzq.

Put F “ f |k,mν. Let F̄ be the rigid analytic function on pν´1Γνqu8zΩr

that F induces. Since the natural map π : Ωr Ñ pν´1Γνqu8zΩr is sur-
jective and F “ π˚pF̄ q, we have

sup
zPΩr

|F pzq| “ sup
zPpν´1Γνqu8zΩr

|F̄ pzq|.

Then the assertion (1) follows from Lemma 6.58.
Moreover, the inequality σb,q´r ě q´r of Definition 6.11 implies ρ Ñ 0

when r Ñ ´8. Then the assertion (2) follows from (1) and Lemma
6.59. □
Lemma 6.61. Let Γ1 Ď Γ be arithmetic subgroups of GL2pKq. Then
we have

Mk,mpΓq Ď Mk,mpΓ1q, Sk,mpΓq Ď Sk,mpΓ1q.

Proof. If f P OpΩq satisfies f |k,mγ “ f for any γ P Γ, then it holds for
any γ P Γ1. Then the lemma follows from Lemma 6.60. □
Lemma 6.62. Let Γ be an arithmetic subgroup of GL2pKq and let
ν P GL2pKq. Then the map f ÞÑ f |k,mν induces isomorphisms

Mk,mpΓq Ñ Mk,mpν´1Γνq, Sk,mpΓq Ñ Sk,mpν´1Γνq.

Proof. For any f P Mk,mpΓq, the function g “ f |k,mν satisfies

g|k,mpν´1γνq “ g for any γ P Γ.

Moreover, Lemma 6.60 shows that for any ξ P GL2pKq, the function g
is regular (resp. vanishes) at the cusp rξp8qs if and only if

sup
zPΩr

|pf |k,mνξqpzq| ă `8 resp. lim
rÑ´8

sup
zPΩr

|pf |k,mνξqpzq| “ 0
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if and only if f is regular (resp. vanishes) at the cusp rνξp8qs. This
concludes the proof. □
Lemma 6.63. Let Γ1 ◁ Γ be arithmetic subgroups of GL2pKq. Then
the group Γ{Γ1 acts on the C8-vector spaces Mk,mpΓ1q and Sk,mpΓ1q by

f ÞÑ f |k,mγ, γ P Γ.

Moreover, we have

Mk,mpΓq “ Mk,mpΓ1qΓ{Γ1

, Sk,mpΓq “ Sk,mpΓ1qΓ{Γ1

.

Proof. For any f P OpΩq, we have f |k,mγ “ f for any γ P Γ if and only
if it holds for any γ P Γ1 and f is fixed by the action of Γ{Γ1. Moreover,
for any γ P Γ we have γGL2pKq “ GL2pKq, and Lemma 6.60 shows
that for any ν P GL2pKq, the function f |k,mγ is regular (resp. vanishes)
at the cusp rνp8qs if and only if

sup
zPΩr

|pf |k,mγνqpzq| ă `8 resp. lim
rÑ´8

sup
zPΩr

|pf |k,mγνqpzq| “ 0

if and only if f is regular (resp. vanishes) at the cusp rγνp8qs. This
concludes the proof. □

7. Operators acting on Drinfeld modular forms

7.1. Double coset operators.

Lemma 7.1. Let Γ1, Γ2 be congruence subgroups of GL2pAq. Let ξ P

GL2pKq. Put Γ3 “ ξ´1Γ1ξ X Γ2. Then the map

Γ3zΓ2 Ñ Γ1zΓ1ξΓ2, Γ3γ2 ÞÑ Γ1ξγ2

is a bijection. Moreover, the coset space Γ1zΓ1ξΓ2 is finite.

Proof. The map of the lemma is well-defined and surjective. For the
injectivity, suppose that elements γ2, γ

1
2 P Γ2 satisfy Γ1ξγ2 “ Γ1ξγ

1
2.

Then γ1
2 “ ξ´1γ1ξγ2 with some γ1 P Γ1. Then we have ξ´1γ1ξ P Γ2 and

γ1
2 P Γ3γ2.
Moreover, by Lemma 3.4 there exist nonzero ideals n1, n2 Ď A satis-

fying Γpn1q Ď ξ´1Γ1ξ and Γpn2q Ď Γ2. Then Γpn1 Xn2q Ď Γ3 Ď GL2pAq

and thus rΓ2 : Γ3s ă `8, which yields the latter assertion of the
lemma. □
Lemma 7.2. Let Γ1, Γ2 be congruence subgroups of GL2pAq. Let ξ P

GL2pKq. Let k,m be integers. Write

Γ1ξΓ2 “

r
ž

i“1

Γ1ξi.
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Then we have a C8-linear map

Mk,mpΓ1q Ñ Mk,mpΓ2q, f ÞÑ f |k,mrΓ1ξΓ2s :“
r

ÿ

i“1

f |k,mξi

which induces a map Sk,mpΓ1q Ñ Sk,mpΓ2q.

Proof. Note that the map of the lemma is independent of the choice of
ξi. For any γ2 P Γ2, we have

Γ1ξiγ2 X Γ1ξjγ2 “ H pi ‰ jq, Γ1ξΓ2 “

r
ž

i“1

Γ1ξiγ2

and the set tξiγ2ui is also a complete set of representatives of the coset
space Γ1zΓ1ξΓ2. Thus we have

p
ÿ

i

f |k,mξiq|k,mγ2 “
ÿ

i

f |k,mξiγ2 “
ÿ

i

f |k,mξi.

Now the lemma follows from Lemma 6.60. □
7.2. Hecke operators.

Definition 7.3. Let n be a nonzero monic element of A and let Θ be
a subgroup of pA{pnqqˆ. Define

ΓΘ
0 pnq :“

"

γ P SL2pAq

ˇ

ˇ

ˇ

ˇ

γ mod n P

ˆ

Θ ˚

0 Θ

˙*

.

For Θ “ pA{pnqqˆ or Θ “ t1u, we denote it by

Γ0pnq :“ Γ
pA{pnqqˆ

0 pnq, Γ1pnq “ Γ
t1u

0 pnq,

so that we have
Γ1pnq Ď ΓΘ

0 pnq Ď Γ0pnq.

Since they contain Γpnq, they are congruence subgroups of GL2pAq. In
particular, for n “ 1 we have Γ0pnq “ Γ1pnq “ SL2pAq.

Note that the natural map SL2pAq Ñ SL2pA{pnqq is surjective.

Lemma 7.4. Let n P A` be a nonzero element and let Q P AzFq be any
monic irreducible polynomial. Put FQ “ A{pQq. Let Jpn, Qq Ď Γ1pnq

be any subset such that the map

Jpn, Qq Ñ

"

P1pFQqztp0 : 1qu pQ | nq

P1pFQq pQ ∤ nq

*

, γ ÞÑ p1 : 0qγ

is bijective. Then we have

ΓΘ
0 pnq

ˆ

1 0
0 Q

˙

ΓΘ
0 pnq “

ž

ξPIpn,Qq

ΓΘ
0 pnqξ, Ipn, Qq “

ˆ

1 0
0 Q

˙

Jpn, Qq.
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Proof. Put Γ “ ΓΘ
0 pnq. Then

Γ1 :“ Γ X

ˆ

1 0
0 Q

˙´1

Γ

ˆ

1 0
0 Q

˙

“

"

γ “

ˆ

a b
c d

˙

P Γ

ˇ

ˇ

ˇ

ˇ

b ” 0 mod Q

*

.

When Q | n, we have natural bijections

Γ1zΓ Ñ

"ˆ

a QA{nA
0 a´1

˙ ˇ

ˇ

ˇ

ˇ

a P Θ

*

z

"ˆ

a A{nA
0 a´1

˙ ˇ

ˇ

ˇ

ˇ

a P Θ

*

Ñ P1pFQqztp0 : 1qu,

where the last map is given by p1 : 0q ÞÑ p1 : 0qγ. On the other hand,
when Q ∤ n, we have natural bijections

Γ1zΓ Ñ

"ˆ

˚ 0
˚ ˚

˙*

zSL2pFQq Ñ P1pFQq, γ ÞÑ p1 : 0qγ.

Thus Lemma 7.2 concludes the proof. □

Example 7.5. Let n P A` and let Q P AzFq be any monic irreducible
polynomial. For any β P A, put

ηβ :“

ˆ

1 β
0 1

˙

P Γ1pnq, ξβ :“

ˆ

1 0
0 Q

˙

ηβ “

ˆ

1 β
0 Q

˙

.

When Q ∤ n, we choose R,S P A satisfying RQ ´ nS “ 1 and put

η8 :“

ˆ

RQ S
n 1

˙

P Γ1pnq, ξ8 :“

ˆ

1 0
0 Q

˙

η8 “

ˆ

R S
n Q

˙ ˆ

Q 0
0 1

˙

.

Then the set

Ipn, Qq “

"

tξβ | degpβq ă degpQqu pQ | nq,
tξβ | degpβq ă degpQqu Y tξ8u pQ ∤ nq

gives an example of the set Ipn, Qq of Lemma 7.4.

Let k,m P Z. Since ΓΘ
0 pnq Ď SL2pAq, we have

Mk,mpΓΘ
0 pnqq “ MkpΓΘ

0 pnqq, Sk,mpΓΘ
0 pnqq “ SkpΓΘ

0 pnqq.

Definition 7.6. Let k P Z and let Q ‰ 0 P A be a monic irreducible
polynomial. Define

TQ :MkpΓΘ
0 pnqq Ñ MkpΓΘ

0 pnqq, f ÞÑ
ÿ

f

ˇ

ˇ

ˇ

ˇ

kΓ
Θ
0 pnq

ˆ

1 0
0 Q

˙

ΓΘ
0 pnq .

We call it the Hecke operator at Q. When Q | n, we also write UQ for
TQ.
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By Lemma 7.4, the definition of TQ is independent of Θ and thus for
any subgroups Θ Ď Θ1 of pA{pnqqˆ we have commutative diagrams

MkpΓΘ1

0 pnqq
TQ //

��

MkpΓΘ1

0 pnqq

��
MkpΓΘ

0 pnqq
TQ

// MkpΓΘ
0 pnqq,

SkpΓΘ1

0 pnqq
TQ //

��

SkpΓΘ1

0 pnqq

��
SkpΓΘ

0 pnqq
TQ

// SkpΓΘ
0 pnqq,

where the vertical arrows are natural inclusions.

Lemma 7.7. Let Q,Q1 P AzFq be monic irreducible polynomials which
are coprime to each other. Then

TQ ˝ TQ1 “

„

ΓΘ
0 pnq

ˆ

1 0
0 QQ1

˙

ΓΘ
0 pnq

ȷ

.

In particular, we have TQ ˝ TQ1 “ TQ1 ˝ TQ.

Proof. For Γ “ ΓΘ
0 pnq and any nonzero R P A, put

ΓR “

ˆ

1 0
0 R

˙´1

Γ

ˆ

1 0
0 R

˙

X Γ.

Write

Γ “
ž

iPI

ΓQηi, Γ “
ž

jPJ

ΓQ1η1
j.

By Example 7.5, we may assume ηi, η
1
j P Γ1pnq. Put

ηi,Q1 :“

ˆ

1 0
0 Q1

˙´1

ηi

ˆ

1 0
0 Q1

˙

.

We claim that ηi can be chosen to satisfy ηi,Q1 P Γ1pnq, ηi,Q1 ” id mod
Q1 and the set tηi,Q1 | i P Iu forms a complete set of representatives of
ΓQzΓ. Indeed, when Q | n the choice of Example 7.5 suffices. When
Q ∤ n, we can find R,S P A satisfying RQ´ npQ1q2S “ 1 and replacing

η8 in Example 7.5 by

ˆ

RQ S
npQ1q2 1

˙

shows the claim.

With such a choice of ηi, we have

ď

iPI, jPJ

Γ

ˆ

1 0
0 Q

˙

ηi

ˆ

1 0
0 Q1

˙

η1
j “

ď

iPI, jPJ

Γ

ˆ

1 0
0 QQ1

˙

ηi,Qη
1
j.

Suppose that we have γηi1,Qη
1
j1

“ ηi2,Qη
1
j2
with some γ P ΓQQ1 , i1, i2 P I

and j1, j2 P J . By Lemma 7.4, if j1 ‰ j2 then the set

tηi1,Qη
1
j1
, ηi2,Qη

1
j2
, η1
j pj ‰ j1, j2qu
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forms a complete set of representatives of ΓQ1zΓ. Since ΓQQ1 Ď ΓQ1 ,
this yields γ “ id, j1 “ j2 and i1 “ i2. By Lemma 7.1 these unions are
disjoint, from which the lemma follows. □

7.3. Diamond operators. Let n be a nonzero element and let Θ Ď

pA{pnqqˆ be a subgroup. For any d P A which is coprime to n, we can

find ηd P Γ0pnq satisfying ηd “

ˆ

a b
c d

˙

. Then we have

(7.1) η´1
d ΓΘ

0 pnqηd “ ΓΘ
0 pnq.

Lemma 7.8. Let d P A be an element which is coprime to n. Then
f ÞÑ f |kηd defines endomorphisms

xdyn :MkpΓΘ
0 pnqq Ñ MkpΓΘ

0 pnqq, xdyn : SkpΓΘ
0 pnqq Ñ SkpΓΘ

0 pnqq,

which depend only on d mod n and satisfy

xdyn ˝ xd1yn “ xdd1yn “ xd1yn ˝ xdyn.

Proof. Since the map

Γ0pnq Ñ pA{pnqqˆ,

ˆ

a b
c d

˙

ÞÑ d mod n

is a group homomorphism with kernel Γ1pnq, if d and d1 are elements
of A which are coprime to n and satisfy d ” d1 mod n, then with any
choices of ηd and ηd1 we have ηd1 P Γ1pnqηd Ď ΓΘ

0 pnqηd. Thus the lemma
follows from Lemma 6.62 and (7.1). □

Definition 7.9. The operator xdyn is called the diamond operator of
level ΓΘ

0 pnq.

Since the definition of xdyn is independent of Θ, for any subgroups
Θ Ď Θ1 of pA{pnqqˆ we have commutative diagrams

MkpΓΘ1

0 pnqq
xdyn //

��

MkpΓΘ1

0 pnqq

��
MkpΓΘ

0 pnqq
xdyn

// MkpΓΘ
0 pnqq,

SkpΓΘ1

0 pnqq
xdyn //

��

SkpΓΘ1

0 pnqq

��
SkpΓΘ

0 pnqq
xdyn

// SkpΓΘ
0 pnqq,

where the vertical arrows are natural inclusions.

Lemma 7.10. Let Θ be a subgroup of pA{pnqqˆ. Then f P MkpΓ1pnqq

lies in MkpΓΘ
0 pnqq if and only if xdynf “ f for any d P A satisfying

d mod n P Θ.
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Proof. The group ΓΘ
0 pnq is generated by its subgroup Γ1pnq and

tηd | d P A, d mod n P Θu,

from which the equivalence follows. □

Lemma 7.11. For any monic irreducible polynomial Q P AzFq and
any d P A coprime to n, we have

ΓΘ
0 pnq

ˆ

1 0
0 Q

˙

ΓΘ
0 pnq “ ΓΘ

0 pnqη´1
d

ˆ

1 0
0 Q

˙

ηdΓ
Θ
0 pnq.

Proof. Write ηd “

ˆ

a b
c d

˙

P Γ0pnq. Then

η´1
d

ˆ

1 0
0 Q

˙

ηd “

ˆ

ad ´ bcQ bdp1 ´ Qq

acpQ ´ 1q adQ ´ bc

˙

.

Suppose Q ∤ a. We can find β P A satisfying degpβq ă degpQq and
aβ ” b mod Q. Then we have

ˆ

ad ´ bcQ bdp1 ´ Qq

acpQ ´ 1q adQ ´ bc

˙ ˆ

1 β
0 Q

˙´1

“
1

Q

ˆ

ad ´ bcQ bdp1 ´ Qq

acpQ ´ 1q adQ ´ bc

˙ ˆ

Q ´β
0 1

˙

“

ˆ

ad ´ bcQ bcβ ´ bd ` dQ´1pb ´ aβq

acpQ ´ 1q ´acβ ` ad ` cQ´1paβ ´ bq

˙

,

which lies in Γ1pnq since ad ´ bc “ 1 and n | c.
Suppose Q | a. Since ad ´ bc “ 1, it forces Q ∤ n. We can find

R,S P A satisfying RQ ´ nS “ 1. Then we have
ˆ

ad ´ bcQ bdp1 ´ Qq

acpQ ´ 1q adQ ´ bc

˙ ˆ

RQ S
nQ Q

˙´1

“
1

Q

ˆ

ad ´ bcQ bdp1 ´ Qq

acpQ ´ 1q adQ ´ bc

˙ ˆ

Q ´S
´nQ RQ

˙

“

ˆ

ad ´ bcQ ´ nbdp1 ´ Qq ´SpQ´1ad ´ bcq ` bdRp1 ´ Qq

acpQ ´ 1q ´ npadQ ´ bcq ´SQ´1acpQ ´ 1q ` RpadQ ´ bcq

˙

,

which again lies in Γ1pnq.
By Example 7.5, this implies

ΓΘ
0 pnqη´1

d

ˆ

1 0
0 Q

˙

ηdΓ
Θ
0 pnq Ď ΓΘ

0 pnq

ˆ

1 0
0 Q

˙

ΓΘ
0 pnq.
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Since η´1
d “

ˆ

d ´b
´c a

˙

, the containment above for ηa gives

ΓΘ
0 pnqηd

ˆ

1 0
0 Q

˙

η´1
d ΓΘ

0 pnq Ď ΓΘ
0 pnq

ˆ

1 0
0 Q

˙

ΓΘ
0 pnq.

By (7.1), this yields

ΓΘ
0 pnq

ˆ

1 0
0 Q

˙

ΓΘ
0 pnq Ď ΓΘ

0 pnqη´1
d

ˆ

1 0
0 Q

˙

ηdΓ
Θ
0 pnq

and the lemma follows. □

Lemma 7.12. For any monic irreducible polynomial Q P AzFq and
any d P A coprime to n, we have

TQ ˝ xdyn “ xdyn ˝ TQ on MkpΓΘ
0 pnqq.

Proof. By Lemma 7.11 and (7.1), we have

ΓΘ
0 pnq

ˆ

1 0
0 Q

˙

ΓΘ
0 pnqηd “ ΓΘ

0 pnq

ˆ

1 0
0 Q

˙

ηdΓ
Θ
0 pnq

“ ΓΘ
0 pnqηdη

´1
d

ˆ

1 0
0 Q

˙

ηdΓ
Θ
0 pnq

“ ηdΓ
Θ
0 pnq

ˆ

1 0
0 Q

˙

ΓΘ
0 pnq.

Combining this with (7.1), we obtain
ž

ξPIpn,Qq

ΓΘ
0 pnqξηd “

ž

ξPIpn,Qq

ηdΓ
Θ
0 pnqξ “

ž

ξPIpn,Qq

ΓΘ
0 pnqηdξ,

from which the lemma follows. □

Remark 7.13. For any character χ : pA{pnqqˆ Ñ Cˆ
8, we denote by

MkpΓ0pnq, χq the subspace of MkpΓ1pnqq on which xdyn “ χpdqid for
any d P pA{pnqqˆ. Contrary to the case of elliptic modular forms,
the C8-vector space MkpΓ1pnqq is not necessarily the direct sum of
MkpΓ0pnq, χq. This is because the order of pA{pnqqˆ may be divisible
by p “ charpC8q and a representation of pA{pnqqˆ over C8 is not
necessarily semi-simple. Instead, for any subgroup Θ Ď pA{pnqqˆ of
index prime to p, we do have a decomposition

MkpΓ1pnqq “
à

χ

MkpΓΘ
0 pnq, χq,

where the sum runs over the set of characters pA{pnqqˆ{Θ Ñ Cˆ
8.
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7.4. Type operators.

Definition 7.14. For any nonzero monic polynomial n P A, let

GΓΘ
0 pnq “

ˆ

1 0
0 Fˆ

q

˙

ΓΘ
0 pnq.

When Θ “ pA{pnqqˆ or t1u, we write it as GΓ0pnq or GΓ1pnq. When
n “ 1, we have GΓ0pnq “ GΓ1pnq “ GL2pAq.

Definition 7.15. For any λ P Fˆ
q , the element τλ “

ˆ

1 0
0 λ

˙

satisfies

(7.2) τ´1
λ ΓΘ

0 pnqτλ “ ΓΘ
0 pnq.

By Lemma 6.62, the map f ÞÑ f |kτλ give endomorphisms

tλu :MkpΓΘ
0 pnqq Ñ MkpΓΘ

0 pnqq, tλu : SkpΓΘ
0 pnqq Ñ SkpΓΘ

0 pnqq,

which we call the type operators.

Since the definition of tλu is independent of Θ, for any subgroups
Θ Ď Θ1 of pA{pnqqˆ we have commutative diagrams

MkpΓΘ1

0 pnqq
tλu

//

��

MkpΓΘ1

0 pnqq

��
MkpΓΘ

0 pnqq
tλu

// MkpΓΘ
0 pnqq,

SkpΓΘ1

0 pnqq
tλu

//

��

SkpΓΘ1

0 pnqq

��
SkpΓΘ

0 pnqq
tλu

// SkpΓΘ
0 pnqq,

where the vertical arrows are natural inclusions.
For any integer n, we denote by

MkpΓΘ
0 pnqqtnu, SkpΓΘ

0 pnqqtnu

the subspaces of MkpΓΘ
0 pnqq and SkpΓΘ

0 pnqq on which tλu acts by λn for
any λ P Fˆ

q , respectively.

Lemma 7.16. For any integer m, we have

Mk,mpGΓΘ
0 pnqq “ MkpΓΘ

0 pnqqtk´m´1u, Sk,mpGΓΘ
0 pnqq “ SkpΓΘ

0 pnqqtk´m´1u.

Proof. For any f P MkpΓΘ
0 pnqq, we have

ptλufqpzq “ λ´1fpλ´1zq.

On the other hand, Mk,mpGΓΘ
0 pnqq is the subspace of MkpΓΘ

0 pnqq

consisting of f satisfying f |k,mτλ “ f for any λ P Fˆ
q . Then the lemma

follows from

pf |k,mτλqpzq “ λm´kfpλ´1zq “ λm´k`1ptλufqpzq.

□
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Lemma 7.17. For any monic irreducible polynomial Q P AzFq, any
d P A coprime to n and any λ P Fˆ

q , we have

TQ ˝ tλu “ tλu ˝ TQ, xdyn ˝ tλu “ tλu ˝ xdyn.

In particular, for any m P Z, the operators TQ and xdyn for MkpΓΘ
0 pnqq

induce endomorphisms

TQ :Mk,mpGΓΘ
0 pnqq Ñ Mk,mpGΓΘ

0 pnqq,

xdyn :Mk,mpGΓΘ
0 pnqq Ñ Mk,mpGΓΘ

0 pnqq

which stabilize Sk,mpGΓΘ
0 pnqq.

Proof. By (7.2), we have

ΓΘ
0 pnq

ˆ

1 0
0 Q

˙

ΓΘ
0 pnqτλ “ ΓΘ

0 pnq

ˆ

1 0
0 Q

˙

τλΓ
Θ
0 pnq

“ ΓΘ
0 pnqτλ

ˆ

1 0
0 Q

˙

ΓΘ
0 pnq “ τλΓ

Θ
0 pnq

ˆ

1 0
0 Q

˙

ΓΘ
0 pnq.

This and (7.2) give
ž

ξPIpn,Qq

ΓΘ
0 pnqξτλ “

ž

ξPIpn,Qq

ΓΘ
0 pnqτλξ,

which yields the first equality of the lemma. For the second, the element

ηd “

ˆ

a b
c d

˙

P Γ0pnq satisfies

τ´1
λ ηdτλ “

ˆ

a bλ
cλ´1 d

˙

P Γ0pnq.

Thus the element τ´1
λ ηdτλ also acts onMkpΓΘ

0 pnqq as xdyn and we obtain
the second equality. The last assertion follows from Lemma 7.16. □
Example 7.18. Let Q P AzFq be a monic irreducible polynomial.

Then the element ηQ :“

ˆ

R S
n Q

˙

in Example 7.5 acts on MkpΓΘ
0 pnqq

as the diamond operator xQyn. Thus, for any f P MkpΓΘ
0 pnqq we have

pTQfqpzq “

$

&

%

1
Q

ř

degpβqădegpQq f
´

z`β
Q

¯

` Qk´1pxQynfqpQzq pQ ∤ nq,

1
Q

ř

degpβqădegpQq f
´

z`β
Q

¯

pQ | nq.

For Θ “ pA{pnqqˆ, by Lemma 7.10 the action of xQyn on MkpΓ0pnqq is
trivial. Hence, for any f P MkpΓ0pnqq we have

pTQfqpzq “

$

&

%

1
Q

ř

degpβqădegpQq f
´

z`β
Q

¯

` Qk´1fpQzq pQ ∤ nq,

1
Q

ř

degpβqădegpQq f
´

z`β
Q

¯

pQ | nq.
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Remark 7.19. In the literature, there are different normalizations
of Hecke operators. We adopt the one in [Böc, Example 6.13] which
is parallel to the case of elliptic modular forms as [DS, Proposition
5.2.1]. On the other hand, as [Gos1, Remark 3.6] and [Gek2, (7.1)], the
operator QTQ in our notation is sometimes called the Hecke operator
at Q.

7.5. Hecke operators for non-irreducible polynomials. As in the
classical case [Miy, §4.5], when the level is Γ0pnq there is a standard
way to define Hecke operators at Q even when Q is not irreducible. For
this, let n P A be a nonzero element and

∆0pnq “

"ˆ

a b
c d

˙

P M2pAq

ˇ

ˇ

ˇ

ˇ

c ” 0 mod n, pa, nq “ p1q, ad ´ bc P A`

*

.

Lemma 7.20 ([Miy], Lemma 4.5.2). For any ξ P ∆0pnq, there exist
unique Q1, Q2 P A` such that Q1 | Q2, pQ1, nq “ p1q and

Γ0pnqξΓ0pnq “ Γ0pnq

ˆ

Q1 0
0 Q2

˙

Γ0pnq.

Proof. Put

L “

"ˆ

u
v

˙ ˇ

ˇ

ˇ

ˇ

u, v P A

*

, L0 “

"ˆ

u
nv

˙ ˇ

ˇ

ˇ

ˇ

u, v P A

*

,

on which M2pAq acts via the left multiplication. Note that we have
ξL0 Ď L0.

For any free A-submodules L1 Ě L2 of rank two of A2, write

rL1 : L2s :“ AnnA

˜

2
ľ

A

L1{

2
ľ

A

L2

¸

.

For any L1 Ě L2 Ě L3, we have rL1 : L3s “ rL1 : L2srL2 : L3s.
Let D “ detpξq. Then

rL : ξL0s “ rL : ξLsrξL : ξL0s “ pDnq.

Thus we can find a basis w1, w2 of the A-module L satisfying

ξL0 “ Apaw1q ‘ Apbw2q, a | b, ab “ Dn

with some a, b P A`.
Since the p1, 1q-entry of ξ is coprime to n, we have ξL0 Ę tL for any

non-constant divisor t of n. This yields pa, nq “ p1q and n | b. Since the
A-module L{L0 is isomorphic to A{pnq, the image of L0 by the natural
map

(7.3) L Ñ L{ξL0 » A{paqw1 ‘ A{pbqw2
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equals A{paqw1 ‘ pnq{pbqw2. Thus we obtain

L0 “ Aw1 ‘ Apnw2q.

Put

L1 “ Apaw1q ‘ Ap
b

n
w2q,

so that ξL0 Ď L1. Since the image of ξL by the map (7.3) is killed by n
and pa, nq “ p1q, we have ξL Ď L1. By the equalities rξL : ξL0s “ rL :
L0s “ qdegpnq “ rL1 : ξL0s, we obtain ξL “ L1.

Now we define γ1, γ2 P GL2pAq by

pw1, w2q “

ˆˆ

1
0

˙

,

ˆ

0
1

˙˙

γ1,

ˆ

ξ

ˆ

1
0

˙

, ξ

ˆ

0
1

˙˙

“

ˆ

aw1,
b

n
w2

˙

γ2,

so that

ξ “ γ1

ˆ

a 0
0 b

n

˙

γ2.

By replacing wi with its multiple by Fˆ
q , we may assume detpγ1q “ 1.

Since detpξq, n, a, b are all monic, we also have detpγ2q “ 1. Since

w1 P L0 and ξ

ˆ

1
0

˙

P ξL0, we have γi P Γ0pnq for i “ 1, 2. Hence we

obtain the equality of the lemma with pQ1, Q2q “ pa, b
n
q.

If we have two pairs pQ1, Q2q and pQ1
1, Q

1
2q as in the lemma, then we

have

GL2pAq

ˆ

Q1 0
0 Q2

˙

GL2pAq “ GL2pAq

ˆ

Q1
1 0
0 Q1

2

˙

GL2pAq.

By the theory of Smith normal forms, it forces Q1 “ Q1
1 and Q2 “ Q1

2.
This concludes the proof of the lemma. □

Definition 7.21. For any monic polynomials Q,Q1, Q2 P A satisfying
Q1 | Q2 and pQ1, nq “ p1q, we define

T pQ1, Q2q “

„

Γ0pnq

ˆ

Q1 0
0 Q2

˙

Γ0pnq

ȷ

,

T pQq “
ÿ

Q1Q2“Q

T pQ1, Q2q,

where the sum runs over the set of pairs pQ1, Q2q satisfying

Q1, Q2 P A`, Q1Q2 “ Q, Q1 | Q2, pQ1, nq “ p1q.

When Q is irreducible, we see that T pQq agrees with TQ as an endo-
morphism of MkpΓ0pnqq.
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Remark 7.22. As in the proof of [Miy, Lemma 4.5.7], we can show

T pQqT pQeq “ T pQe`1q

for any Q, since our Hecke operators act on vector spaces over C8 which
has characteristic p. That is, Hecke operators acting on MkpΓ0pnqq are
multiplicative. This indicates that the Galois representation attached
to a Drinfeld eigenform is one-dimensional, as Böckle proved in [Böc].

8. Examples of Drinfeld modular forms

8.1. Goss polynomials.

Lemma 8.1. Let n ě 1 be an integer and let t1, . . . , tn be indetermi-
nates. Write

fpXq :“
n

ź

i“1

pX ´ tiq “

n
ÿ

i“0

aiX
n´i, ai P Zrt1, . . . , tns.

For any integer k ě 1, let Sk “
řn
i“1 t

k
i . Then we have

Sk ` a1Sk´1 ` ¨ ¨ ¨ ` ak´1S1 ` kak “ 0 pk ď nq,
Sk ` a1Sk´1 ` ¨ ¨ ¨ ` an´1Sk´n`1 ` anSk´n “ 0 pk ą nq.

Proof. We have

f 1pXq “

n
ÿ

i“0

pn ´ iqaiX
n´i´1.

On the other hand, if we embed Qpt1, . . . , tnqpXq intoQpt1, . . . , tnqpp1{Xqq

naturally, we have

f 1pXq

fpXq
“

n
ÿ

i“1

1

X ´ ti
“

n
ÿ

i“1

8
ÿ

k“0

tki
Xk`1

“

8
ÿ

k“0

Sk
Xk`1

.

Multiplying fpXq, we obtain

f 1pXq “

n
ÿ

i“0

aiX
n´i

8
ÿ

k“0

Sk
Xk`1

“

8
ÿ

k“0

n
ÿ

i“0

aiSkX
n´i´k´1.

Comparing two expressions of f 1pXq yields the lemma. □



92 SHIN HATTORI

For any Fq-subspace Λ of C8 of finite dimension, put m “ dimFqpΛq

and

eΛpXq “ X
ź

0‰λPΛ

ˆ

1 ´
X

λ

˙

“

m
ÿ

i“0

αiX
qi P C8rXs,

UΛpXq “
1

eΛpXq
P C8pXq,

SΛ,kpXq “
ÿ

λPΛ

1

pX ` λqk
P C8pXq.

Then α0 “ 1.

Lemma 8.2. Let Λ be any Fq-subspace of C8 of finite dimension
and let k ě 1 be any integer. Then there exists a monic polynomial
GΛ,kpXq P C8rXs of degree k with GΛ,kp0q “ 0 satisfying

SΛ,kpXq “ GΛ,kpUΛpXqq.

Moreover, for k ě 2 we have

(8.1) GΛ,kpXq “ X
ÿ

0ďiďtlogqpkqu

αiGΛ,k´qipXq.

Proof. For k “ 1, we have e1
ΛpXq “ 1 and

1

eΛpXq
“
e1
ΛpXq

eΛpXq
“

ÿ

λPΛ

1

X ` λ
.

Hence the polynomial GΛ,1pXq “ X satisfies the condition.
Let k ě 2. Put m “ dimFqpΛq. For an indeterminate Z, consider

the polynomial

fpXq “ eΛpX ´ Zq “ pX ´ Zq
ź

0‰λPΛ

ˆ

1 ´
X ´ Z

λ

˙

P C8pZqrXs,

which we can write as

fpXq “ eΛpXq ´ eΛpZq “

m
ÿ

i“0

αiX
qi ´ eΛpZq.

Then we have degpfpXqq “ qm and the set of roots of fpXq is tZ `λ |

λ P Λu.
We denote the reciprocal polynomial of fpXq by

f̃pXq :“ XqmfpX´1q “

m
ÿ

i“0

αiX
qm´qi ´ eΛpZqXqm P C8pZqrXs,
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whose set of roots is tpZ ` λq´1 | λ P Λu. For k ď qm, the coefficient

of Xqm´k in f̃pXq is zero unless k “ qi with some i ą 0, and thus the
term kak in Lemma 8.1 vanishes. Now Lemma 8.1 implies

SΛ,kpZq `
α0

´eΛpZq
SΛ,k´1pZq `

α1

´eΛpZq
SΛ,k´qpZq ` ¨ ¨ ¨ “ 0,

which yields

(8.2) SΛ,kpZq “ UΛpZqpSΛ,k´1pZq`α1SΛ,k´qpZq`α2SΛ,k´q2pZq`¨ ¨ ¨ q.

Hence the polynomial GΛ,kpXq defined inductively by (8.1) satisfies the
condition of the lemma. □

Let Λ Ď C8 be an Fq-lattice. For any positive rational number ρ, the
subset Λďρ is an Fq-subspace of C8 of finite dimension and SΛďρ,kpXq

is a rigid analytic function on Ω for any integer k ě 1.

Lemma 8.3. Let Λ be any Fq-lattice of C8 and let k ě 1 an integer.
For any non-negative integers r, s, the sequence

tSΛďqn ,kpXqunPZě0

converges in OpΩr,sq and its limit SΛ,kpXq is a rigid analytic function
on Ω.

Proof. Since Ωr,s is a reduced affinoid variety, it is enough to show
the convergence with respect to the supremum norm. For any integer
n ě s, λ P ΛzΛďqn and z P Ωr,s, we have

|z ` λ| “ |λ| ą qn

and thus for any integers m ě n ě s we obtain

|SΛďqn ,kpXq ´ SΛďqm ,kpXq|sup ă q´nk

on Ωr,s. Thus the sequence of the lemma is Cauchy. The last assertion
follows from the continuity of restriction maps. □

Proposition 8.4 ([Gek2], Proposition (3.4)). Let Λ be any Fq-lattice
of C8 and let k ě 1 be any integer. Write

expΛpXq “

8
ÿ

i“0

αiZ
qi , αi P C8.

Then there exists a monic polynomial GΛ,kpXq P C8rXs of degree k
with GΛ,kp0q “ 0 satisfying

SΛ,kpXq “ GΛ,kpπ̄uΛpXqq “ GΛ,k

ˆ

1

expΛpXq

˙

.
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Moreover, for k ě 2 we have

(8.3) GΛ,kpXq “ X
ÿ

0ďiďtlogqpkqu

αiGΛ,k´qipXq.

Proof. Since SΛďqn ,1pXq “ UΛďqn pXq, taking the limit we see that
GΛ,1pXq “ X satisfies the condition.

Suppose k ě 2. Note that the convergence

expΛpXq “ lim
nÑ8

expΛďqn pXq

of Lemma 6.7 with respect to the ρ-Gauss norm implies that each
coefficient of expΛďqn pXq also converges to that of expΛpXq. Taking
the limit of (8.2) for Λďqn shows that the same equality holds for Λ
in OpΩr,sq and also in OpΩq. Hence the polynomial GΛ,kpXq defined
inductively by (8.3) satisfies the condition of the proposition. □
Definition 8.5. We call GΛ,kpXq the k-th Goss polynomial for Λ.

8.2. Eisenstein series for GL2pAq.

Lemma 8.6. Let w ě 0 be an integer. Let P pXq ‰ 0 P C8rXs be a
polynomial satisfying P p0q “ 0. Suppose that for any z P Ω, the series

fpzq “
ÿ

aPA`

awP puApazqq

converges in C8. Then for any sufficiently small integer r, the series

F puq “
ÿ

aPA`

awP pfapuqq

converges in OpDp0, ρrqq with ρr “ |π̄|´1σ´1
A,q´r and satisfies

F puApzqq “ fpzq for any z P Ωr.

Proof. By Lemma 6.12, the function r ÞÑ ρr is increasing. Since
σA,q´r ě q´r, we have limrÑ´8 ρr “ 0.

Write

P pXq “ plX
l ` pl`1X

l`1 ¨ ¨ ¨ ` pdX
d, pi P C8, 0 ă l ď d

satisfying pl ‰ 0 and pd ‰ 0. Take any integer r ď NA such that
ρr ă q´1 and |pl| ą |pi|ρr for any i ą l. Then, Lemma 6.40 implies
that for any j P r1, d ´ ls, any a P A` with degpaq “ m and any
u P DC8p0, ρrq, we have

|pj`lfapuqj`l| “ |pj`l||u|pj`lqqm ď |pj`l||u|1`lqm ă |pl||u|lq
m

“ |plfapuql|

and thus |P pfapuqq| “ |pl||u|lq
m
.



NOTES ON DRINFELD MODULAR FORMS 95

For the supremum norm on DC8p0, ρrq, this yields

|awP pfapuqq|sup ď qmw|pl|ρ
lqm

r ă |pl|q
mw´lqm .

Since l ą 0, we have limmÑ8 |awP pfapuqq|sup “ 0 and the series F puq

converges to define an element of OpDC8p0, ρrqq.
By (6.10), for any z P Ωr we have uApzq P DC8p0, ρrq. Hence Lemma

6.39 yields

F puApzqq “
ÿ

aPA`

awP pfapuApzqqq “
ÿ

aPA`

awP puApazqq “ fpzq.

This concludes the proof. □

Lemma 8.7. Let ρ P qQ and let f P OpDC8p0, ρqzt0uq. Suppose fpzq “

0 for any z P DC8p0, ρqzt0u. Then f “ 0.

Proof. For any σ P qQ satisfying σ P p0, ρs, put

AC8rσ, ρs “ tz P C8 | σ ď |z| ď ρu,

which is an admissible affinoid open subset of DC8p0, ρqzt0u. We have
OpDC8p0, ρqzt0uq “

Ş

0ăσďρOpAC8rσ, ρsq. Since AC8rσ, ρs is reduced,
the assumption implies that the restriction of f to this annulus is zero.
Thus f itself is also zero. □

Lemma 8.8. Let k ě 1 be any integer. For any integers r, s ě 0, the
infinite sum

EkpXq “
ÿ

p0,0q‰pc,dqPA2

1

pcX ` dqk

converges in the affinoid algebra OpΩr,sq. In particular, EkpXq defines
a rigid analytic function on Ω.

Proof. Since Ωr,s is reduced, [BGR, Theorem 6.2.4/1] implies that the
Banach topology on OpΩr,sq is defined by the supremum norm. For
any z P Ωr,s, we have |z|i ě q´r and

(8.4)

ˇ

ˇ

ˇ

ˇ

1

cz ` d

ˇ

ˇ

ˇ

ˇ

ď

"

q´ degpdq pc “ 0q,
qr´degpcq pc ‰ 0q.

This implies
ˇ

ˇ

ˇ

ˇ

1

cX ` d

ˇ

ˇ

ˇ

ˇ

sup

Ñ 0 pdegpcq ` degpdq Ñ `8q

in OpΩr,sq. Thus the infinite sum converges to EkpXq P OpΩr,sq. Since
the restriction map is continuous, the rigid analytic function EkpXq is
independent of r, s and it defines an element of OpΩq. □
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Proposition 8.9. Let k ě 1 be any integer. Then Ek P Mk,0pGL2pAqq.
Moreover, we have

"

Ek “ 0 pk ı 0 mod q ´ 1q,
Ek R Sk,0pGL2pAqq pk ” 0 mod q ´ 1q.

In particular, we have Ek ‰ 0 if k ” 0 mod q ´ 1.

Proof. First we show (6.13). Let γ “

ˆ

a b
c d

˙

P GL2pAq. For any

pC,Dq P A2ztp0, 0qu, we have

pCγpzq ` Dq´k “ pcz ` dqkppaC ` cDqz ` pbC ` dDqq´k.

Note that the map

A2ztp0, 0qu Ñ A2ztp0, 0qu, pC,Dq ÞÑ paC ` cD, bC ` dDq “ pC,Dqγ

is a bijection and thus
ÿ

pC,DqPA2ztp0,0qu

ppaC`cDqz`pbC`dDqq´k “
ÿ

pC,DqPA2ztp0,0qu

pCz`Dq´k “ Ekpzq.

This yields (6.13). In particular, as in the proof of Lemma 6.57 we
have Ek “ 0 unless k ” 0 mod q ´ 1.

Next we assume k ” 0 mod q ´ 1 and show that Ek is regular at
cusps. Note that GL2pAq has the unique cusp, which is represented by
8. Consider the Fourier expansion at 8 for ν “ id. Then Proposition
8.4 yields

(8.5)

Ekpzq “
ÿ

0‰dPA

d´k `
ÿ

cPA`

ÿ

dPA

pcz ` dq´k

“
ÿ

0‰dPA

d´k `
ÿ

cPA`

GA,kpπ̄uApczqq.

By Lemma 8.6, for any sufficiently small integer r, there exists F P

OpDC8p0, ρrqq such that the series (8.5) agrees with F puApzqq for any
z P Ωr. On the other hand, the Fourier expansion at 8 of Ek yields
a rigid analytic function G P OpDC8p0, ρrqzt0uq such that the series
(8.5) agrees with GpuApzqq for any z P Ωr. By (6.10) and Lemma 8.7,
we obtain F “ G, which shows that Ek is regular at 8 and

pF puq ´
ÿ

0‰dPA

d´kq|u“0 “ 0.

Suppose k ” 0 mod q ´ 1. To show Ek R Sk,0pGL2pAqq, it is enough
to show

ÿ

0‰dPA

d´k ‰ 0.
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For this, the assumption on k yields

ÿ

dPFˆ
q

d´k “ ´1.

Since |d´k| “ q´k degpdq ă 1 for any d P AzFq, we obtain |
ř

0‰dPA d
´k| “

1. This concludes the proof of the proposition. □

Lemma 8.10. Let Q P AzFq be a monic irreducible polynomial and let
c P A be an element which is coprime to Q. Then the map

A ˆ tβ P A | degpβq ă degpQqu Ñ A, pd, βq ÞÑ dQ ` βc

is a bijection.

Proof. If pd, βq and pd1, β1q satisfies dQ`βc “ d1Q`β1c, then pβ´β1qc “

pd1 ´ dqQ and the assumption Q ∤ c yields β “ β1 and d1 “ d.
For the surjectivity, we can find a, b P A satisfying aQ` bc “ 1. For

any f P A, we have afQ`bfc “ f . Write bf “ RQ`β with some R P A
and β P A satisfying degpβq ă degpQq. Then paf ` cRqQ`βc “ f and
the lemma follows. □

Lemma 8.11. Let Q P AzFq be a monic irreducible polynomial. Then

TQEk “ Qk´1Ek.

Proof. By Example 7.18, we have

pTQEkqpzq “
1

Q

ÿ

degpβqădegpQq

ÿ

pc,dq‰p0,0q

1
´

c
´

z`β
Q

¯

` d
¯k

` Qk´1
ÿ

pc,dq‰p0,0q

1

pcQz ` dqk

“
ÿ

degpβqădegpQq

ÿ

pc,dq‰p0,0q

Qk´1

pcz ` pdQ ` βcqqk
`

ÿ

pc,dq‰p0,0q

Qk´1

pcQz ` dqk
.

For Q ∤ c in the former sum, we have c ‰ 0. By Lemma 8.10, we
obtain

ÿ

degpβqădegpQq

ÿ

Q∤c, dPA

Qk´1

pcz ` pdQ ` βcqqk
“

ÿ

Q∤c, dPA

Qk´1

pcz ` dqk
.
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On the other hand, for Q | c in the former sum, write c “ QC and
we have

ÿ

degpβqădegpQq

ÿ

pc,dq‰p0,0q, Q|c

Qk´1

pcz ` pdQ ` βcqqk

“
ÿ

degpβqădegpQq

ÿ

pC,dq‰p0,0q

Qk´1

pQCz ` pdQ ` βQCqqk

“
ÿ

degpβqădegpQq

ÿ

pC,dq‰p0,0q

Q´1

pCz ` pd ` βCqqk
.

Since the map

A2ztp0, 0qu Ñ A2ztp0, 0qu, pC, dq ÞÑ pC, d ` βCq

is a bijection, the sum equals
ÿ

degpβqădegpQq

ÿ

pC,dq‰p0,0q

Q´1

pCz ` dqk
“ qdegpQq

ÿ

pC,dq‰p0,0q

Q´1

pCz ` dqk
“ 0.

Hence we obtain

pTQEkqpzq “
ÿ

Q∤c, dPA

Qk´1

pcz ` dqk
`

ÿ

pc,dq‰p0,0q

Qk´1

pcQz ` dqk
“ Qk´1Ekpzq.

This concludes the proof. □
8.3. Poincaré series.

Lemma 8.12. For any ξ “

ˆ

a b
c d

˙

P GL2pKq and z P Ω, put

jpξ, zq “ cz ` d.

Then we have

jpξξ1, zq “ jpξ, ξ1pzqqjpξ1, zq for any ξ, ξ1 P GL2pKq.

Proof. Put ξ1 “

ˆ

a1 b1

c1 d1

˙

. Then the lemma follows from

jpξ, ξ1pzqqjpξ1, zq “ cpa1z ` b1q ` dpc1z ` d1q “ jpξξ1, zq.

□
Let

H “

"ˆ

˚ ˚

0 1

˙*

Ď GL2pAq.

Note that we have a bijection

HzGL2pAq Ñ tpc, dq P A2 | cA ` dA “ Au, γ ÞÑ p0, 1qγ.
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Lemma 8.13. Let k,m be integers satisfying k ě 1. For any γ P

GL2pAq, the element

detpγqm

jpγ,Xqk
uApγpXqqm P OpΩq

depends only on the class of γ in HzGL2pAq.

Proof. Since Ω is reduced, we may check the independence pointwise.

Take any z P Ω and γ P GL2pAq. Put h “

ˆ

a b
0 1

˙

with a P Fˆ
q and

b P A. Then we have

expAphγpzqq “ expApaγpzq`bq “ a expApγpzqq`expApbq “ a expApγpzqq.

On the other hand, Lemma 8.12 yields

jphγ, zq “ jph, γpzqqjpγ, zq “ jpγ, zq.

Since detphq “ a, the lemma follows. □

Lemma 8.14. For any integers k,m satisfying k ě 1, the infinite sum

(8.6)
ÿ

γPHzGL2pAq

detpγqm

jpγ,Xqk
uApγpXqqm

converges and defines an element Pk,mpXq P OpΩq.

Proof. Let r, s be any positive integers. By Corollary 6.46, the supre-
mum norm on the affinoid variety Ωr,s satisfies

ˇ

ˇ

ˇ

ˇ

detpγqm

jpγ,Xqk
uApγpXqqm

ˇ

ˇ

ˇ

ˇ

sup

ď

ˇ

ˇ

ˇ

ˇ

1

jpγ,Xq

ˇ

ˇ

ˇ

ˇ

k

sup

¨ |π|´1σ´1
A,q´r .

Then (8.4) implies that the infinite sum converges in OpΩr,sq. □

Lemma 8.15. For any integers k,m satisfying k ě 1 and m ı 0 mod
q ´ 1, we have

Pk,m P Sk,mpGL2pAqq.

Proof. For any δ P GL2pAq, Lemma 8.12 yields

pPk,m|k,mδqpzq “ detpδqmjpδ, zq´kPk,mpδpzqq

“ detpδqmjpδ, zq´k
ÿ

γPHzGL2pAq

detpγqm

jpγ, δpzqqk
uApγδpzqqqm

“
ÿ

γPHzGL2pAq

detpγδqm

jpγδ, zqk
uApγδpzqqqm “ Pk,mpzq
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and the condition (6.13) follows. By (8.4), we see that |Pk,m|sup on Ωr,s

is bounded independently of s. This implies that it is bounded on Ωr

and thus it is regular at 8.
To show that Pk,m vanishes at the cusp 8, write its Fourier expansion

at 8 as

Pk,mpXq “ a0 ` a1uApXq ` a2uApXq2 ` ¨ ¨ ¨ , ai P C8.

For any c P Fˆ
q , the action of the matrix

ˆ

c 0
0 1

˙

yields Pk,mpcXq “

c´mPk,mpXq, which forces a0 “ 0. □

We can prove the following non-vanishing result of Pk,m as in the
proof of [GvdP, Proposition 10.15.2].

Proposition 8.16. Let k,m be integers. Suppose k ě 1, k ” 2m mod
q ´ 1 and 0 ď m ď k{pq ` 1q. Then Pk,m ‰ 0.

Proof. It is enough to show Pk,mp
?
tq ‰ 0. For this, we divide the sum

(8.6) into three partial sums of γ “

ˆ

a b
c d

˙

P HzGL2pAq satisfying the

following conditions:

(A) c “ 0 and d P Fˆ
q .

(B) c P Fˆ
q and d P Fq.

(C) degpcq ` degpdq ě 1.

Let S‚ be the corresponding partial sum for ‚ P tA,B,Cu.
Note that for any c P Fˆ

q we have uApcXq “ c´1uApXq. For the case

(A), for any d P Fˆ
q we may take γ “

ˆ

d´1 0
0 d

˙

. Then the assumption

k ” 2m mod q ´ 1 implies

SA “
ÿ

dPFˆ
q

1

dk
uApd´2

?
tqm “

ÿ

dPFˆ
q

d2m´kuAp
?
tqm “ ´uAp

?
tqm ‰ 0.

For any α ‰ 0 P A we have |
?
t
α

| “ q
1
2

´degpαq, and thus |
?
t
α

| ě 1 if and
only if α P Fˆ

q . This yields

| expAp
?
tq| “ |

?
t|

ź

αPFˆ
q

ˇ

ˇ

ˇ

ˇ

1 ´

?
t

α

ˇ

ˇ

ˇ

ˇ

“ |
?
t|q

and we obtain

(8.7) |SA| “
1

|
?
t|qm|π̄|m

.
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For the case (B), for any pc, dq P Fˆ
q ˆFq we may take γ “

ˆ

0 ´c´1

c d

˙

.

By the assumption k ” 2m mod q ´ 1, we have

SB “
ÿ

pc,dqPFˆ
q ˆFq

1

pc
?
t ` dqk

uA

ˆ

´c´1

c
?
t ` d

˙m

“
ÿ

pc,dqPFˆ
q ˆFq

p´1qmc2m´k 1

p
?
t ` c´1dqk

uA

ˆ

1
?
t ` c´1d

˙m

“
ÿ

cPFˆ
q

p´1qmc2m´k
ÿ

dPFq

1

p
?
t ` dqk

uA

ˆ

1
?
t ` d

˙m

“ p´1qm`1
ÿ

dPFq

1

p
?
t ` dqk

uA

ˆ

1
?
t ` d

˙m

.

For any d P Fq and α ‰ 0 P A, we have |
?
t ` d| “ q

1
2 and

ˇ

ˇ

ˇ

ˇ

1

αp
?
t ` dq

ˇ

ˇ

ˇ

ˇ

“ q´ 1
2

´degpαq ă 1.

This yields

expA

ˆ

1
?
t ` d

˙

“
1

?
t ` d

p1 ` δq, |δ| ă 1

and thus

uA

ˆ

1
?
t ` d

˙

“
1

π̄
p
?
t ` dqp1 ` δ1q, |δ1| ă 1.

Since |d| ă |
?
t|, with some δ2 P C8 satisfying

(8.8) |δ2| ă
1

|
?
t ` d|k´m|π̄|m

“
1

|
?
t|k´m|π̄|m

,

we have

SB “ p´1qm`1
ÿ

dPFq

1

p
?
t ` dqk´mπ̄m

p1 ` δ1qm

“ p´1qm`1
ÿ

dPFq

1
?
t
k´m

π̄m
` δ2 “ δ2.

Now the assumption m ď k
q`1

yields qm ď k ´ m and
ˇ

ˇ

ˇ

ˇ

1
?
t

ˇ

ˇ

ˇ

ˇ

k´m

ď

ˇ

ˇ

ˇ

ˇ

1
?
t

ˇ

ˇ

ˇ

ˇ

qm

,

which shows |SB| ă |SA|.



102 SHIN HATTORI

Let us consider the case C. For any pc, dq P A2 satisfying cA`dA “ A

and degpcq ` degpdq ě 1, we may take γ “

ˆ

a b
c d

˙

P SL2pAq such that

degpaq ă degpcq and degpbq ă degpdq. Indeed, given a, b P A satisfying
ad´ bc “ 1, write a “ sc` r with r, s P A with degprq ă degpcq. Then
we have rd ´ pb ´ sdqc “ 1 and replacing a with r we may assume
degpaq ă degpcq. Note that the inequality degpcq ` degpdq ě 1 yields
cd ‰ 0. Since we have ad ´ bc “ 1, if a “ 0 then bc “ ´1 and we may
take any d P AzFq so that degpbq ă degpdq. Similarly, if b “ 0 then
ad “ 1, and in this case the inequality degpbq ă degpdq holds. If ab ‰ 0,
then we have degpadq “ degpbcq and thus we obtain degpbq ă degpdq.

Then we have |a| ď |c|q´1 and |b| ď |d|q´1. Note that the equality
|a

?
t| “ |b| never holds since it would imply a “ b “ 0. Thus we have

|a
?
t ` b| “ maxt|a|q

1
2 , |b|u and

ˇ

ˇ

ˇ

ˇ

a
?
t ` b

c
?
t ` d

ˇ

ˇ

ˇ

ˇ

“
maxt|a|q

1
2 , |b|u

maxt|c|q
1
2 , |d|u

ď
maxt|c|q

´1
2 , |d|q´1u

maxt|c|q
1
2 , |d|u

“ q´1 ă 1.

Hence we obtain
ˇ

ˇ

ˇ

ˇ

expA

ˆ

a
?
t ` b

c
?
t ` d

˙ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

a
?
t ` b

c
?
t ` d

ˇ

ˇ

ˇ

ˇ

,

ˇ

ˇ

ˇ

ˇ

uA

ˆ

a
?
t ` b

c
?
t ` d

˙ˇ

ˇ

ˇ

ˇ

“
|c

?
t ` d|

|π̄||a
?
t ` b|

and thus

|SC | ď
1

|c
?
t ` d|k´m|a

?
t ` b|m|π̄|m

.

Now we have |a
?
t ` b| “ maxt|a|q

1
2 , |b|u ě 1 and the assumption

degpcq ` degpdq ě 1 yields |c
?
t` d| “ maxt|c|q

1
2 , |d|u ą q

1
2 “ |

?
t|. By

the assumption 0 ď m ď k{pq ` 1q, we obtain

|SC | ă
1

|
?
t|k´m|π̄|m

ď
1

|
?
t|qm|π̄|m

“ |SA|,

which yields

|Pk,mp
?
tq| “ |SA ` SB ` SC | “ |SA| ‰ 0.

This concludes the proof of the proposition. □
Definition 8.17. By Proposition 8.16, it follows that h :“ Pq`1,1 is a
nonzero element of Sq`1,1pGL2pAqq. We call it Gekeler’s h-function.

8.4. Petrov’s family. Let E2kpzq be the classical Eisenstein series of
weight 2k. It has the Lambert expansion

E2kpzq “ 1 `
2

ζp1 ´ 2kq

ÿ

ně1

n2k´1 qn

1 ´ qn
, q “ expp2π

?
´1zq.
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Put qn “ qn and Gpxq “ x
1´x

. Then the expansion above is written as

E2kpzq “ 1 `
2

ζp1 ´ 2kq

ÿ

ně1

n2k´1Gpqnq.

Petrov [Pet] gave a family of Drinfeld cuspforms of level GL2pAq ad-
mitting an expansion in a similar spirit, which is called A-expansion.
In this subsection we explain his construction.

Let vp be the p-adic additive valuation normalized as vpppq “ 1. For
any integer d, put

Aăd “ ta P A | degpaq ă du.

Let π̄ be the Carlitz period we fixed in Definition 6.16. For any
positive integer n, let GA,npXq be the n-th Goss polynomial for A and
put

GnpXq :“ π̄´nGA,npπ̄Xq.

By Proposition 8.4, we have

(8.9) GnpuApzqq “ π̄´nGA,npexpApzq´1q “ π̄´n
ÿ

aPA

1

pz ` aqn
.

Proposition 8.18. Let k, n be positive integers satisfying k ´ 2n P

pq ´ 1qZą0 and n ď pvppk´nq so that k ą 2n. Then the series

fk,npzq :“
ÿ

aPA`

ak´nGnpuApazqq

converges to define an element of Sk,mpGL2pAqq.

Proof. First note that the condition n ď pvppk´nq implies that pT ´ 1qn

divides pT k´n ´ 1q in the polynomial ring FprT s. Thus we may define

F pT q :“
T k´n ´ 1

pT ´ 1qn
“

k´2n
ÿ

i“0

ξiT
i, ξi P Fp.

Note that if k “ 2n, then the inequality n ď pvppk´nq ď k ´ n “ n
implies that n “ k ´ n is a p-power integer and F pT q “ 1.

Lemma 8.19. For any integers d ě 2 and j P r1, d ´ 1s, we have

Sd,j :“
ÿ

aPAăd

aj “
ÿ

a‰0PAăd

aj “ 0.
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Proof. Note that Aăd is an Fq-vector space of dimension d. Let a1, . . . , ad
be its basis. Write

Sd,j “
ÿ

c1PFq

¨ ¨ ¨
ÿ

cdPFq

pc1a1 ` ¨ ¨ ¨ ` cdadq
j

“
ÿ

c1PFq

¨ ¨ ¨
ÿ

cdPFq

ÿ

i1`¨¨¨`id“j

j!

i1! ¨ ¨ ¨ id!
pc1a1q

i1 ¨ ¨ ¨ pcdadq
id

“
ÿ

i1`¨¨¨`id“j

ÿ

c1PFq

¨ ¨ ¨
ÿ

cdPFq

j!

i1! ¨ ¨ ¨ id!
pc1a1q

i1 ¨ ¨ ¨ pcdadq
id .

Since j ă d, for any pi1, . . . , idq P Zě0 satisfying i1 ` ¨ ¨ ¨ ` id “ j we
have im “ 0 with some m P r1, ds. Thus the sum over cm of the term
of pi1, . . . , idq is zero, which yields the lemma. □

Lemma 8.20. Let z P Ω. If d ě k ´ 2n ` 1, then

ÿ

pu,vq‰p0,0qPA2
ăd

pvzqk´n ´ uk´n

pvz ´ uqn
“ 0.

Proof. Put fpu, v, zq “
pvzqk´n´uk´n

pvz´uqn
. Since k ą 2n and d ě k ´ 2n ` 1,

Lemma 8.19 yields
ÿ

v‰0PAăd

fp0, v, zq “ zk´2n
ÿ

v‰0PAăd

vk´2n “ zk´2nSd,k´2n “ 0,

ÿ

u‰0PAăd

fpu, 0, zq “ p´1qn`1
ÿ

u‰0PAăd

uk´2n “ p´1qn`1Sd,k´2n “ 0.

Note that if u ‰ 0 and v ‰ 0, then we have

fpu, v, zq “ uk´2n pvz
u

qk´n ´ 1

pvz
u

´ 1qn
“ uk´2nF

´vz

u

¯

.

This implies

S :“
ÿ

u‰0PAăd

ÿ

v‰0PAăd

fpu, v, zq “
ÿ

u‰0PAăd

ÿ

v‰0PAăd

uk´2nF
´vz

u

¯

“
ÿ

u‰0PAăd

ÿ

v‰0PAăd

k´2n
ÿ

i“0

ξiu
k´2n´ipvzqi

“
ÿ

u‰0PAăd

k´2n
ÿ

i“0

ξiu
k´2n´iziSd,i.
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Since d ě k´ 2n` 1, Lemma 8.19 yields Sd,i “ 0 for any i P r1, k´ 2ns

and

S “
ÿ

u‰0PAăd

ξ0u
k´2nSd,0 “ ξ0Sd,0Sd,k´2n “ 0.

This concludes the proof. □

Lemma 8.21. Suppose d ě k ´ 2n ` 1. Then, for any pa, bq P

tdA2ztp0, 0qu, we have

ÿ

pu,vqPA2
ăd

pa ` uqk´n

ppa ` uqz ` b ` vqn
“

ÿ

pu,vq‰p0,0qPA2
ăd

pbu ´ avqk´n

paz ` bqk´nppa ` uqz ` b ` vqn
.

Proof. Suppose pu, vq ‰ p0, 0q. By the equality

Xk´n ´ Y k´n “ pX ´ Y qnY k´2nF

ˆ

X

Y

˙

,

the difference

pbu ´ avqk´n

paz ` bqk´nppa ` uqz ` b ` vqn
´

pa ` uqk´n

ppa ` uqz ` b ` vqn

equals
(8.10)
pbu ´ avqk´n ´ ppa ` uqpaz ` bqqk´n

paz ` bqk´nppa ` uqz ` b ` vqn

“
ppbu ´ avq ´ pa ` uqpaz ` bqqn

paz ` bqk´nppa ` uqz ` b ` vqn
¨

k´2n
ÿ

i“0

ξipbu ´ avqippa ` uqpaz ` bqqk´2n´i.

Since pbu´ avq ´ pa`uqpaz` bq “ ´appa`uqz` b` vq, (8.10) is equal
to

p´aqn

paz ` bqk´n
¨

k´2n
ÿ

i“0

ξipbu ´ avqippa ` uqpaz ` bqqk´2n´i.
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For i P r1, k ´ 2ns, Lemma 8.19 yields
ÿ

pu,vq‰p0,0qPA2
ăd

pbu ´ avqipa ` uqk´2n´i

“
ÿ

u‰0PAăd

pbuqipa ` uqk´2n´i `
ÿ

v‰0PAăd

p´avqiak´2n´i

`
ÿ

u‰0PAăd

ÿ

v‰0PAăd

i
ÿ

j“0

ˆ

i

j

˙

pbuqi´jp´avqjpa ` uqk´2n´i

“
ÿ

u‰0PAăd

pbuqipa ` uqk´2n´i ` p´1qiak´2nSd,i

`
ÿ

u‰0PAăd

i
ÿ

j“0

ˆ

i

j

˙

pbuqi´jp´aqjpa ` uqk´2n´iSd,j

“
ÿ

u‰0PAăd

pbuqipa ` uqk´2n´i `
ÿ

u‰0PAăd

pbuqipa ` uqk´2n´iSd,0

“ p1 ` Sd,0q
ÿ

u‰0PAăd

k´2n´i
ÿ

j“0

ˆ

k ´ 2n ´ i

j

˙

biak´2n´i´jui`j

“ p1 ` Sd,0q
k´2n´i

ÿ

j“0

ˆ

k ´ 2n ´ i

j

˙

biak´2n´i´jSd,i`j “ 0.

For i “ 0, we have

ÿ

pu,vq‰p0,0qPA2
ăd

p´aqn

paz ` bqk´n
ξ0ppa ` uqpaz ` bqqk´2n

“
p´aqn

paz ` bqn
ξ0

ÿ

pu,vq‰p0,0qPA2
ăd

pa ` uqk´2n

“
p´aqn

paz ` bqn
ξ0

˜

ÿ

u‰0PAăd

ÿ

vPAd

pa ` uqk´2n `
ÿ

v‰0PAăd

ak´2n

¸

“
p´aqn

paz ` bqn
ξ0p´ak´2nq.

Since T k´n ´ 1 “ pT ´ 1qnF pT q, we have ξ0 “ F p0q “ p´1qn`1 and

p´aqn

paz ` bqn
ξ0p´ak´2nq “

ak´n

paz ` bqn
,

which agrees with the term on the left-hand side of the lemma for
pu, vq “ p0, 0q. This concludes the proof. □
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Now choose any integer d ě k ´ 2n ` 1 and define
(8.11)

ϕk,npzq :“
ÿ

pu,vq‰p0,0qPA2
ăd

uk´n

puz ` vqn

`
ÿ

pu,vq‰p0,0qPA2
ăd

ÿ

pa,bq‰p0,0qPtdA2

pbu ´ avqk´n

paz ` bqk´nppa ` uqz ` b ` vqn
.

Lemma 8.22. For any z P Ω, the series (8.11) converges and defines
an element ϕk,n P OpΩq.

Proof. Take any non-negative integers r, s. For any pu, vq ‰ p0, 0q P

A2
ăd and any integer m ą d, put

fu,v,a,bpzq :“
pbu ´ avqk´n

paz ` bqk´nppa ` uqz ` b ` vqn
,

ϕmpzq :“
ÿ

pa,bq‰p0,0qPtdA2
ăm´d

fu,v,a,bpzq.

Then Lemma 5.26 implies ϕm P OpΩq. By Proposition 5.24, it is enough
to show that the sequence tϕmumąd is Cauchy with respect to the supre-
mum norm | ´ |sup of the reduced affinoid variety Ωr,s.

Note that we have

ϕm`1pzq ´ ϕmpzq “
ÿ

pa,bqPtdA2
ăm`1´dztdA2

ăm´d

fu,v,a,bpzq

and pa, bq P tdA2
ăm`1´d lies in t

dA2
ăm`1´dzt

dA2
ăm´d exactly when one of

the following condition holds:

(1) degpaq “ m ě degpbq.
(2) degpaq ă degpbq “ m.

For the case (1), we have a ‰ 0 and a ` u ‰ 0. Since z P Ωr,s, we
have

|az`b| “ |a|

ˇ

ˇ

ˇ

ˇ

z `
b

a

ˇ

ˇ

ˇ

ˇ

ě qm´r, |pa`uqz`b`v| “ |a`u|

ˇ

ˇ

ˇ

ˇ

z `
b ` v

a ` u

ˇ

ˇ

ˇ

ˇ

ě qm´r.

Thus

(8.12) |fu,v,a,bpzq|sup ď
qpd´1`mqpk´nq

qpm´rqk
“ q´mn`pd´1qpk´nq`rk.

For the case (2), we have |b ` v| “ |b| “ qm. If |az ` b| ě |b|, then
|az` b| ě qm. If |az` b| ă |b|, then a ‰ 0 and |az| “ |b|. Since z P Ωr,s,
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we have q´r ď |z| ď qs and thus |a| “ |b||z|´1 ě qm´s. This yields

|az ` b| “ |a|

ˇ

ˇ

ˇ

ˇ

z `
b

a

ˇ

ˇ

ˇ

ˇ

ě qm´s´r.

Similar estimates hold for |pa ` uqz ` b ` v|, which implies

mint|az ` b|, |pa ` uqz ` b ` z|u ě mintqm, qm´s´ru.

Hence we obtain
(8.13)

|fu,v,a,bpzq|sup ď
qpd´1`mqpk´nq

mintqm, qm´s´ruk
“ q´mn`pd´1qpk´nq´kmint0,´r´su.

By (8.12) and (8.13), there exists a constant C which is independent
of m satisfying

|ϕm`1pzq ´ ϕmpzq|sup ď q´mn`C .

Since n ą 0, we have

lim
mÑ8

|ϕm`1pzq ´ ϕmpzq|sup “ 0

and the lemma follows. □

Lemma 8.23.

ϕk,n

ˆ

´1

z

˙

“ zkϕk,npzq.

Proof. We have

ϕk,n

ˆ

´1

z

˙

“
ÿ

pu,vq‰p0,0qPA2
ăd

uk´nzn

pvz ´ uqn

`
ÿ

pu,vq‰p0,0qPA2
ăd

ÿ

pa,bq‰p0,0qPtdA2

zkpbu ´ avqk´n

pbz ´ aqk´nppb ` vqz ´ pa ` uqqn
.

By Lemma 8.20, this equals

ÿ

pu,vq‰p0,0qPA2
ăd

vk´nzk

pvz ´ uqn

`
ÿ

pu,vq‰p0,0qPA2
ăd

ÿ

pa,bq‰p0,0qPtdA2

zkpbu ´ avqk´n

pbz ´ aqk´nppb ` vqz ´ pa ` uqqn
.
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Replacing u by ´u and a by ´a, we see that this equals

ÿ

pu,vq‰p0,0qPA2
ăd

vk´nzk

pvz ` uqn

`
ÿ

pu,vq‰p0,0qPA2
ăd

ÿ

pa,bq‰p0,0qPtdA2

zkpav ´ buqk´n

pbz ` aqk´nppb ` vqz ` pa ` uqqn
.

Since pu, vq ÞÑ pv, uq and pa, bq ÞÑ pb, aq give bijections on the index
sets of the sums, this agrees with zkϕk,npzq. □

Lemma 8.24.

ϕk,npzq “ π̄k
ÿ

aPA

ak´nGnpuApazqq.

In particular, the function ϕk,npzq is independent of the choice of d.

Proof. By dividing the double summation defining ϕk,n into the sum
for a “ 0 and a ‰ 0, we can write

ϕk,npzq “
ÿ

pu,vq‰p0,0qPA2
ăd

uk´n

puz ` vqn

`
ÿ

pu,vq‰p0,0qPA2
ăd

ÿ

b‰0PtdA

pbuqk´n

bk´npuz ` b ` vqn

`
ÿ

pu,vq‰p0,0qPA2
ăd

ÿ

a‰0PtdA

ÿ

bPtdA

pbu ´ avqk´n

paz ` bqk´nppa ` uqz ` b ` vqn
.

For the first and second partial sums, since we have

Aăd \ ptdAzt0u ` Aădq “ A,

by (8.9) the sum of these partial sums equals

(8.14)
ÿ

u‰0PAăd

ÿ

vPA

uk´n

puz ` vqn
“ π̄n

ÿ

a‰0PAăd

ak´nGnpuApazqq.

By Lemma 8.21, the third partial sum equals

ÿ

pu,vqPA2
ăd

ÿ

a‰0PtdA

ÿ

bPtdA

pa ` uqk´n

ppa ` uqz ` b ` vqn
.

Since we have

Aăd ` tdAzt0u “ AzAăd, Aăd ` tdA “ A,
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(8.9) implies that the sum equals

(8.15)
ÿ

aPAzAăd

ÿ

bPA

ak´n

paz ` bqn
“ π̄n

ÿ

aPAzAăd

ak´nGnpuApazqq.

Now the lemma follows from (8.14) and (8.15). □
Lemma 8.25. For any γ P GL2pAq, we have ϕk,n|k,nγ “ ϕk,n.

Proof. Note that by the theory of Smith normal forms, the group
GL2pAq is generated by the elements

ˆ

0 ´1
1 0

˙

,

ˆ

1 b
0 1

˙

pb P Aq,

ˆ

c 0
0 1

˙

pc P Fˆ
q q.

For the first one, the equality of the lemma follows from Lemma 8.23.
Since

expApapz ` bqq “ expApazq ` expApabq “ expApazq for any a, b P A,

Lemma 8.24 yields the case of elements of the second kind. For the
third one, since pu, vq ÞÑ pcu, vq and pa, bq ÞÑ pca, bq give permutations
on A2

ădztp0, 0qu and ptdAq2ztp0, 0qu, by the definition of ϕk,n and the
assumption k ´ 2n P pq ´ 1qZą0 we have

ϕk,npczq “ cn´kϕk,npzq “ c´nϕk,npzq.

This concludes the proof. □
By Lemma 8.6 and Lemma 8.24, for any sufficiently small integer

r, there exists F P OpDC8p0, ρrqq satisfying F p0q “ 0 and ϕk,npzq “

F puApzqq for any z P Ωr. On the other hand, the Fourier expansion
at 8 yields a rigid analytic function G P OpDC8p0, ρrqzt0uq such that
ϕk,npzq “ GpuApzqq for any z P Ωr. By (6.10) and Lemma 8.7, we obtain
F “ G, which shows that ϕk,n vanishes at 8 and ϕk,n P Sk,npGL2pAqq.
Then Proposition 8.18 follows by putting

fk,n :“ π̄´kϕk,n.

□
Lemma 8.26.

fk,n ‰ 0.

Proof. As we have seen in the last paragraph of the proof of Proposition
8.18, Lemma 8.6 and Lemma 8.7 imply that the Fourier expansion
fk,npuq of fk,n at 8 is given by the limit of the series

ÿ

aPA`

ak´nGnpfapuqq
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in OpDC8p0, ρqq with some ρ. By Proposition 8.4, we can write as

GnpXq “ gmX
m ` ¨ ¨ ¨ ` gn´1X

n´1 ` Xn, gi P C8, gm ‰ 0

with some integer m P r1, ns. By Lemma 6.40, for any a P A` with
degpaq ą 0, we have

fapuq P uqC8rruss, Gnpfapuqq P umqC8rruss.

Since Gnpf1puqq “ Gnpuq P gmu
m ` um`1C8rus, this yields

fk,npuq ” gmu
m mod um`1C8rruss.

Hence fk,n has a nontrivial m-th coefficient in its Fourier expansion at
8 and the lemma follows. □

Lemma 8.27. Let k, n be positive integers satisfying k´2n P pq´1qZą0

and n ď pvppk´nq. Let fk,n P Sk,npGL2pAqq be the Drinfeld cuspform of
Proposition 8.18. Let Q P AzFq be a monic irreducible polynomial.
Then

TQfk,n “ Qn´1fk,n.

Proof. By Lemma 7.17 and Example 7.18, we have

pTQfk,nqpzq “ Q´1
ÿ

degpβqădegpQq

ÿ

aPA`

ak´nGn

ˆ

uA

ˆ

apz ` βq

Q

˙˙

` Qk´1
ÿ

aPA`

ak´nGnpuApQazqq.

For the former sum, (8.9) yields

Q´1
ÿ

degpβqădegpQq

ÿ

aPA`

ak´nGn

ˆ

uA

ˆ

apz ` βq

Q

˙˙

“ pπ̄nQq´1
ÿ

degpβqădegpQq

ÿ

aPA`

ÿ

bPA

ak´nQn

papz ` βq ` Qbqn
.

When Q ∤ a, by Lemma 8.10 the map

A ˆ tβ P A | degpβq ă degpQqu Ñ A, pb, βq ÞÑ Qb ` aβ
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is a bijection. Thus by (8.9) we obtain

pπ̄nQq´1
ÿ

degpβqădegpQq

ÿ

aPA`, Q∤a

ÿ

bPA

ak´nQn

papz ` βq ` Qbqn

“ pπ̄nQq´1
ÿ

aPA`, Q∤a

ÿ

bPA

ak´nQn

paz ` bqn

“ Qn´1
ÿ

aPA`, Q∤a

ak´nGnpuApazqq.

When Q | a, write a “ QC and we have

“ pπ̄nQq´1
ÿ

degpβqădegpQq

ÿ

aPA`, Q|a

ÿ

bPA

ak´nQn

papz ` βq ` Qbqn

“ pπ̄nQq´1
ÿ

degpβqădegpQq

ÿ

CPA`

ÿ

bPA

pQCqk´nQn

ppQCqpz ` βq ` Qbqn

“ pπ̄nQq´1
ÿ

degpβqădegpQq

ÿ

CPA`

ÿ

bPA

pQCqk´n

pCz ` Cβ ` bqn
.

For any β P A with degpβq ă degpQq and C P A`, the map

A Ñ A, b Ñ Cβ ` b

is a bijection. Thus the sum equals

pπ̄nQq´1
ÿ

degpβqădegpQq

ÿ

CPA`

ÿ

bPA

pQCqk´n

pCz ` bqn
“ 0.

Hence we obtain

pTQfk,nqpzq “ Qn´1
ÿ

aPA`, Q∤a

ak´nGnpuApazqq ` Qk´1
ÿ

aPA`

ak´nGnpuApQazqq

“ Qn´1
ÿ

aPA`, Q∤a

ak´nGnpuApazqq ` Qn´1
ÿ

aPA`, Q|a

ak´nGnpuApazqq

“ Qn´1fk,npzq.

This concludes the proof. □

Remark 8.28. Fix a positive integer n. For any positive integer m,
put k “ n ` qnpn ` pq ´ 1qmq. Then

k ´ 2n

q ´ 1
“

ˆ

n
qn ´ 1

q ´ 1
` qnm

˙

P Zą0, vppk ´ nq ě n.
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Thus Lemma 8.27 shows that tfn`qnpn`pq´1qmq,numPZą0 gives an infi-
nite family of nonzero Drinfeld cuspforms of level SL2pAq and differ-
ent weights such that each member of the family has the same Hecke
eigenvalue for any monic irreducible polynomial Q P A. In particular,
a Drinfeld eigenform is not determined by its Hecke eigenvalues even
up to a scalar multiple.

9. Harmonic cocycles

9.1. Definition of harmonic cocycles.

Definition 9.1. LetM be an additive group and let T be the Bruhat–
Tits tree. A map c : T o

1 Ñ M is called a harmonic cocycle if the
following conditions hold.

(1) For any v P T0, we have
ÿ

ePT o
1 , tpeq“v

cpeq “ 0.

(2) For any e P T o
1 , we have cp´eq “ ´cpeq.

The condition (1) is referred to as the harmonicity of c.

Definition 9.2. Let V pC8q “ C2
8 be the set of row vectors with entries

in C8. Let Γ be an arithmetic subgroup of GL2pKq and put

Hk´2pC8q “ Symk´2pHomC8pV pC8q,C8qq,

VkpC8q “ HomC8pHk´2pC8q,C8q.

They are endowed with natural left actions of Γ induced by its left
action ˝ on V pC8q, which are also denoted by ˝. For any P P H1pC8q “

HomC8pV pC8q,C8q and v P V pC8q, this means

pγ ˝ P qpvq “ P pγ´1 ˝ vq.

The action of γ “

ˆ

a b
c d

˙

P GL2pKq on Hk´2pC8q and VkpC8q is

described as follows. Let f1 “ p1, 0q and f2 “ p0, 1q be the standard
basis of V pC8q. Let X “ f_

1 and Y “ f_
2 be the dual basis of H1pC8q.

Then we have

γ˝pf1, f2q “ pf1, f2q
tγ´1, γ˝pX,Y q “ pX,Y qγ “ paX`cY, bX`dY q.

We identify Hk´2pC8q with the C8-subspace of the polynomial ring
C8rX,Y s consisting of polynomials of total degree k ´ 2. Then, for
any ω P VkpC8q, the action of γ is given by
(9.1)

pγ ˝ ωqpX iY k´2´iq “ ωpγ´1 ˝ X iY k´2´iq

“ detpγq2´kωppdX ´ cY qip´bX ` aY qk´2´iq.
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Definition 9.3. Let Γ be an arithmetic subgroup of GL2pKq and let
k ě 2 be an integer. A harmonic cocycle c : T o

1 Ñ VkpC8q which is
Γ-equivariant is called a harmonic cocycle of level Γ and weight k. The
condition of being Γ-equivariant means

pγ ˝ cqpeq “ cpγ ˝ eq for any γ P Γ, e P T o
1 .

The C8-vector space of harmonic cocycles of level Γ and weight k is
denoted by Char

k pΓ,C8q or Char
k pΓq.

Definition 9.4. For any c P Char
k pΓq and γ P GL2pKq, let

γc : T o
1 Ñ VkpC8q, γcpeq “ γ ˝ cpγ´1 ˝ eq.

Then γc P Char
k pγΓγ´1q. We have γc “ c for any γ P Γ.

Proposition 9.5. Let Γ be an arithmetic subgroup of GL2pKq and
let k ě 2 be an integer. Then any element c P Char

k pΓq is cuspidal.
Namely, there exists a finite subset S of ΓzT o

1 such that cpeq “ 0 if the
Γ-equivalence class of e does not lie in S.

Proof. Take any ν P GL2pKq satisfying νΓν´1 Ď GL2pAq. By replacing
Γ by νΓν´1 and c by νc, we may assume that Γ is a congruence subgroup
of GL2pAq. Moreover, by Lemma 3.12 and Lemma 3.15 it is enough to
show that for any g P GL2pAq, we have cpg ˝enq “ 0 for any sufficiently
large integer n, where en is the standard edge of Definition 2.4. Again
replacing c by g´1

c and Γ by g´1Γg, we may assume g “ id.
For this, by Lemma 3.4 there exists a nonzero element n P A of

degree d ą 0 such that Γpnq is a subgroup of finite index of Γ. Since
Char
k pΓq Ď Char

k pΓpnqq, we may assume Γ “ Γpnq.
Put

U “ StabΓpnqp8q “

ˆ

1 nA
0 1

˙

,

Ui “ StabUpeiq “

"ˆ

1 b
0 1

˙ ˇ

ˇ

ˇ

ˇ

b P nA, degpbq ď i

*

pi ě 1q,

where that last equality follows from (3.3). Then we have

Ui Ĺ Ui`1 pi ě dq, U “
ď

iěd

Ui.

Moreover, for any i ě d the quotient group Ui`1{Ui is isomorphic to
the additive group Fq.

Write M “ VkpC8q. For any i ě d, let Mi “ MUi be the fixed part
of M by the action ˝ of Ui. Since Mi`1 Ď Mi for any i ě d and M
is finite-dimensional, there exists an integer i0 ě d such that for any
i ě i0 we have Mi “ Mi`1.
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Take any integer j ě i0 ` 1. Since Uj fixes ej and vj, we have an
injection

Uj{Uj´1 Ñ te P T o
1 | tpeq “ vjuzt´eju, γ ÞÑ γ ˝ ej´1.

By comparing the cardinality we see that it is a bijection. Since c is
Γ-equivariant, for any γ P Uj´1 we have

γ ˝ cpej´1q “ cpγ ˝ ej´1q “ cpej´1q

and thus cpej´1q P Mj´1 “ Mj. Then the harmonicity of c yields

cpejq “
ÿ

γPUj{Uj´1

cpγ ˝ ej´1q “
ÿ

γPUj{Uj´1

γ ˝ cpej´1q

“
ÿ

γPUj{Uj´1

cpej´1q “ qcpej´1q “ 0.

This concludes the proof. □

9.2. Integration of polynomials via a harmonic cocycle. Let Γ
be an arithmetic subgroup of GL2pKq and let k ě 2 be an integer.
Let c P Char

k pΓq be any harmonic cocycle of weight k and level Γ. We
denote by Pk the C8-subspace of the polynomial ring C8rxs consisting
of polynomials of degree ď k ´ 2.
For any e P T o

1 and any integer 0 ď i ď k ´ 2, define

(9.2)

ż

Upeq

xidµcpxq :“ p´1qicpeqpXk´2´iY iq,

where Upeq is the distinguished closed disc in P1pK8q associated with
the edge e as in Definition 4.17. By linearity, we obtain a C8-linear
map

Pk Ñ C8, fpxq ÞÑ

ż

Upeq

fpxqdµcpxq.

For any P pX,Y q P Hk´2pC8q, the equality (9.2) yields

cpeqpP pX,Y qq “

ż

Upeq

P p1,´xqdµcpxq.

Lemma 9.6. Suppose that e, e1
1, . . . , e

1
r P T o

1 satisfy

Upeq “

r
ž

i“1

Upe1
iq.

Then we have

(9.3) cpeq “

r
ÿ

i“1

cpe1
iq.
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In particular, for any fpxq P Pk we have

ż

Upeq

fpxqdµcpxq “

r
ÿ

i“1

ż

Upe1
iq

fpxqdµcpxq.

Proof. By Lemma 4.26, for any half-line H P Hpeq there exist a unique
i P t1, . . . , ru such that H passes though e1

i. Then the harmonicity of c
yields (9.3). The second assertion of the lemma follows from (9.2). □

Let U be a compact open subset of P1pK8q. By Lemma 4.13 and
Lemma 4.2, we can write

U “

r
ž

i“1

Upeiq

with some ei P T o
1 . For any fpxq P Pk, we put

ż

U

fpxqdµcpxq :“
r

ÿ

i“1

ż

Upeiq

fpxqdµcpxq.

It is independent of the choice of a decomposition of U into the disjoint
union of distinguished closed discs in P1pK8q. Indeed, by Lemma 4.16
we are reduced to the case of U “ Upeq with some e P T o

1 , which follows
from Lemma 9.6.

Lemma 9.7. (1) For any fpxq P Pk, e P T o
1 and γ “

ˆ

a b
c d

˙

P

GL2pKq, we have

ż

Upγ˝eq

fpxqµγcpxq “

ż

Upeq

detpγq2´kfpγpxqqpcx ` dqk´2dµcpxq.

(2) For any fpxq P Pk, we have

ż

P1pK8q

fpxqdµcpxq “ 0.
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Proof. Note that fpγpxqqpcx`dqk´2 P Pk. By linearity, we may assume
fpxq “ xi with some 0 ď i ď k ´ 2. Then we have
ż

Upγ˝eq

fpxqµγcpxq “ p´1qiγcpγ ˝ eqpXk´2´iY iq

“ p´1qiγ ˝ cpeqpXk´2´iY iq

“ p´1qi detpγq2´kcpeqppdX ´ cY qk´2´ip´bX ` aY qiq

“

ż

Upeq

p´1qi detpγq2´kpd ` cxqk´2´ip´b ´ axqidµcpxq

“

ż

Upeq

detpγq2´k

ˆ

ax ` b

cx ` d

˙i

pcx ` dqk´2dµcpxq.

This proves (1).
For (2), since P1pK8q is compact we may compute the integral using

the covering P1pK8q “ Upeq \ Up´eq for any e P T o
1 . Then Definition

9.1 (2) yields (2). □

Lemma 9.8. Let γ “

ˆ

a b
c d

˙

P GL2pKq and let e P T o
1 satisfying

8 R Upeq and 8 R Upγ ˝eq. Then |cx`d| is constant for any x P Upeq.

Proof. Since the lemma is trivial for c “ 0, we may assume c ‰ 0. Since
8 R Upeq, we can write Upeq “ Dpα, ρq with some α P K8 and ρ P qZ.
The assumption yields ´d

c
“ γ´1p8q R Upeq and thus

|cx ` d| “ |c|

ˇ

ˇ

ˇ

ˇ

x ´ p´
d

c
q

ˇ

ˇ

ˇ

ˇ

ą |c|ρ for any x P Upeq.

On the other hand, for any x, y P Upeq we have

|pcx ` dq ´ pcy ` dq| “ |c||x ´ y| ď |c|ρ,

which yields |cx ` d| “ |cy ` d|. □

Lemma 9.9. Let γ “

ˆ

a b
c d

˙

P GL2pKq and let e P T o
1 satisfying

8 R Upeq and 8 R Upγ ˝ eq. Then we have

ρpγ ˝ eq “ ρpeq|cx ` d|´2| detpγq| for any x P Upeq.

Proof. Since 8 R Upeq, we have Upeq “ Dpx, ρpeqq for any x P Upeq.
Since 8 R Upγ ˝ eq “ γpUpeqq, Lemma 4.8 concludes the proof. □

Lemma 9.10. Let γ “

ˆ

a b
c d

˙

P GL2pKq and let e P T o
1 satisfying

8 R Upeq and 8 P Upγ ˝ eq. Then we have

c ‰ 0, ρpγ ˝ eq “ ρpeq|c|2| detpγq|´1.
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Proof. By assumption, we have ´d
c

“ γ´1p8q P Upeq. Thus c ‰ 0 and

Upeq “

"

z P K8

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

z `
d

c

ˇ

ˇ

ˇ

ˇ

ď ρpeq

*

.

Then Lemma 4.8 yields

Upγ ˝ eq “

!

z P K8

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
z ´

a

c

ˇ

ˇ

ˇ
ě | detpγq||c|´2ρpeq´1

)

Y t8u,

from which the lemma follows. □
Lemma 9.11. Let e P T o

1 be any edge satisfying 8 R Upeq and let

r P Upeq. For any γ “

ˆ

a b
c d

˙

P Γ satisfying γ´1prq ‰ 8 and any

integer 0 ď i ď k ´ 2, we have
ż

Upeq

px ´ rqidµcpxq

“

k´2´i
ÿ

j“0

ˆ

k ´ 2 ´ i

j

˙

detpγq2´k`icjpcγ´1prq ` dqk´2´2i´j

¨

ż

Upγ´1˝eq

px ´ γ´1prqqi`jdµcpxq.

Proof. Lemma 9.7 (1) yields
ż

Upeq

px ´ rqidµcpxq “

ż

Upγ´1˝eq

detpγq2´k

ˆ

ax ` b

cx ` d
´ r

˙i

pcx ` dqk´2dµcpxq.

Then we have
ˆ

ax ` b

cx ` d
´ r

˙i

pcx ` dqk´2

“ pax ` b ´ rpcx ` dqqipcx ` dqk´2´i

“ ppa ´ crqx ´ pdr ´ bqqipcx ` dqk´2´i

“ pa ´ crqi
ˆ

x ´
dr ´ b

´cr ` a

˙i

pcpx ´ γ´1prqq ` pcγ´1prq ` dqqk´2´i

“ pa ´ crqipx ´ γ´1prqqi
k´2´i
ÿ

j“0

ˆ

k ´ 2 ´ i

j

˙

cjpx ´ γ´1prqqjpcγ´1prq ` dqk´2´i´j.

Using the equality

pa ´ crqpd ` cγ´1prqq “ pa ´ crq

ˆ

d ` c

ˆ

dr ´ b

´cr ` a

˙˙

“ ad ´ cdr ` cpdr ´ bq “ detpγq,
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we obtain
ˆ

ax ` b

cx ` d
´ r

˙i

pcx ` dqk´2

“

k´2´i
ÿ

j“0

ˆ

k ´ 2 ´ i

j

˙

detpγqicjpx ´ γ´1prqqi`jpcγ´1prq ` dqk´2´2i´j,

from which the lemma follows. □
Lemma 9.12. Let e P T o

1 be any edge satisfying 8 R Upeq and let

r P Upeq. For any γ “

ˆ

a b
c d

˙

P Γ satisfying γ´1prq “ 8 and any

integer 0 ď i ď k ´ 2, we have
ż

Upeq

px ´ rqidµcpxq “ detpγq2´k`ip´cq´i

ż

Upγ´1˝eq

pcx ` dqk´2´idµcpxq.

Proof. The assumption yields r “ γp8q “ a
c
. By Lemma 9.7 (1), we

have
ż

Upeq

px ´ rqidµcpxq “

ż

Upγ´1˝eq

detpγq2´k

ˆ

ax ` b

cx ` d
´
a

c

˙i

pcx ` dqk´2dµcpxq.

Then the lemma follows from
ˆ

ax ` b

cx ` d
´
a

c

˙i

pcx ` dqk´2 “ p´cq´i detpγqipcx ` dqk´2´i.

□
Lemma 9.13. There exists C ą 0 such that for any e P T o

1 with
8 R Upeq, any r P Upeq and any 0 ď i ď k ´ 2, we have

ˇ

ˇ

ˇ

ˇ

ż

Upeq

px ´ rqidµcpxq

ˇ

ˇ

ˇ

ˇ

ă Cρpeqi´
k´2
2 .

Proof. From Lemma 9.7 (1), we see that if cpe1q “ 0 for some e1 P Γe,
then we have

ş

Upeq
px ´ rqidµcpxq “ 0 and the estimate in the lemma

follows. By Proposition 9.5, we can take e1
1, . . . , e

1
m P T o

1 such that
any e P T o

1 satisfying cpeq ‰ 0 is equivalent to some ˘e1
i modulo Γ.

Replacing e1
i with ´e1

i if necessary, we may assume 8 R Upe1
iq for any

i “ 1, . . . ,m.
Take any e P T o

1 satisfying cpeq ‰ 0 and 8 R Upeq. Then e “ ˘γ ˝ e1
s

with some γ “

ˆ

a b
c d

˙

P Γ and s “ 1, . . . ,m.

First suppose e “ γ ˝ e1
s. Then neither Upe1

sq nor Upγ ˝ e1
sq “ Upeq

contains 8. For any r P Upeq, we have γ´1prq P Upe1
sq and γ

´1prq ‰ 8.
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Applying Lemma 9.9 to x “ γ´1prq P Upe1
sq gives

ρpeq “ ρpe1
sq|cγ´1prq ` d|´2.

Moreover, since 8 R Upe1
sq and ´d

c
“ γ´1p8q R Upe1

sq, we have

|cγ´1prq ` d| “ |c||γ´1prq ´ γ´1p8q| ą |c|ρpe1
sq.

Then Lemma 9.11 yields

ρpeq
k´2
2

´i

ˇ

ˇ

ˇ

ˇ

ż

Upeq

px ´ rqidµcpxq

ˇ

ˇ

ˇ

ˇ

ď max
0ďjďk´2´i

ρpe1
sq

k´2
2

´i|c|j|cγ´1prq ` d|´j

ˇ

ˇ

ˇ

ˇ

ż

Upe1
sq

px ´ γ´1prqqi`jdµcpxq

ˇ

ˇ

ˇ

ˇ

ď max
0ďjďk´2´i

ρpe1
sq

k´2
2

´i´j

ˇ

ˇ

ˇ

ˇ

ż

Upe1
sq

px ´ γ´1prqqi`jdµcpxq

ˇ

ˇ

ˇ

ˇ

.

Since γ´1prq P Upe1
sq, we have

ˇ

ˇ

ˇ

ˇ

ż

Upe1
sq

px ´ γ´1prqqi`jdµcpxq

ˇ

ˇ

ˇ

ˇ

ď max
0ďlďi`j, zPUpe1

sq

ˇ

ˇcpe1
sqpX lY i`j´lqzl

ˇ

ˇ .

Since 8 R Upe1
sq, the value on the right-hand side is bounded by a real

number depending only on (k, the harmonic cocycle c and) e1
s. Thus

there exists a constant C 1 ą 0 which satisfies the estimate of the lemma
for any e P

Ťm
s“1 Γe

1
s.

Next suppose e “ ´γ ˝ e1
s. Then we have 8 R Upe1

sq and 8 P

Upγ ˝ e1
sq “ Up´eq. Lemma 9.10 gives c ‰ 0, ρp´eq “ ρpe1

sq|c|2 and
ρpeq “ q´1ρp´eq´1 “ pqρpe1

sqq´1|c|´2.
Put r1 :“ a

c
“ γp8q P γpUp´e1

sqq “ Upeq . Then Lemma 9.12 yields

ρpeq
k´2
2

´i

ˇ

ˇ

ˇ

ˇ

ż

Upeq

px ´ r1qidµcpxq

ˇ

ˇ

ˇ

ˇ

“ pqρpe1
sqqi´

k´2
2 |c|2i`2´k|c|´i

ˇ

ˇ

ˇ

ˇ

ż

Upγ´1˝eq

pcx ` dqk´2´idµcpxq

ˇ

ˇ

ˇ

ˇ

“ pqρpe1
sqqi´

k´2
2

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Up´e1
sq

ˆ

x `
d

c

˙k´2´i

dµcpxq

ˇ

ˇ

ˇ

ˇ

ˇ

.

By Definition 9.1 (2), this equals

pqρpe1
sqqi´

k´2
2

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Upe1
sq

ˆ

x `
d

c

˙k´2´i

dµcpxq

ˇ

ˇ

ˇ

ˇ

ˇ

.

Since ´d
c

“ γ´1p8q P γ´1pUp´eqq “ Upe1
sq, this is bounded by

C2 “ max
0ďiďk´2

max
s“1,...,m

max
0ďlďk´2´i, zPUpe1

sq
pqρpe1

sqqi´
k´2
2

ˇ

ˇcpe1
sqpX lY k´2´i´lqzl

ˇ

ˇ .
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Let r P Upeq. Then |r1 ´ r| ď ρpeq and we obtain
ˇ

ˇ

ˇ

ˇ

ż

Upeq

px ´ rqidµcpxq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

Upeq

px ´ r1 ` pr1 ´ rqq
i
dµcpxq

ˇ

ˇ

ˇ

ˇ

ď max
0ďjďi

ˇ

ˇ

ˇ

ˇ

ż

Upeq

px ´ r1qjdµcpxq

ˇ

ˇ

ˇ

ˇ

|r1 ´ r|i´j

ď max
0ďjďi

C2ρpeqj´ k´2
2 ρpeqi´j “ C2ρpeqi´

k´2
2 .

Thus there exists a constant C3 ą 0 which satisfies the estimate of
the lemma for any e P

Ťm
s“1 Γp´e1

sq. This concludes the proof of the
lemma. □
9.3. Integration of meromorphic functions with poles only at
8.

Definition 9.14. We denote by Ak the set of C8-valued functions f
on P1pK8q which are locally meromorphic with poles only at 8 of order
at most k ´ 2. The latter condition means that for any a P P1pK8q,
there exists ν P Z satisfying

f |Dpa,q´νq P

"

OpDC8pa, q´νqq pa ‰ 8q,
xk´2OpDC8p8, q´νqq pa “ 8q,

where we write

DC8p8, q´νq “ D1
C8

p0, qνq “ Sp

ˆ

C8

B

1

πν8x

F˙

.

Then we have Pk Ď Ak .

For any a P K8 and ν P Z, we consider an element f ofOpDC8pa, q´νqq

or xk´2OpDC8p8, q´νqq as an element of Ak by extending f by zero
outside these discs.

In the sequel, we extend the integration of polynomials with respect
to µc to that of elements of Ak, following [MTT, §11]. Let COpP1pK8qq

be the set of compact open subsets of P1pK8q.

Lemma 9.15. Let e P T o
1 . If 8 P Upeq and 0 R Upeq, then we have

Upeq “ Dp8, q´νq with some ν P Z.
Proof. Write Upeq “ D1pa, qνq with some a P K8 and ν P Z. Since 0 R

Upeq, we have |a| ă qν and Lemma 4.2 implies D˝pa, qνq “ D˝p0, qνq.
Thus we obtain Upeq “ D1p0, qνq “ Dp8, q´νq. □
Theorem 9.16. Let Γ be an arithmetic subgroup of GL2pKq. Let k ě 2
be an integer and c P Char

k pΓq. Then there exists a unique map

COpP1pK8qq ˆ Ak Ñ C8, pU, fq ÞÑ

ż

U

fpxqdµcpxq
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satisfying the following conditions:

(1)
ş

U
fpxqdµcpxq is finitely additive in U and C8-linear in f . The

former condition means that if U1, . . . , Ur P COpP1pK8qq satisfy
U “

šr
i“1 Ui, then we have

ż

U

fpxqdµcpxq “

r
ÿ

i“1

ż

Ui

fpxqdµcpxq.

(2) For any 0 ď i ď k ´ 2 and any e P T o
1 , we have

ż

Upeq

xidµcpxq “ p´1qicpeqpXk´2´iY iq.

(3) There exists a constant C ą 0 satisfying the following condi-
tions:
(a) For any e P T o

1 with 8 R Upeq, any a P Upeq and any
integer i ě 0, we have

ˇ

ˇ

ˇ

ˇ

ż

Upeq

px ´ aqidµcpxq

ˇ

ˇ

ˇ

ˇ

ď Cρpeqi´
k´2
2 .

(b) For any e P T o
1 with 8 P Upeq and 0 R Upeq and any integer

i ě ´pk ´ 2q, we have

ˇ

ˇ

ˇ

ˇ

ż

Upeq

1

xi
dµcpxq

ˇ

ˇ

ˇ

ˇ

ď Cρpeqi`
k´2
2 .

(4) Let e P T o
1 .

(a) Suppose 8 R Upeq. Write Upeq “ Dpa, q´νq with some
a P K8 and ν P Z. Let F pxq “

ř

iě0 cipx ´ aqi P C8xx´a
πν

8
y.

Then we have
ż

Upeq

F pxqdµcpxq “
ÿ

iě0

ci

ż

Upeq

px ´ aqidµcpxq.

(b) Suppose 8 P Upeq and 0 R Upeq. Write Upeq “ Dp8, q´νq

with some ν P Z. Let F pxq “
ř

iě´pk´2q
ci
xi

P xk´2C8x 1
πν

8x
y.

Then we have
ż

Upeq

F pxqdµcpxq “
ÿ

iě´pk´2q

ci

ż

Upeq

1

xi
dµcpxq.
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Corollary 9.17. Let c, c1, c2 P Char
k pΓq and λ P C8. Note that c1 `

c2, λc P Char
k pΓq. For any U P COpP1pK8qq and f P Ak, we have

ż

U

fdµc1`c2pxq “

ż

U

fdµc1pxq `

ż

U

fdµc2pxq,

ż

U

fdµλcpxq “ λ

ż

U

fdµcpxq.

Proof. The map

COpP1pK8qq ˆ Ak Ñ C8, pU, fq ÞÑ

ż

U

fdµc1pxq `

ż

U

fdµc2pxq

satisfies all conditions of Theorem 9.16 for c1`c2. Thus the uniqueness
assertion of Theorem 9.16 yields the first equality.

For the second one, the map

COpP1pK8qq ˆ Ak Ñ C8, pU, fq ÞÑ λ

ż

U

fdµcpxq

satisfies all conditions of Theorem 9.16 for λc, with the constant p1 `

|λ|qC for the assertion (3). Thus we obtain the second equality simi-
larly. □

Definition 9.18. Let a P K8 and ν P Z. For any

F pxq “
ÿ

iě0

cipx ´ aqi P OpDC8pa, q´νqq “ C8

B

x ´ a

πν8

F

,

we define

IpF, a, νq “ π´pk´1qν
8

ÿ

iěk´1

ciπ
iν
8OC8 .

On the other hand, for any

F pxq “
ÿ

iě´pk´2q

ci
xi

P xk´2OpDC8p8, q´νqq “ xk´2C8

B

1

πν8x

F

,

we define

IpF,8, νq “ π´ν
8

ÿ

iě1

ciπ
iν
8OC8 .

Since limiÑ8 ciπ
iν
8 “ 0 in both cases, we see that IpF, a, νq is a finitely

generated OC8-submodule of C8 for any a P P1pK8q. Since OC8 is a
Bézout domain, we can write IpF, a, νq “ αOC8 with some α P C8.
Then we define

|IpF, a, νq| “ |α|.
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Lemma 9.19. Let a, a1 P K8 and ν, ν 1 P Z. Let F pxq P OpDC8pa, q´νqq.
Then

Dpa1, q´ν1

q Ď Dpa, q´νq ñ IpF, a1, ν 1q Ď IpF, a, νq.

Proof. Write F pxq “
ř

iě0 cipx´aqi. From the assumptionDpa1, q´ν1

q Ď

Dpa, q´νq, we see that ν 1 ě ν.
When a “ a1, we have

IpF, a, ν 1q “
ÿ

iěk´1

ciπ
ν1pi´pk´1qq
8 OC8 Ď

ÿ

iěk´1

ciπ
νpi´pk´1qq
8 OC8 “ IpF, a, νq

and the lemma holds for this case. Since we haveDpa1, q´ν1

q Ď Dpa1, q´νq Ď

Dpa, q´νq, we may assume ν “ ν 1.
In the ring OpDC8pa1, q´νqq we can write

F pxq “
ÿ

iě0

c1
ipx ´ a1qi “

ÿ

iě0

cipx ´ aqi “
ÿ

iě0

cipx ´ a1 ` pa1 ´ aqqi,

which yields

c1
j “

ÿ

iěj

ci

ˆ

i

j

˙

pa1 ´ aqi´j.

Since a1 ´ a P πν8OC8 , we have

c1
jπ

jν
8 P

ÿ

iěj

ciπ
jν
8 pa1 ´ aqi´jOC8 Ď

ÿ

iěj

ciπ
iν
8OC8

and thus we obtain IpF, a1, νq Ď IpF, a, νq. □

Lemma 9.20. Let ν, ν 1 P Z. Let F pxq P xk´2OpDC8p8, q´νqq. Then

Dp8, q´ν1

q Ď Dp8, q´νq ñ IpF,8, ν 1q Ď IpF,8, νq.

Proof. Write F pxq “
ř

iě´pk´2q
ci
xi
. Since the assumption implies ν 1 ě

ν, we have

IpF,8, ν 1q “
ÿ

iě1

ciπ
pi´1qν1

8 OC8 Ď
ÿ

iě1

ciπ
pi´1qν
8 OC8 “ IpF,8, νq.

□

Lemma 9.21. Let a P K8 and ν, ν 1 P Z satisfying ν ą ´ν 1 and
|a| ě qν. Let F pxq P xk´2OpDC8p8, q´νqq. Then

Dpa, q´ν1

q Ď Dp8, q´νq, IpF, a, ν 1q Ď πν`pk´1qp1´ν1q
8 IpF,8, νq.

If ν 1 ě 1 ` |ν|, then we also have

IpF, a, ν 1q Ď π´k|ν|
8 IpF,8, νq.
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Proof. The first assertion follows from Lemma 4.14. For the second
assertion, write F pxq “

ř

iě´pk´2q
ci
xi
. In the ring OpDC8pa, q´ν1

qq we
can write

F pxq “
ÿ

iě´pk´2q

ci
pa ` px ´ aqqi

“
ÿ

iě´pk´2q

ci
ai

´

1 `
x ´ a

a

¯´i

“
ÿ

iě´pk´2q

ÿ

jě0

ˆ

´i

j

˙

ci
ai

´x ´ a

a

¯j

“
ÿ

jě0

ÿ

iě´pk´2q

ˆ

´i

j

˙

ci
ai`j

px ´ aqj.

Since
`

´i
j

˘

“ 0 when 0 ď ´i ă j, this yields

IpF, a, ν 1q “ π´pk´1qν1

8

ÿ

jěk´1

ÿ

iě´pk´2q

ˆ

´i

j

˙

ci
ai`j

πjν
1

8 OC8

“ π´pk´1qν1

8

ÿ

jěk´1

ÿ

iě1

ˆ

´i

j

˙

ci
ai`j

πjν
1

8 OC8

Ď
ÿ

jěk´1

ÿ

iě1

ciπ
pi`jqν`pj´pk´1qqν1

8 OC8 .

Since ν ` ν 1 ě 1, for any j ě k ´ 1 and i ě 1 we have

pi ` jqν ` pj ´ pk ´ 1qqν 1 “ iν ` jpν ` ν 1q ´ pk ´ 1qν 1

ě iν ` pk ´ 1q ´ pk ´ 1qν 1

“ iν ` pk ´ 1qp1 ´ ν 1q.

Thus we obtain

IpF, a, ν 1q Ď
ÿ

iě1

ciπ
iν`pk´1qp1´ν1q
8 OC8 “ πν`pk´1qp1´ν1q

8 IpF,8, νq.

Suppose ν 1 ě 1 ` |ν|. Since ν 1 ´ |ν| ą 0 and |ν| ` ν ě 0, we have

pi ` jqν ` pj ´ pk ´ 1qqν 1

“ pi ´ 1qν ` pν 1 ´ |ν|qpj ´ pk ´ 1qq ` pj ` 1qp|ν| ` νq ´ k|ν|

ě pi ´ 1qν ´ k|ν|.

Hence we obtain

IpF, a, ν 1q Ď
ÿ

iě1

ciπ
pi´1qν´k|ν|
8 OC8 “ π´k|ν|

8 IpF,8, νq.

This concludes the proof. □
Lemma 9.22. The map COpP1pK8qq ˆ Ak Ñ C8 satisfying all con-
ditions of Theorem 9.16 is unique.
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Proof. If pU, fq ÞÑ
ş

U
fpxqdµcpxq and pU, fq ÞÑ

ş

U
fpxqdµ1

cpxq are two
maps satisfying the conditions of Theorem 9.16, then the map

pU, fq ÞÑ

ż

U

fpxqdµcpxq ´

ż

U

fpxqdµ1
cpxq

also satisfies the conditions for c “ 0. Thus it is enough to show that
for c “ 0, the conditions of the theorem imply

ş

U
fpxqdµcpxq “ 0. By

Lemma 4.15, we may assume U “ Upeq for some e P T o
1 , and we may

also assume if 0 R Upeq when 8 P Upeq.
First suppose 8 R Upeq. Write Upeq “ Dpa, q´νq with some a P

K8 and ν P Z. Take any fpxq P OpDC8pa, q´νqq. For any ν 1 ě ν,
decompose Upeq into a finite disjoint union of distinguished closed discs
as

Upeq “
ž

a1PΛ

Dpa1, ν 1q, Dpa1, ν 1q “ Upea1q.

Write

fpxq “
ÿ

iě0

cipx ´ a1qi P C8

B

x ´ a1

πν1

8

F

.

Using the assumption c “ 0, the conditions (2) and (4) give
ż

Upea1 q

fpxqdµ0pxq “
ÿ

iěk´1

ci

ż

Upea1 q

px ´ a1qidµ0pxq.

Then ρpea1q “ |πν
1

8| and the condition (3) yield
ˇ

ˇ

ˇ

ˇ

ˇ

ż

Upea1 q

fpxqdµ0pxq

ˇ

ˇ

ˇ

ˇ

ˇ

ď C

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iěk´1

ciπ
ν1pi´ k´2

2
q

8 OC8

ˇ

ˇ

ˇ

ˇ

ˇ

“ C|π8|
kν1

2 |Ipf, a1, ν 1q|

and Lemma 9.19 shows
ˇ

ˇ

ˇ

ˇ

ż

Upeq

fpxqdµ0pxq

ˇ

ˇ

ˇ

ˇ

ď max
a1PΛ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Upea1 q

fpxqdµ0pxq

ˇ

ˇ

ˇ

ˇ

ˇ

ď C|π8|
kν1

2 |Ipf, a, νq|.

Since k ě 2 and ν 1 is arbitrary, we obtain
ş

Upeq
fpxqdµ0pxq “ 0.

Next suppose 8 P Upeq and 0 R Upeq. By Lemma 9.15, we can write
Upeq “ Dp8, q´νq with some ν P Z. Take any fpxq P xk´2OpDC8p8, q´νqq.
For any ν 1 ě 1` |ν|, Lemma 4.14 implies that Upeq is decomposed into
a finite disjoint union of distinguished closed discs as

Upeq “ Dp8, q´ν1

q \
ž

aPΛ

Dpa, q´ν1

q, Dpa, q´ν1

q “ Upeaq

with some finite subset Λ Ď K8.
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Write fpxq “
ř

iě´pk´2q
ci
xi
. On Dp8, q´ν1

q “: Upe1q, the conditions

(2) for c “ 0 and (4) yield
ż

Upe1q

fpxqdµ0pxq “
ÿ

iě1

ci

ż

Upe1q

1

xi
dµ0pxq.

Since ρpe1q “ q´ν1

, the condition (3) implies
ˇ

ˇ

ˇ

ˇ

ż

Upe1q

fpxqdµ0pxq

ˇ

ˇ

ˇ

ˇ

ď C

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iě1

ciπ
ν1pi` k´2

2
q

8 OC8

ˇ

ˇ

ˇ

ˇ

ˇ

“ C|π8|
kν1

2 |Ipf,8, ν 1q|.

By Lemma 9.20, this yields
ˇ

ˇ

ˇ

ˇ

ż

Upe1q

fpxqdµ0pxq

ˇ

ˇ

ˇ

ˇ

ď C|π8|
kν1

2 |Ipf,8, νq|.

On Dpa, q´ν1

q “ Upeaq, the first part of the proof and Lemma 9.21
show
ˇ

ˇ

ˇ

ˇ

ż

Upeaq

fpxqdµ0pxq

ˇ

ˇ

ˇ

ˇ

ď C|π8|
kν1

2 |Ipf, a1, ν 1q| ď C|π8|
kpν1´2|ν|q

2 |Ipf,8, νq|.

Since k ě 2 and ν 1 ě 1`|ν| is arbitrary, again we obtain
ş

Upeq
fpxqdµ0pxq “

0. □

9.4. Construction of integration away from 8.

Definition 9.23. Let a P K8 and ν P Z. Let fpxq “
ř

iě0 cipx ´ aqi

be an element of OpDC8pa, q´νqq. Define

Ta,νpfq :“
k´2
ÿ

i“0

cipx ´ aqi P Pk.

Lemma 9.24. Let a, a1 P K8 and ν, ν 1 P Z satisfying Dpa1, q´ν1

q Ď

Dpa, q´νq. Let fpxq “
ř

iě0 cipx´aqi be an element of OpDC8pa, q´νqq.
Write

Ta,νpfq ´ Ta1,ν1pfq “

k´2
ÿ

i“0

bipx ´ a1qi.

Then we have

πiν8bi P πpk´1qν
8 Ipf, a, νq.

Proof. From the equality

ÿ

jě0

cjpx´aqj “
ÿ

jě0

cjpx´a1`pa1´aqqj “
ÿ

jě0

ÿ

jěiě0

cj

ˆ

j

i

˙

pa1´aqj´ipx´a1qi,



128 SHIN HATTORI

we see that

Ta1,ν1pfq “

k´2
ÿ

i“0

˜

ÿ

jěi

cj

ˆ

j

i

˙

pa1 ´ aqj´i

¸

px ´ a1qi.

On the other hand, we have

k´2
ÿ

j“0

cjpx´aqj “

k´2
ÿ

j“0

cjpx´a1`pa1´aqqj “

k´2
ÿ

j“0

ÿ

jěiě0

cj

ˆ

j

i

˙

pa1´aqj´ipx´a1qi

which yields

Ta,νpfq “

k´2
ÿ

i“0

˜

ÿ

k´2ějěi

cj

ˆ

j

i

˙

pa1 ´ aqj´i

¸

px ´ a1qi.

Hence we obtain

πiν8bi “ πiν8
ÿ

jěk´1

cj

ˆ

j

i

˙

pa1 ´ aqj´i

P
ÿ

jěk´1

cjπ
pj´iqν`iν
8 OC8 “ πpk´1qν

8 Ipf, a, νq.

□

Definition 9.25. Let a P K8 and ν P Z. Let f P OpDC8pa, q´νqq. For
any ν 1 ě ν, take any decomposition

(9.4) Dpa, q´νq “
ž

a1PΛν1

Dpa1, q´ν1

q, Dpa1, q´ν1

q “ Upea1,ν1q

with some finite subset Λν1 Ď K8. Then we define

ma,ν,ν1pfq “
ÿ

a1PΛν1

ż

Upea1,ν1 q

Ta1,ν1pfqdµcpxq,

where the integration on the right-hand side is given by (9.2).

Lemma 9.26. Let C ą 0 be the constant in Lemma 9.13. Let a P K8

and ν P Z. Let f P OpDC8pa, q´νqq. Let ν 1 be an integer satisfying
ν 1 ě ν. For any a1 P Dpa, q´ν1

q, we have Dpa, q´ν1

q “ Dpa1, q´ν1

q and
ˇ

ˇ

ˇ

ˇ

ż

Dpa,q´ν1
q

pTa,ν1pfq ´ Ta1,ν1pfqqdµcpxq

ˇ

ˇ

ˇ

ˇ

ď C|π8|
k
2
ν1

|Ipf, a, νq|.
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Proof. The first assertion follows from Lemma 4.2. By Lemma 9.13
and Lemma 9.24, we have

ˇ

ˇ

ˇ

ˇ

ż

Dpa,q´ν1
q

pTa,ν1pfq ´ Ta1,ν1pfqqdµcpxq

ˇ

ˇ

ˇ

ˇ

ď C max
i“0,...,k´2

|π8|pk´1´iqν1

|Ipf, a, ν 1q||π8|pi´ k´2
2

qν1

“ C|π8|
k
2
ν1

|Ipf, a, ν 1q| ď C|π8|
k
2
ν1

|Ipf, a, νq|,

where the last inequality follows from Lemma 9.19. □

Lemma 9.27. Let C ą 0 be the constant in Lemma 9.13. Let a P K8

and ν P Z. Let f P OpDC8pa, q´νqq. Let ν 1, ν2 be integers satisfying
ν2 ě ν 1 ě ν. Let a1 P Dpa, q´νq so that

Upea1,ν1q :“ Dpa1, q´ν1

q Ď Dpa, q´νq.

Take any decomposition

Dpa1, q´ν1

q “
ž

a2PΛ

Dpa2, q´ν2

q, Dpa2, q´ν2

q “: Upea2,ν2q.

Put

Ja1,ν1,ν2pfq “
ÿ

a2PΛ

ż

Upea2,ν2 q

pTa1,ν1pfq ´ Ta2,ν2pfqqdµcpxq.

Then we have

|Ja1,ν1,ν2pfq| ď C|π8|´ k´2
2

` k
2
ν1

|Ipf, a, νq|.

Proof. We claim that it is enough to show the lemma holds for ν2 “

ν 1 ` 1 for any ν 1 ě ν and a1 P Dpa, q´νq. Indeed, since the case ν2 “ ν 1

follows from Lemma 9.26, by induction we may assume that the lemma
holds for some ν2 ě ν 1. Take any decompositions

Dpa1, q´ν1

q “
ž

a2PΛ

Dpa2, q´ν2

q “
ž

bPΛ1

Dpb, q´ν2´1q.

From Lemma 4.2, we see that the latter is a refinement of the former.
For any a2 P Λ, we can find a subset Λpa2q Ď Λ1 satisfying

Dpa2, q´ν2

q “
ž

bPΛpa2q

Dpb, q´ν2´1q, Dpb, q´ν2´1q “ Upeb,ν2`1q.

Then Lemma 9.6 yields

cpea2,ν2q “
ÿ

bPΛpa2q

cpeb,ν2`1q.
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and also

Ja1,ν1,ν2`1pfq “
ÿ

a2PΛ

ÿ

bPΛpa2q

ż

Upeb,ν2`1q

pTa1,ν1pfq ´ Tb,ν2`1pfqqdµcpxq

“
ÿ

a2PΛ

ÿ

bPΛpa2q

ż

Upeb,ν2`1q

pTa1,ν1pfq ´ Ta2,ν2pfqqdµcpxq

`
ÿ

a2PΛ

ÿ

bPΛpa2q

ż

Upeb,ν2`1q

pTa2,ν2pfq ´ Tb,ν2`1pfqqdµcpxq

“
ÿ

a2PΛ

ż

Upea2,ν2 q

pTa1,ν1pfq ´ Ta2,ν2pfqqdµcpxq

`
ÿ

a2PΛ

ÿ

bPΛpa2q

ż

Upeb,ν2`1q

pTa2,ν2pfq ´ Tb,ν2`1pfqqdµcpxq

“ Ja1,ν1,ν2pfq `
ÿ

a2PΛ

Ja2,ν2,ν2`1pfq.

On the other hand, the assumptions yield

|Ja1,ν1,ν2pfq| ď C|π8|´ k´2
2

` k
2
ν1

|Ipf, a, νq|,

|Ja2,ν2,ν2`1pfq| ď C|π8|´ k´2
2

` k
2
ν2

|Ipf, a, νq|.

Since k ą 0, we obtain

|Ja1,ν1,ν2`1pfq| ď Cmaxt|π8|´ k´2
2

` k
2
ν1

, |π8|´ k´2
2

` k
2
ν2

u|Ipf, a, νq|

“ C|π8|´ k´2
2

` k
2
ν1

|Ipf, a, νq|

and the claim follows.
Now we assume ν2 “ ν 1 ` 1. Write

Ta1,ν1pfq ´ Ta2,ν1`1pfq “

k´2
ÿ

i“0

bipx ´ a2qi.
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By Lemma 9.13 and Lemma 9.24, we have

|Ja1,ν1,ν1`1pfq| ď max
a2PΛ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Upea2,ν1`1q

pTa1,ν1pfq ´ Ta2,ν1`1pfqq dµcpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ď max
a2PΛ, 0ďiďk´2

ˇ

ˇ

ˇ

ˇ

ˇ

bi

ż

Upea2,ν1`1q

px ´ a2qidµcpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ď max
a2PΛ, 0ďiďk´2

C|π8|pν1`1qpi´ k´2
2

q
ˇ

ˇ

ˇ
πpk´1´iqν1

8 Ipf, a1, ν 1q

ˇ

ˇ

ˇ

“ max
0ďiďk´2

C|π8|pν1`1qpi´ k´2
2

q
ˇ

ˇ

ˇ
πpk´1´iqν1

8 Ipf, a1, ν 1q

ˇ

ˇ

ˇ

“ max
0ďiďk´2

C|π8|i´
k´2
2

pν1`1q`pk´1qν1

|Ipf, a1, ν 1q|

“ C|π8|´ k´2
2

` k
2
ν1

|Ipf, a1, ν 1q|.

Now Lemma 9.19 yields

|Ja1,ν1,ν1`1pfq| ď C|π8|´ k´2
2

` k
2
ν1

|Ipf, a, νq|.

This concludes the proof. □
Lemma 9.28. Let C ą 0 be the constant in Lemma 9.13. Then for
any ν 1 ě ν we have

|ma,ν,ν1`1pfq ´ ma,ν,ν1pfq| ď C|π8|´ k´2
2

` k
2
ν1

|Ipf, a, νq|.

Proof. We have two coverings

Dpa, q´νq “
ž

a1PΛν1

Dpa1, q´ν1

q “
ž

a2PΛν1`1

Dpa2, q´ν1´1q.

By Lemma 4.2, this forces the latter to be a refinement of the former.
For any a1 P Λν1 , take a subset Λpa1q Ď Λν1`1 satisfying

Dpa1, q´ν1

q “
ž

a2PΛpa1q

Dpa2, q´ν1´1q.

Then Lemma 9.6 yields

ma,ν,ν1pfq ´ ma,ν,ν1`1pfq “

ÿ

a1PΛν1

ż

Upea1,ν1 q

Ta1,ν1pfqdµcpxq ´
ÿ

a1PΛν1

ÿ

a2PΛpa1q

ż

Upea2,ν1`1q

Ta2,ν1`1pfqdµcpxq

“
ÿ

a1PΛν1

ÿ

a2PΛpa1q

ż

Upea2,ν1`1q

pTa1,ν1pfq ´ Ta2,ν1`1pfqqdµcpxq

“
ÿ

a1PΛν1

Ja1,ν1,ν1`1pfq.
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Then the lemma follows from Lemma 9.27. □

Lemma 9.29. The sequence tma,ν,ν1pfquν1ěν converges in C8.

Proof. By Lemma 6.6, the sequence tma,ν,ν1pfquν1ěν is Cauchy if and
only if

lim
ν1Ñ8

|ma,ν,ν1`1pfq ´ ma,ν,ν1pfq| “ 0.

Since k ě 2, this follows from Lemma 9.28. □

Lemma 9.30. The limit limν1Ñ8 ma,ν,ν1pfq is independent of the choice
of Λν1 chosen to define each ma,ν,ν1pfq.

Proof. For any ν 1 ě ν, write Λν1 “ ta1
1, . . . , a

1
ru. Take any ã1

l P

Dpa1
l, q

´ν1

q and put Λ̃ν1 “ tã1
1, . . . , ã

1
ru. Then Dpa1

l, q
´ν1

q “ Dpã1
l, q

´ν1

q.
Put

m̃a,ν,ν1pfq “

r
ÿ

l“1

ż

Dpa1
l,q

´ν1
q

Tã1
l,ν

1pfqdµcpxq.

By Lemma 9.26, we have

|m̃a,ν,ν1pfq ´ ma,ν,ν1pfq| “

ˇ

ˇ

ˇ

ˇ

ˇ

r
ÿ

l“1

ż

Dpa1
l,q

´ν1
q

pTã1
l,ν

1pfq ´ Ta1
l,ν

1pfqqdµcpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ď C|π8|
k
2
ν1

|Ipf, a, νq|.

Since k ě 2, we have limν1Ñ8 |m̃a,ν,ν1pfq´ma,ν,ν1pfq| “ 0, which implies
the lemma. □

Definition 9.31. Let e P T o
1 satisfying Upeq “ Dpa, q´νq with some

a P K8 and ν P Z. Let f P OpDC8pa, q´νqq. We define
ż

Upeq

fpxqdµcpxq :“ lim
ν1Ñ8

ma,ν,ν1pfq.

9.5. Construction of integration around 8.

Definition 9.32. Let ν P Z and let fpxq “
ř

iě´pk´2q
ci
xi

be an element

of xk´2OpDC8p8, q´νqq. Define

T8,νpfq :“
0

ÿ

i“´pk´2q

ci
xi

P Pk.

Note that for any ν 1 ě ν, we have T8,νpfq “ T8,ν1pfq.

Lemma 9.33. Let a1 P K8 and ν, ν 1 P Z satisfying ν ą ´ν 1 and
|a1| ě qν so that Lemma 4.14 implies Dpa1, q´ν1

q Ď Dp8, q´νq. Let
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fpxq “
ř

iě´pk´2q
ci
xi

be an element of xk´2OpDC8p8, q´νqq. Write

T8,νpfq ´ Ta1,ν1pfq “

k´2
ÿ

i“0

bipx ´ a1qi.

Then we have
π´iν

8 bi P πν8Ipf,8, νq.

Proof. From the equality
ÿ

jě´pk´2q

cj
xj

“
ÿ

jě´pk´2q

cj
pa1 ` px ´ a1qqj

“
ÿ

iě0

ÿ

jě´pk´2q

ˆ

´j

i

˙

cj
pa1qi`j

px´a1qi,

we see that

Ta1,ν1pfq “

k´2
ÿ

i“0

ÿ

jě´pk´2q

ˆ

´j

i

˙

cj
pa1qi`j

px ´ a1qi.

On the other hand, since
`

´j
i

˘

“ 0 when 0 ď ´j ă i, we have

0
ÿ

j“´pk´2q

cj
xj

“

0
ÿ

j“´pk´2q

cj
pa1 ` px ´ a1qqj

“
ÿ

iě0

0
ÿ

j“´pk´2q

ˆ

´j

i

˙

cj
pa1qi`j

px ´ a1qi

“

k´2
ÿ

i“0

0
ÿ

j“´pk´2q

ˆ

´j

i

˙

cj
pa1qi`j

px ´ a1qi,

which yields

bi “ ´
ÿ

jě1

ˆ

´j

i

˙

cj
pa1qi`j

.

Since |a1|´1 ď q´ν “ |π8|ν , we obtain

π´iν
8 bi P π´iν

8

ÿ

jě1

cjπ
pi`jqν
8 OC8 “

ÿ

jě1

cjπ
jν
8 OC8 P πν8Ipf,8, νq.

□
Definition 9.34. Let ν P Z. Let f P xk´2OpDC8p8, q´νqq. For any
ν 1 ě 1 ` |ν|, by Lemma 4.14 we can take a decomposition

Dp8, q´νq “ Dp8, q´ν1

q \
ž

a1PΛν1

Dpa1, q´ν1

q

with some finite subset Λν1 Ď K8. Write Dpa1, q´ν1

q “ Upea1,ν1q for any
a1 P Λν1 Y t8u. Then we define

m8,ν,ν1pfq “

ż

Upe8,ν1 q

T8,ν1pfqdµcpxq `
ÿ

a1PΛν1

ż

Upea1,ν1 q

Ta1,ν1pfqdµcpxq,
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where the integration on the right-hand side is given by (9.2).

Lemma 9.35. Let ν 1, ν̃ P Z satisfying ν 1 ą ´ν̃. Let a1 P K8 satisfying
|a1| ě qν

1

so that Dpa1, q´ν̃q Ď Dp8, q´ν1

q by Lemma 4.14. Let f P

xk´2OpDC8p8, q´ν1

qq. Take a decomposition

Dpa1, q´ν̃q “
ž

ãPΛν̃`1pa1q

Dpã, q´ν̃´1q.

Put

Ja1,ν̃,ν̃`1pfq :“

ż

Dpa1,q´ν̃q

Ta1,ν̃pfqdµcpxq´
ÿ

ãPΛν̃`1pa1q

ż

Dpã,q´ν̃´1q

Tã,ν̃`1pfqdµcpxq.

Then we have

|Ja1,ν̃,ν̃`1pfq| ď C|π8|1` k
2
ν1

|Ipf,8, ν 1q|,

where C is the constant in Lemma 9.13.

Proof. By Lemma 9.6 and (9.2), we have

Ja1,ν̃,ν̃`1pfq “
ÿ

ãPΛν̃`1pa1q

ż

Dpã,q´ν̃´1q

pTa1,ν̃pfq ´ Tã,ν̃`1pfqqdµcpxq.

Write

Ta1,ν̃pfq ´ Tã,ν̃`1pfq “

k´2
ÿ

i“0

bipx ´ ãqi.

Then Lemma 9.13 and Lemma 9.24 yield

|Ja1,ν̃,ν̃`1pfq| ď C max
i“0,...,k´2

|π8|pi´ k´2
2

qpν̃`1q`pk´1´iqν̃ |Ipf, a1, ν̃q|

“ C max
i“0,...,k´2

|π8|i´
k´2
2

` kν̃
2 |Ipf, a1, ν̃q|

“ C|π8|´ k´2
2

` kν̃
2 |Ipf, a1, ν̃q|.

Since Lemma 4.14 implies

Dpa1, q´ν̃q Ď Dpa1, qν
1´1q Ď Dp8, q´ν1

q,

by Lemma 9.19 and Lemma 9.21 we have

Ipf, a1, ν̃q Ď Ipf, a1, 1 ´ ν 1q Ď πkν
1

8 Ipf,8, ν 1q.

Since ν̃ ě 1 ´ ν 1 and k ě 2, we obtain

|Ja1,ν̃,ν̃`1pfq| ď C|π8|´ k´2
2

` k
2

p1´ν1q`kν1

|Ipf,8, ν 1q|

“ C|π8|1` k
2
ν1

|Ipf,8, ν 1q|.

This concludes the proof. □
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Lemma 9.36. Let C ą 0 be the constant in Lemma 9.13. Then for
any ν 1 ě 1 ` |ν| we have

|m8,ν,ν1`1pfq ´ m8,ν,ν1pfq| ď C|Ipf,8, νq||π8|´ k´2
2

` k
2
ν1´k|ν|.

Proof. We have two coverings

Dp8, q´νq “
ž

a1PΛν1 Yt8u

Dpa1, q´ν1

q “
ž

a2PΛ1`ν1 Yt8u

Dpa2, q´p1`ν1qq,

which yields

tx P K8 | |x| “ qν
1

u \
ž

a1PΛν1

Dpa1, q´ν1

q “
ž

a2PΛ1`ν1

Dpa2, q´p1`ν1qq.

Since ν 1 ą ´p1 ` ν 1q, we have

|a2| “ qν
1

ñ Dpa2, q´p1`ν1qq Ď tx P K8 | |x| “ qν
1

u.

This forces the latter covering to be a refinement of the former.
For any a1 P Λν1 Y t8u, take a subset Λpa1q Ď Λ1`ν1 Y t8u satisfying

Dpa1, q´ν1

q “
ž

a2PΛpa1q

Dpa2, q´p1`ν1qq.

Then Lemma 9.6 and (9.2) imply

Ja1,ν1pfq :“

ż

Upea1,ν1 q

Ta1,ν1pfqdµcpxq ´
ÿ

a2PΛpa1q

ż

Upea2,1`ν1 q

Ta2,1`ν1pfqdµcpxq

“
ÿ

a2PΛpa1q

ż

Upea2,1`ν1 q

pTa1,ν1pfq ´ Ta2,1`ν1pfqq dµcpxq.

Note that we have

m8,ν,ν1pfq ´ m8,ν,ν1`1pfq “
ÿ

a1PΛν1 Yt8u

Ja1,ν1pfq.

If a2 “ 8 and a2 P Λpa1q, then we also have a1 “ 8 and

T8,ν1pfq ´ T8,1`ν1pfq “ 0.

Hence the term for a2 “ 8 has no contribution to Ja1,ν1pfq.
Suppose a2 ‰ 8. Write

Ta1,ν1pfq ´ Ta2,1`ν1pfq “

k´2
ÿ

i“0

bipx ´ a2qi.
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If a1 ‰ 8, then as in the proof of Lemma 9.27, we have
ˇ

ˇ

ˇ

ˇ

ˇ

ż

Upea2,1`ν1 q

pTa1,ν1pfq ´ Ta2,1`ν1pfqq dµcpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ď C|π8|´ k´2
2

` k
2
ν1

|Ipf, a1, ν 1q|

ď C|π8|´ k´2
2

` k
2
ν1´k|ν||Ipf,8, νq|,

where the last inequality follows from Lemma 9.21. Thus we obtain

(9.5) |Ja1,ν1pfq| ď C|π8|´ k´2
2

` k
2
ν1´k|ν||Ipf,8, νq|

for any a1 ‰ 8.
Let us consider the case a1 “ 8. In this case, we have

tx P K8 | |x| “ qν
1

u “
ž

a2PΛp8qzt8u

Dpa2, q´p1`ν1qq.

For any integer ν̃ P r1´ν 1, ν 1 `1s, we can find a subset Λν̃ Ď Λp8qzt8u

satisfying Λν1`1 “ Λp8qzt8u, Λν̃´1 Ď Λν̃ and

tx P K8 | |x| “ qν
1

u “
ž

a2PΛν̃

Dpa2, q´ν̃q.

For each ν̃ and any a2 P Λν̃ , we can write

Dpa2, q´ν̃q “
ž

ãPΛν̃`1pa2q

Dpã, q´ν̃´1q

with some subset Λν̃`1pa2q Ď Λν̃`1. By applying Lemma 9.35 for any
ν̃ P r1 ´ ν 1, ν 1s, we obtain

J8,ν1pfq P

ż

Dp8,q´ν1
q

T8,ν1pfqdµcpxq ´

ż

Dp8,q´p1`ν1qq

T8,1`ν1pfqdµcpxq

´
ÿ

a2PΛ1´ν1

ż

Dpa2,qν1´1q

Ta2,1´ν1pfqdµcpxq ` I

“
ÿ

a2PΛ1´ν1

ż

Dpa2,qν1´1q

pT8,ν1pfq ´ Ta2,1´ν1pfqqdµcpxq ` I

with some monogenic OC8-submodule I Ď C8 satisfying

(9.6) |I| ď C|π8|1` k
2
ν1

|Ipf,8, ν 1q| ď C|π8|1` k
2
ν1

|Ipf,8, νq|,

where the last inequality follows from Lemma 9.20.
Finally, writing

T8,ν1pfq ´ Ta2,1´ν1pfq “

k´2
ÿ

i“0

bipx ´ a2qi,
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we see from Lemma 9.13 and Lemma 9.33 that
ˇ

ˇ

ˇ

ˇ

ż

Dpa2,qν
1´1q

pT8,ν1pfq ´ Ta2,1´ν1pfqqdµcpxq

ˇ

ˇ

ˇ

ˇ

ď max
0ďiďk´2

ˇ

ˇ

ˇ

ˇ

bi

ż

Dpa2,qν
1´1q

px ´ a2qidµcpxq

ˇ

ˇ

ˇ

ˇ

ď max
0ďiďk´2

C|π8|p1´ν1qpi´ k´2
2

q
ˇ

ˇ

ˇ
πpi`1qν1

8 Ipf,8, ν 1q

ˇ

ˇ

ˇ

“ max
0ďiďk´2

C|π8|i´
k´2
2

` k
2
ν1

|Ipf,8, ν 1q|

“ C|π8|´ k´2
2

` k
2
ν1

|Ipf,8, ν 1q|

ď C|π8|´ k´2
2

` k
2
ν1

|Ipf,8, νq|,

where Lemma 9.20 gives the last inequality. Since k ě 2, by the in-
equality (9.6) we obtain

(9.7) |J8,ν1pfq| ď C|π8|´ k´2
2

` k
2
ν1

|Ipf,8, νq|.

Now the lemma follows from (9.5) and (9.7). □
Lemma 9.37. The sequence tm8,ν,ν1pfquν1ě1`|ν| converges in C8.

Proof. Since k ě 2, Lemma 9.36 yields limν1Ñ8 |m8,ν,ν1`1pfq´m8,ν,ν1pfq| “

0. Thus Lemma 6.6 implies that tm8,ν,ν1pfquν1ě1`|ν| converges. □
Lemma 9.38. The limit limν1Ñ8 m8,ν,ν1pfq is independent of the choice
of Λν1 chosen to define each m8,ν,ν1pfq.

Proof. For any ν 1 ě 1 ` |ν|, write Λν1 “ ta1
1, . . . , a

1
ru. Take any ã1

l P

Dpa1
l, q

´ν1

q and put Λ̃ν1 “ tã1
1, . . . , ã

1
ru. Then Upea1

l,ν
1q “ Dpa1

l, q
´ν1

q “

Dpã1
l, q

´ν1

q. Put

m̃8,ν,ν1pfq “

ż

Upe8,ν1 q

T8,ν1pfqdµcpxq `

r
ÿ

l“1

ż

Upea1
l
,ν1 q

Tã1
l,ν

1pfqdµcpxq.

By Lemma 9.13 and Lemma 9.24 combined with Lemma 9.21, we have

|m̃8,ν,ν1pfq ´ m8,ν,ν1pfq|

ď max
l“1,...,r

ˇ

ˇ

ˇ

ˇ

ˇ

k´2
ÿ

i“0

ż

Upea1
l
,ν1 q

px ´ a1
lq
idµcpxq

ˇ

ˇ

ˇ

ˇ

ˇ

|πpk´1´iqν1

8 Ipf, a1
l, ν

1q|

ď max
i“0,...,k´2

C|π8|ν
1pi´ k´2

2
q|π8|pk´1´iqν1´k|ν||Ipf,8, νq|

“ C|π8|
kν1

2
´k|ν||Ipf,8, νq|.

Since k ě 2, we have limν1Ñ8 |m̃8,ν,ν1pfq ´ m8,ν,ν1pfq| “ 0, which
implies the lemma. □
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Definition 9.39. Let e P T o
1 satisfying Upeq “ Dp8, q´νq with some

ν P Z. Let f P xk´2OpDC8p8, q´νqq. We define
ż

Upeq

fpxqdµcpxq :“ lim
ν1Ñ8

m8,ν,ν1pfq.

9.6. Properties of integration.

Definition 9.40. For any U P COpP1pK8qq and f P Ak, by Lemma
4.15 we choose a decomposition

(9.8) U “
ž

aPΛ

Dpa, q´νaq

with some finite subset Λ Ď P1pK8q and put
ż

U

fpxqdµcpxq :“
ÿ

aPΛ

ż

Dpa,q´νa q

fpxqdµcpxq.

Lemma 9.41. The integration
ş

U
fpxqdµcpxq is independent of the

choice of a decomposition (9.8) of U .

Proof. Take two decompositions of U as in (9.8). By Lemma 4.16, we
may assume that one is a refinement of the other. Thus we may assume
U “ Dpb, q´νq with some b P P1pK8q and ν P Z.

Take any ν 1 P Z satisfying ν 1 ě 1`|ν| and ν 1 ě 1`|νa| for any a P Λ.
By Lemma 4.14, we can choose a decomposition

Dpa, q´νaq “
ž

a1PΛa,ν1

Dpa1, q´ν1

q

with some finite subset Λa,ν1 Ď P1pK8q. Then we have

Dpb, q´νq “
ž

aPΛ

ž

a1PΛa,ν1

Dpa1, q´ν1

q

and thus we may assume

mb,ν,ν1pfq “
ÿ

aPΛ

ma,νa,ν1pfq.

Taking limν1Ñ8 we obtain
ż

Dpb,q´νq

fpxqdµcpxq “
ÿ

aPΛ

ż

Dpa,q´νa q

fpxqdµcpxq.

This concludes the proof. □
Lemma 9.42. If U1, . . . , Ur P COpP1pK8qq satisfies U “

šr
i“1 Ui, then

we have
ż

U

fpxqdµcpxq “

r
ÿ

i“1

ż

Ui

fpxqdµcpxq.
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Proof. By Lemma 4.15, we can find a decomposition

Ui “

ri
ž

j“1

Dpai,j, q
´νi,jq

with some ai,j P P1pK8q and νi,j P Z. Then we have

U “

r
ž

i“1

ri
ž

j“1

Dpai,j, q
´νi,jq.

Then Lemma 9.41 implies
ż

U

fpxqdµcpxq “

r
ÿ

i“1

ri
ÿ

j“1

ż

Dpai,j ,q
´νi,j q

fpxqdµcpxq “

r
ÿ

i“1

ż

Ui

fpxqdµcpxq.

□
Lemma 9.43. For any integer 0 ď i ď k ´ 2 and e P T o

1 , we have
ż

Upeq

xidµcpxq “ p´1qicpeqpXk´2´iY iq.

Proof. By Lemma 4.15, we can write

Upeq “

r
ž

i“1

Dpai, q
´νiq

with some ai P P1pK8q and νi P Z. By Lemma 9.6 and Lemma 9.42,
we may assume Upeq “ Dpa, q´νq with some a P P1pK8q and ν P Z.

For any ν 1 ě 1 ` |ν|, we choose a decomposition

Upeq “
ž

a1PΛν1

Dpa1, q´ν1

q, Dpa1, q´ν1

q “ Upea1q.

Then we have Ta1,ν1pxiq “ xi and Lemma 9.6 yields

ma,ν,ν1pxiq “
ÿ

a1PΛν1

ż

Upea1 q

Ta1,ν1pxiqdµcpxq

“
ÿ

a1PΛν1

p´1qicpea1qpXk´2´iY iq

“ p´1qicpeqpXk´2´iY iq.

Taking the limit we obtain the lemma. □
Lemma 9.44. Let a P K8 and ν P Z. Let

fpxq “
ÿ

iěk´1

cipx ´ aqi P OpDC8pa, q´νqq.
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Let C ą 0 be the constant of Lemma 9.13. Then for any ν 1 ě ν, we
have

|ma,ν,ν1pfq| ď C|π8|pk´1qν´
pk´2qν1

2 |Ipf, a, νq|.

Proof. Choose a decomposition

Dpa, q´νq “
ž

a1PΛν1

Dpa1, q´ν1

q.

By the equality

(9.9) px ´ aqi “

i
ÿ

j“0

ˆ

i

j

˙

pa1 ´ aqi´jpx ´ a1qj,

we have

Ta1,ν1pfq “

k´2
ÿ

j“0

ÿ

iěk´1

ˆ

i

j

˙

cipa
1 ´ aqi´jpx ´ a1qj.

Then Lemma 9.13 yields

|ma,ν,ν1pfq| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

a1PΛν1

ż

Dpa1,q´ν1
q

Ta1,ν1pfqdµcpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď max
a1PΛν1

max
j“0,...,k´2

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iěk´1

cipa
1 ´ aqi´j

ˇ

ˇ

ˇ

ˇ

ˇ

C|π8|pj´ k´2
2

qν1

ď max
j“0,...,k´2

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iěk´1

ciπ
pi´jqν
8 OC8

ˇ

ˇ

ˇ

ˇ

ˇ

C|π8|pj´ k´2
2

qν1

ď max
j“0,...,k´2

C|π8|jpν1´νq`pk´1qν´
pk´2qν1

2 |Ipf, a, νq|

“ C|π8|pk´1qν´
pk´2qν1

2 |Ipf, a, νq|.

□
Lemma 9.45. There exists a constant C1 ą 0 such that for any e P T o

1

with 8 R Upeq, any a P Upeq and any integer i ě 0, we have
ˇ

ˇ

ˇ

ˇ

ż

Upeq

px ´ aqidµcpxq

ˇ

ˇ

ˇ

ˇ

ď C1ρpeqi´
k´2
2 .

Proof. Write Upeq “ Dpa, q´νq with some ν P Z. Put f “ px´ aqi and

mpfq “

ż

Upeq

px ´ aqidµcpxq.

Lemma 9.13 shows that the constant C of this lemma satisfies the
inequality of the lemma for i ď k ´ 2. Thus we may assume i ě k ´ 1.
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To compute mpfq, for any ν 1 ě ν we choose a decomposition

Upeq “
ž

a1PΛν1

Dpa1, q´ν1

q.

Note that we have

Ipf, a, νq “ πpi´pk´1qqν
8 OC8 .

Since i ě k ´ 1, Lemma 9.44 yields

|ma,ν,ν1pfq| ď C|π8|pk´1qν´
pk´2qν1

2 |Ipf, a, νq| “ C|π8|iν´
pk´2qν1

2 .

On the other hand, by Lemma 9.28, for any ν2 ą ν 1 ě ν we have

|ma,ν,ν2pfq ´ ma,ν,ν1pfq| ď max
l“0,...,ν2´ν1´1

|ma,ν,ν1`l`1pfq ´ ma,ν,ν1`lpfq|

ď max
l“0,...,ν2´ν1´1

C|π8|´ k´2
2

`
kpν1`lq

2 |Ipf, a, νq|

“ C|π8|´ k´2
2

` kν1

2 |Ipf, a, νq|

“ C|π8|´ k´2
2

` kν1

2
`pi´pk´1qqν .

Taking ν2 Ñ 8, we obtain

|mpfq ´ ma,ν,ν1pfq| ď C|π8|´ k´2
2

` kν1

2
`pi´pk´1qqν

for any ν 1 ě ν.
For any ν 1 ą ν, we have pk ´ 1qν ă pk ´ 1qν 1 ´ k´2

2
and thus

iν ´
pk ´ 2qν 1

2
ă ´

k ´ 2

2
`
kν 1

2
` pi ´ pk ´ 1qqν.

Putting ν 1 “ ν ` 1, this yields

|mpfq| ď C|π8|pi´ k´2
2

qν´ k´2
2 .

Since ρpeq “ |π8|ν , the constant C|π8|´ k´2
2 satisfies the condition for

any i ě k ´ 1. Thus we may put

C1 “ maxtC,C|π8|´ k´2
2 u “ C|π8|´ k´2

2 .

□
Lemma 9.46. Let ν P Z and let

fpxq “
ÿ

iě1

ci
xi

P OpDC8p8, q´νqq.

Let C ą 0 be the constant of Lemma 9.13. Then for any ν 1 ě 1 ` |ν|,
we have

|m8,ν,ν1pfq| ď C|π8|
kν
2

´ k´2
2 |Ipf,8, νq|.
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Proof. Choose a decomposition

Dp8, q´νq “
ž

a1PΛν1

Dpa1, q´ν1

q.

Since the assumption on f implies T8,ν1pfq “ 0, we have

m8,ν,ν1pfq “
ÿ

a1PΛν1 zt8u

ż

Dpa1,q´ν1
q

Ta1,ν1pfqdµcpxq.

By Lemma 4.14, we can find a subset Λ Ď Λν1zt8u satisfying

Dp8, q´νqzDp8, q´ν1

q “
ž

a1PΛ

Dpa1, qν´1q “
ž

a1PΛν1 zt8u

Dpa1, q´ν1

q,

where the latter covering is a refinement of the former. By using Lemma
9.35 repeatedly, we have

m8,ν,ν1pfq P
ÿ

a1PΛ

ż

Dpa1,qν´1q

Ta1,1´νpfqdµcpxq ` I

with some monogenic OC8-submodule I of C8 satisfying

|I| ď C|π8|1` k
2
ν |Ipf,8, νq|.

By the equality

(9.10) x´i “
ÿ

jě0

ˆ

´i

j

˙

1

pa1qi`j
px ´ a1qj,

we have

Ta1,1´νpfq “

k´2
ÿ

j“0

ÿ

iě1

ˆ

´i

j

˙

ci
pa1qi`j

px ´ a1qj.

Since |a1| ě qν , Lemma 9.13 yields
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

a1PΛ

ż

Dpa1,qν´1q

Ta1,1´νpfqdµcpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ď max
a1PΛ

max
j“0,...,k´2

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iě1

ciπ
pi`jqν
8 OC8

ˇ

ˇ

ˇ

ˇ

ˇ

C|π8|p1´νqpj´ k´2
2

q

ď max
j“0,...,k´2

C|π8|ν`j´ k´2
2

`
pk´2qν

2 |Ipf,8, νq|

“ C|π8|
k
2
ν´ k´2

2 |Ipf,8, νq|.

Since k ě 2, we obtain

|m8,ν,ν1pfq| ď Cmaxt|π8|1` k
2
ν , |π8|

k
2
ν´ k´2

2 u|Ipf,8, νq|

“ C|π8|
k
2
ν´ k´2

2 |Ipf,8, νq|.
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This concludes the proof of the lemma. □
Lemma 9.47. There exists a constant C2 ą 0 such that for any e P T o

1

with 8 P Upeq and 0 R Upeq and any integer i ě ´pk ´ 2q, we have
ˇ

ˇ

ˇ

ˇ

ż

Upeq

1

xi
dµcpxq

ˇ

ˇ

ˇ

ˇ

ď C2ρpeqi`
k´2
2 .

Proof. By Lemma 9.15, we can write Upeq “ Dp8, q´νq with some
ν P Z. Then we have ρpeq “ q´ν and

Up´eq “ Dp0, qν´1q, ρp´eq “ qν´1 “ q´1ρpeq´1.

Put f “ 1
xi

and

mpfq “

ż

Upeq

1

xi
dµcpxq.

For 0 ě i ě ´pk´ 2q, Lemma 9.13 and (9.2) show that the constant C
of this lemma satisfies
ˇ

ˇ

ˇ

ˇ

ż

Upeq

x´idµcpxq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

Up´eq

x´idµcpxq

ˇ

ˇ

ˇ

ˇ

ă Cρp´eq´i´ k´2
2 “ Cqi`

k´2
2 ρpeqi`

k´2
2 ď Cq

k´2
2 ρpeqi`

k´2
2

and the constant C2 “ C|π8|´ k´2
2 satisfies the inequality of the lemma

for 0 ě i ě ´pk ´ 2q.
Suppose i ě 1. To compute mpfq, for any ν 1 ě 1 ` |ν| we choose a

decomposition

Upeq “
ž

a1PΛν1

Dpa1, q´ν1

q.

Note that we have

Ipf,8, νq “ πpi´1qν
8 OC8 .

Then Lemma 9.46 yields

|m8,ν,ν1pfq| ď C|π8|
k
2
ν´ k´2

2 |Ipf,8, νq| “ C|π8|p k
2

`i´1qν´ k´2
2 .

Taking ν 1 Ñ 8, we obtain

|mpfq| ď C|π8|p k
2

`i´1qν´ k´2
2 “ C|π8|pi` k´2

2
qν´ k´2

2

“ C|π8|´ k´2
2 ρpeqi`

k´2
2 .

Thus the constant C2 “ C|π8|´ k´2
2 satisfies the inequality of the lemma

also for i ě 1. □
Thus the constant maxtC1, C2u satisfies the condition (3) of Theorem

9.16.



144 SHIN HATTORI

Lemma 9.48. Let e P T o
1 satisfying 8 R Upeq. Write Upeq “ Dpa, q´νq

with some a P K8 and ν P Z. Let F pxq “
ř

iě0 cipx ´ aqi P C8xx´a
πν

8
y.

Then we have
ż

Upeq

F pxqdµcpxq “
ÿ

iě0

ci

ż

Upeq

px ´ aqidµcpxq.

Proof. For any l ě k ´ 1, put

Flpxq “
ÿ

iěl

cipx ´ aqi, mpFlq “

ż

Upeq

Flpxqdµcpxq.

It is enough to show limlÑ8 mpFlq “ 0.
To compute mpFlq, for any ν

1 ě ν we choose a decomposition

Upeq “
ž

a1PΛν1

Dpa1, q´ν1

q.

By Lemma 9.44, we have

|ma,ν,ν1pFlq| ď C|π8|pk´1qν´
pk´2qν1

2 |IpFl, a, νq|.

On the other hand, as in the proof of Lemma 9.45, Lemma 9.28
shows

|mpFlq ´ ma,ν,ν1pFlq| ď C|π8|´ k´2
2

` kν1

2 |IpFl, a, νq|.

When ν 1 ě ν ` 1, we have ν ` k´2
2pk´1q

ď ν 1 and

pk ´ 1qν ´
pk ´ 2qν 1

2
ď ´

k ´ 2

2
`
kν 1

2
.

For ν 1 “ ν ` 1, this implies

|mpFlq| ď C|π8|pk´1qν´
pk´2qν1

2 |IpFl, a, νq| “ C|π8|
kν
2

´ k´2
2 |IpFl, a, νq|.

Since limiÑ8 ciπ
iν
8 “ 0, we have limlÑ8 |IpFl, a, νq| “ 0. This con-

cludes the proof. □
Lemma 9.49. Let e P T o

1 satisfying 8 P Upeq and 0 R Upeq. Write
Upeq “ Dp8, q´νq with some ν P Z. Let F pxq “

ř

iě´pk´2q
ci
xi

P

xk´2C8x 1
πν

8x
y. Then we have
ż

Upeq

F pxqdµcpxq “
ÿ

iě´pk´2q

ci

ż

Upeq

1

xi
dµcpxq.

Proof. For any l ě 1, put

Flpxq “
ÿ

iěl

ci
xi
, mpFlq “

ż

Upeq

Flpxqdµcpxq.

It is enough to show limlÑ8 mpFlq “ 0.
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By Lemma 9.46 and taking ν 1 Ñ 8, we have

|mpFlq| ď C|π8|
k
2
ν´ k´2

2 |IpFl,8, νq|.

Since limiÑ8 ciπ
iν
8 “ 0, we have limlÑ8 |IpFl,8, νq| “ 0. This con-

cludes the proof. □
Now the proof of Theorem 9.16 is completed.

9.7. Transformation property of the integration. For any γ “
ˆ

a b
c d

˙

P GL2pKq and any rigid analytic function f on a distinguished

closed disc in P1pC8q, we define

fγpxq :“ detpγq2´kpcx ` dqk´2f

ˆ

ax ` b

cx ` d

˙

.

Note that if f P Pk, then fγ P Pk.
Since γ : P1pC8q Ñ P1pC8q is an isomorphism of rigid analytic

varieties, for any e P T o
1 its restriction to the open subvariety Upeq

induces an isomorphism of affinoid algebras over C8

(9.11) γ˚ : OpUpγ ˝ eqq Ñ OpUpeqq, f ÞÑ γ˚pfqpxq “ f

ˆ

ax ` b

cx ` d

˙

.

Note that for any e P T o
1 , the ring OpUpeqq is a PID. Hence for any

z P Upeq and g P FracpOpUpeqqq, we may define the vanishing order
ordzpgq of g at z. Then, for any z P Upeq and f P OpUpγ ˝ eqq, we have

(9.12) ordzpγ
˚pfqq “ ordγpzqpfq.

For any e P T o
1 satisfying 8 R Upeq or 0 R Upeq, write ρpeq “ q´νpeq and

put

mpeq “

"

0 p8 R Upeqq,
k ´ 2 p8 P Upeq and 0 R Upeqq,

so that Pk Ď xmpeqOpUpeqq. When 8 R Upeq, choose any element
zpeq P Upeq. When 8 P Upeq, we put zpeq “ 8.

Lemma 9.50. Let e P T o
1 and let γ “

ˆ

a b
c d

˙

P GL2pKq. Let f P

xmpγ˝eqOpUpγ ˝ eqq.

(1) Suppose 8 R D or 0 R D for any D P tUpeq, Upγ ˝ equ. Then

fγ P xmpeqOpUpeqq.

(2) Suppose moreover γpzpeqq “ zpγ ˝ eq. Then

Tzpeq,νpeqpfγq “ Tzpγ˝eq,νpγ˝eqpfqγ.
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Proof. First we claim that

Jpe, γq :“ x´mpeq

ˆ

ax ` b

cx ` d

˙mpγ˝eq

pcx ` dqk´2 P OpUpeqqˆ.

Indeed, if 8 R Upeq and 8 R Upγ ˝ eq, then Jpe, γq “ pcx ` dqk´2 P

OpUpeqqˆ since ´d
c

“ γ´1p8q R Upeq. If 8 R Upeq and 8 P Upγ ˝ eq,

then Jpe, γq “ pax ` bqk´2 P OpUpeqqˆ since ´b
a

“ γ´1p0q R Upeq. If

8 P Upeq and 8 R Upγ ˝ eq, then Jpe, γq “ pc ` d
x
qk´2 P OpUpeqqˆ

since ´d
c

“ γ´1p8q R Upeq. If 8 P Upeq and 8 P Upγ ˝ eq, then

Jpe, γq “ pa ` b
x
qk´2 P OpUpeqqˆ since ´b

a
“ γ´1p0q R Upeq.

By this claim, the map γ˚ of (9.11) induces a C8-linear isomorphism

xmpγ˝eqOpUpγ ˝ eqq Ñ xmpeqOpUpeqq,

f “ xmpγ˝eqg ÞÑ fγ “ xmpeq detpγq2´kJpe, γqγ˚g

and the assertion (1) follows.
Moreover, if the condition of (2) is satisfied, then the claim and (9.12)

show

ordzpγ˝eqpfq ě k ´ 1 ´ mpγ ˝ eq ô ordzpeqpfγq ě k ´ 1 ´ mpeq.

Hence, if we write

f “ Tzpγ˝eq,νpγ˝eqpfq ` F, ordzpγ˝eqpF q ě k ´ 1 ´ mpγ ˝ eq,

then we have

fγ “ Tzpγ˝eq,νpγ˝eqpfqγ ` Fγ, ordzpeqpFγq ě k ´ 1 ´ mpeq.

Since Tzpγ˝eq,νpγ˝eqpfqγ P Pk, we obtain Tzpγ˝eq,νpγ˝eqpfqγ “ Tzpeq,νpeqpfγq.
□

Lemma 9.51. For any f P Ak and any γ “

ˆ

a b
c d

˙

P GL2pKq, we

have

fγpxq :“ detpγq2´kpcx ` dqk´2f

ˆ

ax ` b

cx ` d

˙

P Ak.

Proof. We show that fγ satisfies the condition of Definition 9.14 for all
z P P1pK8q. By Lemma 9.50 (1), it is enough to show that for any
z P P1pK8q, there exists an integer ν such that D “ Dpz, q´νq satisfies
8 R γpDq or 0 R γpDq.

Suppose 0,8 P γpDpz, q´νqq for some ν P Z. Since γ´1p0q ‰ γ´1p8q,
we can find ν 1 P Z with ν 1 ě ν such that the set tγ´1p0q, γ´1p8qu X

Dpz, q´ν1

q consists of at most one element. This ν 1 satisfies the require-
ment. □
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Lemma 9.52. Let f P Ak and let γ1, γ2 P GL2pKq. Then we have

fγ1γ2 “ pfγ1qγ2 , fid “ f.

Proof. Write γi “

ˆ

ai bi
ci di

˙

. Since γ1pγ2pxqq “ pγ1γ2qpxq, we have

pfγ1qγ2pxq “ detpγ2q
2´kpc2x ` d2qk´2fγ1pγ2pxqq

“ detpγ1q
2´k detpγ2q

2´k¨

pc2x ` d2qk´2

ˆ

c1

ˆ

a2x ` b2
c2x ` d2

˙

` d1

˙k´2

fpγ1pγ2pxqqq

“ detpγ1γ2q
2´kppc1a2 ` d1c2qx ` pc1b2 ` d1d2qqk´2fppγ1γ2qpxqq

“ fγ1γ2pxq.

Thus we obtain the first equality of the lemma. The second equality is
clear. □
Lemma 9.53. Let f P Ak, e P T o

1 and γ P GL2pKq. Suppose 8 R Upeq
and 8 R Upγ ˝ eq. Then we have

ż

Upγ˝eq

fpxqdµγcpxq “

ż

Upeq

fγpxqdµcpxq.

Proof. By Lemma 9.8, the function z ÞÑ |cz ` d| is constant on Upeq.
Since 8 R Upγ ˝ eq, we have cz ` d ‰ 0 for any z P Upeq and this
constant is positive. Let qm be this constant and write | detpγq| “ qm0 .

For any sufficiently large integer ν 1 satisfying qm ą q´ν1

|c|, take any
decomposition

Upeq “
ž

zPΛν1

Dpz, q´ν1

q

as in (9.4). Then Lemma 4.8 and Lemma 9.50 (2) imply γpDpz, q´ν1

qq “

Dpγpzq, q´pν1`2m´m0qq and

Upγ ˝ eq “
ž

zPΛν1

Dpγpzq, q´pν1`2m´m0qq, Tz,ν1pfγq “ Tγpzq,ν1`2m´m0pfqγ.

By Lemma 9.7 (1), we have

mν1`2m´m0pfq :“
ÿ

zPΛν1

ż

Dpγpzq,q´pν1`2m´m0qq

Tγpzq,ν1`2m´m0pfqdµγcpxq

“
ÿ

zPΛν1

ż

Dpz,q´ν1
q

Tγpzq,ν1`2m´m0pfqγdµcpxq

“
ÿ

zPΛν1

ż

Dpz,q´ν1
q

Tz,ν1pfγqdµcpxq “: mν1pfγq.
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Now the lemma follows from
ż

Upγ˝eq

fpxqdµγcpxq “ lim
ν1Ñ8

mν1`2m´m0pfq,

ż

Upeq

fγpxqdµcpxq “ lim
ν1Ñ8

mν1pfγq.

□

Lemma 9.54. Let f P Ak, e P T o
1 and γ P GL2pKq. Suppose 8 P Upeq

and 8 R Upγ ˝ eq. Then we have
ż

Upγ˝eq

fpxqdµγcpxq “

ż

Upeq

fγpxqdµcpxq.

Proof. Since 8 P Upeq and 8 R Upγ˝eq, we have c ‰ 0 and a
c

P Upγ˝eq.
Take a sufficiently large positive integer ν satisfying |d| ă qν |c| and a
decomposition

Upeq “ D
`

8, q´ν
˘

\
ž

zPΛ

Dpz, q´νq.

By Lemma 9.53, we have
ż

γpDpz,q´νqq

fpxqdµγcpxq “

ż

Dpz,q´νq

fγpxqdµcpxq

for any z P Λ. Thus we may assume Upeq “ D p8, q´νq.
For any sufficiently large positive integer ν 1 ě ν, take any decompo-

sition

Upeq “ Dp8, q´ν1

q \
ž

zPΛν1

Dpz, q´ν1

q

as in Definition 9.34.
Write |c| “ qt, | detpγq| “ qm0 and |z| “ qsz for any z P Λν1 . Put

t0 “ 2t ´ m0. Then we have

(9.13) 0 ă ν ď sz ď ν 1 ´ 1

and |d| ă qν |c| ď |cz|, which yields |cz ` d| “ |cz| and

|cz ` d| “ |cz| ě qν |c| ą q´ν |c|.

By Lemma 4.8, Lemma 4.9 and Lemma 9.50 (2), we have γpDp8, q´νqq “

Dpa
c
, q´ν´t0q and

γpDp8, q´ν1

qq “ D
´a

c
, q´ν1´t0

¯

, T8,ν1pfγq “ Ta
c
,ν1`t0pfqγ,

γpDpz, q´ν1

qq “ Dpγpzq, q´ν1´t0´2szq, Tz,ν1pfγq “ Tγpzq,ν1`t0`2szpfqγ

for any z P Λν1 .
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Put

mν1pfγq :“

ż

Dp8,q´ν1
q

T8,ν1pfγqdµcpxq `
ÿ

zPΛν1

ż

Dpz,q´ν1
q

Tz,ν1pfγqdµcpxq,

m̃ν1pfq :“

ż

Dpa
c
,q´ν1´t0q

Ta
c
,ν1`t0pfqdµγcpxq

`
ÿ

zPΛν1

ż

Dpγpzq,q´ν1´t0´2sz q

Tγpzq,ν1`t0`2szpfqdµγcpxq.

By Lemma 9.7 (1), we have mν1pfγq “ m̃ν1pfq and
ż

Upeq

fγpxqdµcpxq “ lim
ν1Ñ8

mν1pfγq.

For m̃ν1pfq, (9.13) implies

ν 1 ` t0 ď ν 1 ` t0 ` 2sz ď 3ν 1 ` t0 ´ 2.

Take any decomposition

D
´a

c
, q´ν1´t0

¯

“
ž

wPΛp8q

Dpw, q´p3ν1`t0´2qq,

Dpγpzq, q´ν1´t0´2szq “
ž

wPΛpzq

Dpw, q´p3ν1`t0´2qq

for any z P Λν1 . Put Λ3ν1`t0´2 “ Λp8q Y
Ť

zPΛν1
Λpzq and

m3ν1`t0´2pfq :“
ÿ

wPΛ3ν1`t0´2

ż

Dpw,q´p3ν1`t0´2qq

Tw,3ν1`t0´2pfqdµγcpxq.

Since this agrees with the sum of Definition 9.25, we have
ż

Upγ˝eq

fpxqdµγcpxq “ lim
ν1Ñ8

m3ν1`t0´2pfq.

Now Lemma 9.27 yields

|m̃ν1pfq ´ m3ν1`t0´2pfq| ď C|π8|´ k´2
2

` k
2

pν1`t0q
ˇ

ˇ

ˇ
I

´

f,
a

c
, ν ` t0

¯ˇ

ˇ

ˇ
.

with some constant C ą 0. Since k ą 0, we have

lim
ν1Ñ8

m̃ν1pfq “ lim
ν1Ñ8

m3ν1`t0´2pfq “

ż

Upγ˝eq

fpxqdµγcpxq.

This concludes the proof of the lemma. □
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Proposition 9.55. Let f P Ak and let e P T o
1 . Then for any γ P

GL2pKq, we have
ż

Upγ˝eq

fpxqdµγcpxq “

ż

Upeq

detpγq2´kpcx ` dqk´2f

ˆ

ax ` b

cx ` d

˙

dµcpxq.

Proof. By Lemma 9.53 and Lemma 9.54, we may assume 8 P Upγ ˝ eq.
For a sufficiently large positive integer ν, we have a decomposition

Upγ ˝ eq “ Dp8, q´νq \
ž

zPΛ

Dpz, q´νq.

Since 8 R Dpz, q´νq, Lemma 9.53 and Lemma 9.54 imply
ż

Dpz,q´νq

fpxqdµcγ pxq “

ż

γ´1pDpz,q´νqq

fγpxqdµcpxq.

By Theorem 9.16 (1), we may assume Upγ ˝ eq “ Dp8, q´νq.
Take any Q ‰ 0 P A satisfying degpQq ą ´ν and put

δ :“

ˆ

1 0
Q 1

˙

P GL2pKq.

Then Qz ` 1 ‰ 0 for any z P K8 satisfying |z| ě qν , so that 8 R

δpUpγ ˝ eqq “ Upδγ ˝ eq. Lemma 9.51 yields fδ´1 P Ak.
Applying Lemma 9.53 and Lemma 9.54 to fδ´1 and the map

δγ : Upeq Ñ Upδγ ˝ eq,

Lemma 9.52 gives
ż

Upδγ˝eq

fδ´1pxqdµδγcpxq “

ż

Upeq

pfδ´1qδγpxqdµcpxq “

ż

Upeq

fγpxqdµcpxq.

Similarly, for the map

δ : Upγ ˝ eq Ñ Upδγ ˝ eq,

since δγc “ δpγcq we have
ż

Upδγ˝eq

fδ´1pxqdµδγcpxq “

ż

Upγ˝eq

pfδ´1qδpxqdµγcpxq “

ż

Upγ˝eq

fpxqdµγcpxq.

Hence the proposition follows. □

10. Residue theorems

In this section, we recall the theory of rigid analytic residues on P1,
following [FvdP1, §I.3]. Let K be an algebraically closed field equipped
with a complete non-Archimedean valuation | ´ | : K Ñ Rě0. Let OK
be its ring of integers, mK be the maximal ideal of OK and k be its
residue field. Since k is also algebraically closed, we see that k is an
infinite field.
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10.1. Circular residue.

Lemma 10.1. Let SppRq be a connected affinoid subdomain of SppKxxyq.
Then R is a PID of dimension one such that its prime element is x´ c
with some c P K satisfying |c| ď 1.

Proof. By [BGR, Theorem 5.2.6/1 and Remark 6.1.3], we see that Kxxy

is a Noetherian UFD of dimension one. Hence it is a PID. Then [BGR,
Proposition 7.2.2/1] shows that R is a regular ring of dimension one
such that any maximal ideal of it is generated by x ´ c with |c| ď 1.
Since SppRq is connected, it follows that R is a PID. □
Definition 10.2. Let a P K and ρ P |Kˆ|. Let ϖρ P K be any element
satisfying |ϖρ| “ ρ. We define

Cpa, ρq “ tz P K | |z ´ a| “ ρu “ SppKx
x ´ a

ϖρ

,
ϖρ

x ´ a
yq

and call it the circle centered at a with radius ρ. We also put

C0 “ Cp0, 1q “ tz P K | |z| “ 1u “ SppKxx, x´1yq.

By definition any element f P OpCpa, ρqq is uniquely written as

f “
ÿ

nPZ

an

ˆ

x ´ a

ϖρ

˙n

with some an P K satisfying limnÑ8 an “ limnÑ8 a´n “ 0. Then the
ring OpCpa, ρqq is equipped with the Banach norm

|f | “ maxt|an| | n P Zu

so that we have an isometric isomorphism of affinoid algebras over K

(10.1) Kxx, x´1y Ñ Kx
x ´ a

ϖρ

,
ϖρ

x ´ a
y, x ÞÑ

x ´ a

ϖρ

.

Lemma 10.3. The Banach norm | ´ | on OpCpa, ρqq agrees with the
supremum norm and it is a valuation.

Proof. Using the isometry (10.1), we reduce ourselves to showing the
lemma for the unit circle C0.

By a remark after [BGR, Proposition 6.1.4/2], the Banach norm is
the same as the residue norm with respect to the surjection

KxX,Y y Ñ Kxx, x´1y, X ÞÑ x, Y ÞÑ x´1.

Since krx, x´1s is a domain, [BGR, Proposition 6.4.3/4] implies that
this norm agrees with the supremum norm. By [BGR, Proposition
6.2.3/5], it is also a valuation. □
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Definition 10.4. Let C “ Cpa, ρq be a circle. We say t P OpCqˆ is a
parameter of C if the following conditions are satisfied:

(1) |t|sup “ 1.
(2) Any element f P OpCq can be written uniquely as

f “
ÿ

nPZ

ant
n,

where an P K satisfies limnÑ8 an “ limnÑ8 a´n “ 0.
(3) With an as above, we have |f |sup “ maxt|an| | n P Zu.

Then t´1 is also a parameter of C.

By Lemma 10.3, the element x´a
ϖρ

P OpCpa, ρqq is a parameter of

Cpa, ρq.
Let C be a circle and let t be any parameter of C. Then the canonical

reduction of the affinoid algebra OpCq is given by

ČOpCq “ krt, t´1s.

Thus we have an isomorphism of groups

(10.2) tZ Ñ ČOpCq
ˆ

{kˆ.

Definition 10.5. An orientation of a circle C is an isomorphism of

groups ψ : Z Ñ ČOpCq
ˆ

{kˆ. We call the pair pC,ψq of the circle C and
an orientation ψ of C an oriented circle. For an orientation ψ of C, the
isomorphism ψ̄pnq :“ ψp´nq is called the orientation opposite to ψ. A
parameter t of the oriented circle pC,ψq is said to be positive if ψ´1ptq
is positive.

Lemma 10.6. Let t be a parameter of the circle C. Then f P OpCqˆ

if and only if

f “ λtnp1 `
ÿ

i‰0

bit
iq

with λ P Kˆ and bi P K satisfying |bi| ă 1 for any i.

Proof. Suppose that f is written in the form as in the lemma. Since
the series

p1 `
ÿ

i‰0

bit
iq´1 “

ÿ

jě0

˜

´
ÿ

i‰0

bit
i

¸j

converges in OpCq, we obtain f P OpCqˆ.
Conversely, take any f P OpCqˆ. By Lemma 10.3, the Banach norm

on OpCq is a valuation and thus |f |sup “ 1. We denote by f̄ the image
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of f by the canonical reduction map OpCq˝ Ñ ČOpCq. Since f̄ P ČOpCq
ˆ

,
by (10.2) we can write as

f̄ “ λ̄tn

with some λ̄ P kˆ and n P Z. Take a lift λ1 P Oˆ
K of λ̄. Then we have

fpλ1tnq´1 “ 1 ` OpCq_

and thus we can write f as in the lemma. □
Definition 10.7. Let pC,ψq be an oriented circle and let t be its pos-
itive parameter. Let ω be a holomorphic differential form on C. Write

ω “
ÿ

nPZ

ant
ndt, an P K.

Then we define
Restpωq “ a´1

and call it the residue of ω with respect to C (or pC,ψq).

Let Ω1
C{K be the module of rigid analytic differential forms on C.

We can write Ω1
C{K “ OpCqdt and the topology on it induced by the

Banach topology of OpCq is independent of the choice of a parameter
t [BGR, Proposition 3.7.3/3]. By Definition 10.4 (3), the map

Rest : Ω
1
C{K Ñ K

is continuous (with respect to the Banach norm on OpCq). Moreover,
since

dt´1

t´1
“ ´t

dt

t2
“ ´

dt

t
,

we have Rest´1pωq “ ´Restpωq, where the former residue is with respect
to pC, ψ̄q.

Lemma 10.8. Restpωq does not depend on the choice of a positive
parameter t.

Proof. Let s be another positive parameter of pC,ψq. By the continuity
of Ress, it is enough to show

Resspt
mdt

t
q “

"

1 pm “ 0q

0 pm ‰ 0q.

For m ă 0, we have

tm
dt

t
“ ´pt´1q´mdpt´1q

t´1

and thus

Resspt
mdt

t
q “ ´Ress

ˆ

pt´1q´mdpt´1q

t´1

˙

“ Ress´1

ˆ

pt´1q´mdpt´1q

t´1

˙

.
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Since both of s´1 and t´1 are positive for the opposite orientation ψ̄,
we may assume m ě 0.

By Lemma 10.6, we can write

t “ λsp1 `
ÿ

n‰0

ans
nq

with λ, an P K satisfying |λ| “ 1 and |an| ă 1 for any n. Again by the
continuity of Ress, we may assume that there are only finitely many
nonzero an. Then for some non-negative integers l, l1 we have

t “ λs ¨ s´lfpsq, fpsq “

l´1
ÿ

i“0

ai´ls
i ` sl `

l`l1
ÿ

j“l`1

aj´ls
j

with a´l ‰ 0 and al1 ‰ 0. Here we consider the sum is zero when l “ 0
or l1 “ 0.

Supposem “ 0. Then inspecting the Newton polygon shows that the
polynomial fpsq has exactly l roots α1, . . . , αl with absolute value less
than one and exactly l1 roots β1, . . . , βl1 with absolute value more than
one. Moreover, inspecting the right endpoint of the Newton polygon
we obtain |al1β1 ¨ ¨ ¨ βl1 | “ 1 when l1 ą 0. Thus we can write

t “ sµ
l

ź

i“1

p1 ´ αis
´1q

l1
ź

j“1

p1 ´ β´1
j sq

with some µ P K satisfying |µ| “ 1. Then

dt

t
“

˜

1 `

l
ÿ

i“1

αis
´1

1 ´ αis´1
´

l1
ÿ

j“1

β´1
j s

1 ´ β´1
j s

¸

ds

s
,

which yields Ressp
dt
t

q “ 1.
Suppose m ą 0. If charpKq “ 0, then writing tm “

ř

nPZ bns
n we

have

tm
dt

t
“

1

m
dptmq “

1

m

˜

ÿ

nPZ

nbns
n

¸

ds

s
,

which yields Resspt
mdt

t
q “ 0.

If charpKq ą 0, write

tm
dt

t
“ λmsm

˜

1 `
ÿ

n‰0

ans
n

¸m´1 ˜

1 `
ÿ

n‰0

pn ` 1qans
n

¸

ds

s
.
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Since m ą 0, there exists a polynomial P P ZrX´l, . . . , Xl1s such that
the constant term of the Laurent polynomial

sm

˜

1 `
ÿ

n‰0

ans
n

¸m´1

p1 `
ÿ

n‰0

pn ` 1qans
nq

in s is P pa´l, . . . , al1q.
Consider the fraction field of the p-adic completion of the localization

of ZrX´l, . . . , Xl1s at ppq. Let L be the p-adic completion of its algebraic
closure. Since L is algebraically closed with charpLq “ 0, we have
Ress0ptmdt

t
q “ 0 with a parameter s0 and

t “ s0 ¨ s´l
0 fps0q, fps0q “

l´1
ÿ

i“0

Xi´ls
i
0 ` sl0 `

l`l1
ÿ

j“l`1

Xj´ls
j
0.

This implies P pX´l, . . . , Xl1q “ 0 and P pa´l, . . . , al1q “ 0. □

Definition 10.9. Let pC,ψq be an oriented circle. Choose a positive
parameter t of pC,ψq. For any ω P Ω1

C{K, we define

RespC,ψqpωq :“ Restpωq.

We also denote it by ResCpωq if there is no risk of confusion.

10.2. Discs and orientations of boundary circles.

Definition 10.10. For any a P K and ρ P |Kˆ|, let

DKpa, ρq “ tz P K | |z´a| ď ρu, D1
Kpa, ρq “ tz P K | |z´a| ě ρuYt8u.

We call them closed discs in P1
K and we refer to a as a center of these

closed discs. Moreover, we put

D˝
Kpa, ρq “ tz P K | |z´a| ă ρu, D1˝

Kpa, ρq “ tz P K | |z´a| ą ρuYt8u

and call them the interiors of the closed discs. We also put

BDKpa, ρq “ BD1
Kpa, ρq “ tz P K | |z ´ a| “ ρu,

which we call the boundary of the closed discs. Then the latter is a
circle. For any closed disc D in P1

K, we denote by D˝ its interior and
by BD its boundary.

By Lemma 4.3, there exists a unique ρ P |Kˆ| satisfying D “

DKpa, ρq or D “ D1
Kpa, ρq with some a P K, while such a P K is

not unique. Note that D˝ and BD depend on the choice of a center a
of D. Thus we also write D˝ as IntaD and BD as BaD.
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Example 10.11. For D :“ DKp0, 1q “ DKp1, 1q, we have D˝
Kp0, 1q “

mK, D
˝
Kp1, 1q “ 1 ` mK and

D˝
Kp0, 1q X D˝

Kp1, 1q “ H, B0D “ Oˆ
K ‰ 1 ` Oˆ

K “ B1D.

Definition 10.12. Let D be a closed disc in P1
K. Put

tD “

" x´a
ϖρ

pD “ DKpa, ρqq
ϖρ

x´a
pD “ D1

Kpa, ρqq.

We call tD the standard parameter of the closed disc D. Then tD is a
parameter of the circle BD, and defines an orientation

ψD : Z Ñ ČOpBDq
ˆ

{kˆ, 1 ÞÑ tD.

We call ψD the orientation of the circle BD associated with D. If we
write

tD,D1u “ tDKpa, ρq, D1
Kpa, ρqu,

then the orientations ψD and ψD1 of the circle BD “ BD1 are opposite
to each other.

Note that we have an isometric isomorphism of affinoid algebras over
K

Kxxy Ñ OpDq, x ÞÑ tD,

by which we often identify these affinoid algebras.

Lemma 10.13. Let D and D1 be closed discs in P1
K with center a and

a1, respectively. Let f : D Ñ D1 be an isomorphism of rigid analytic
varieties over K such that f induces an isomorphism BaD Ñ Ba1D1. Let
ω P Ω1

Ba1D1{K. Then we have

RespBaD,ψDqpf
˚ωq “ RespBa1D1,ψD1 qpωq.

Proof. Put D0 “ DKp0, 1q “ SppKxxyq. Consider the isomorphisms

g : D0 Ñ D1 :“ DKpa, ρq, z ÞÑ
z ´ a

ϖ
,

g1 : D0 Ñ D1
1 :“ D1

Kpa, ρq, z ÞÑ
ϖ

z ´ a

with ϖ P Kˆ satisfying |ϖ| “ ρ. Then they induce isomorphisms

B0D0 Ñ BaD1, B0D0 Ñ BaD
1
1.

Moreover, if we write ω P Ω1
BaD1{K as

ω “
ÿ

nPZ

an

´x ´ a

ϖ

¯n

d
´x ´ a

ϖ

¯

,
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Then g˚ω equals

g˚ω “
ÿ

nPZ

anx
ndx.

and similarly for D1
1. By the definition of circular residues, this implies

RespB0D0,ψD0
qpg

˚ωq “ RespBaD1,ψD1
qpωq,

RespB0D0,ψD0
qppg1q˚ω1q “ RespBaD1

1,ψD1
1

qpω
1q

for any ω P Ω1
BaD1{K and ω1 P Ω1

BaD1
1{K. Hence, by composing these

isomorphisms with f , we may assume D “ D1 “ D0 and a “ a1 “ 0.
Consider the isomorphisms of affinoid algebras over K

f˚ : Kxxy Ñ Kxxy, g˚ : Kxx, x´1y Ñ Kxx, x´1y

which f induces. Put F “ f˚pxq. Then F is invertible in the ring
Kxx, x´1y and any element G of Kxx, x´1y can be uniquely written as

G “
ÿ

nPZ

anF
n, lim

nÑ8
an “ lim

nÑ´8
an “ 0.

By [BGR, Proposition 6.2.2/1], these maps are isometric with respect
to the supremum norm. Thus we have

|F |sup “ |x|sup “ 1, |G|sup “ |
ÿ

nPZ

anx
n|sup “ maxt|an| | n P Zu.

Hence F is a parameter of the circle B0D0.
Moreover, the map f induces isomorphisms of k-algebras

f̃˚ : ĆKxxy “ krxs Ñ krxs, g̃˚ : ČKxx, x´1y “ krx, x´1s Ñ krx, x´1s.

This shows that f̃˚pxq “ āx ` b̄ with some ā, b̄ P k satisfying ā ‰ 0.
Since it is invertible in the ring krx, x´1s, we have b̄ “ 0. This implies
that the parameter F is positive for the orientation ψD0 of B0D0.
For any ω P Ω1

B0D0{K, write

ω “
ÿ

nPZ

anx
ndx, f˚ω “

ÿ

nPZ

anF
ndF.

By Lemma 10.8, we obtain

RespB0D0,ψD0
qpf

˚ωq “ ResF pf˚ωq “ a´1 “ RespB0D0,ψD0
qpωq.

This concludes the proof. □
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10.3. Rigid analytic residue theorem on discs. Let Y be a con-
nected affinoid admissible open subset of P1

K. By the maximal modulus
principle and [BGR, Corollary 8.2.1/4], we see that Y is an affinoid sub-
domain of a closed disc. Then Lemma 10.1 implies that OpY q is a PID.
We denote by KpY q the fraction field of OpY q.

Definition 10.14. For any connected affinoid admissible open sub-
set Y of P1

K, we call any element of KpY q bOpY q Ω
1
Y {K a meromorphic

differential form on Y .

Definition 10.15. Let Y be a connected affinoid admissible open sub-
set of P1

K and c P Y . Put t “ x´ c when c ‰ 8 and t “ 1
x
when c “ 8.

Let ω be a meromorphic differential form on Y . Since OpY q is a PID,
we can write at c

ω “
ÿ

ně´N

ant
ndt

with some an P K and N P Z. Then we define Rescpωq “ a´1.

Lemma 10.16. Let Y be a connected affinoid admissible open subset
of P1

K and c P Y . Put t be as in Definition 10.15. Let m ě 0 be an
integer. Then the map

OpY q Ñ K, f ÞÑ Rescpt
´mfdtq

is continuous with respect to the Banach norm on OpY q.

Proof. Take a closed disc D “ DKpc, ρq contained in Y . Since the map
OpY q Ñ OpDq is continuous and the map of the lemma factors through
this map, we may assume Y “ D. Take any ϖ P K satisfying |ϖ| “ ρ.
Then f P OpDq is written as

f “
ÿ

ně0

an

ˆ

t

ϖ

˙n

, lim
nÑ8

an “ 0

and the Banach norm of OpDq is given by |f | “ maxt|an| | n ě 0u.
Since Rescpt

´mfdtq “
am´1

ϖm´1 , the continuity follows. □

Lemma 10.17 (Rigid analytic residue theorem). Let D be a closed
disc in P1

K. We consider BD as an oriented circle by the orientation
ψD associated with D. Let ω be a meromorphic differential form on D
which has no poles on BD. Then we have

ResBDpωq “
ÿ

cPD˝

Rescpωq.
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Proof. Write ω “
f
g
dtD with f, g P OpDq. Since OpDq is a PID, we

may assume that f and g are coprime and

g “ h
r

ź

i“1

ptD ´ αiq
ni

with some αi P K satisfying |αi| ă 1, ni P Zą0 and h P OpDqˆ. By the
Weierstrass division theorem [BGR, Theorem 5.2.1/2], we can write

fh´1 “ Q
r

ź

i“1

ptD ´ αiq
ni ` R

with some Q P OpDq and R P KrtDs with degpRq ă
řr
i“1 ni. Thus, by

the partial fraction decomposition we can write

ω “

˜

r
ÿ

i“1

ni
ÿ

n“1

ai,n
ptD ´ αiqn

`
ÿ

mě0

bmt
m
D

¸

dtD.

From the equality

ai,n
ptD ´ αiqn

“
ai,n
tnD

¨
1

p1 ´ αi

tD
qn

“
ai,n
tnD

ÿ

jě0

ˆ

´n

j

˙

p
´αi
tD

qj,

we obtain ResBDpωq “
řr
i“1 ai,1.

Let us compute Rescpωq for any c P D˝. When D “ DKpa, ρq and
tD “ x´a

ϖρ
, we have

dtD “
dx

ϖρ

“
dpx ´ cq

ϖρ

, tD ´ αi “
x ´ pa ` ϖραiq

ϖρ

.

Thus Rescpωq “ 0 unless c “ a ` ϖραi for some i “ 1, . . . , r. When
the latter equality holds, then Rescpωq “ ai,1 and the lemma follows
for this case.

Suppose D “ D1
Kpa, ρq and tD “

ϖρ

x´a
. Then a ‰ c. For c ‰ 8, we

have

tD “
ϖρ

x ´ c ` pc ´ aq
“

ϖρ

c ´ a

ÿ

jě0

p´1qj

pc ´ aqj
px ´ cqj,

dtD “
ϖρ

c ´ a

ÿ

jě0

jp´1qj

pc ´ aqj
px ´ cqj´1dpx ´ cq,

tD ´ αi “
´pαix ´ paαi ` ϖρqq

x ´ a
.
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Thus Rescpωq “ 0 unless c “ a`ϖρα
´1
i for some i “ 1, . . . , r satisfying

αi ‰ 0. In the latter case, we have

tD ´ αi “
´αipx ´ cq

x ´ c ` pc ´ aq
,

ai,n
ptD ´ αiqn

dtD “
ai,n

p´αiqn

n
ÿ

l“0

ˆ

n

l

˙

pc ´ aqn´l

¨
ϖρ

c ´ a

ÿ

jě0

jp´1qj

pc ´ aqj
px ´ cqj`l´1´ndpx ´ cq.

Its residue at c only comes from the term of j “ n´ l. For j “ n´ l and
l “ n, we have j “ 0 and the residue vanishes. Hence, by c´a “ ϖρα

´1
i

the residue equals

nai,n
´p´αiqn´1

n´1
ÿ

l“0

ˆ

n ´ 1

l

˙

p´1qn´l “

"

0 pn ą 1q,
ai,1 pn “ 1q.

For c “ 8, we have

tD “
1

x
¨
ϖρ

1 ´ a
x

“ ϖρ

ÿ

jě0

aj

xj`1
, dtD “ ϖρ

ÿ

jě0

pj ` 1q
aj

xj
dp

1

x
q.

If αi ‰ 0, then

tD ´ αi “ ´αi

˜

1 ´
ϖρ

αi

ÿ

jě0

aj

xj`1

¸

and thus Res8pωq “ 0. If αi “ 0, then we have

ai,n
tnD

dtD “ ai,n

ˆ

x ´ a

ϖρ

˙n

ϖρ

ÿ

jě0

pj ` 1q
aj

xj
dp

1

x
q

“
ai,nx

n

ϖn
ρ

´

1 ´
a

x

¯n

ϖρ

ÿ

jě0

pj ` 1q
aj

xj
dp

1

x
q

“
ai,nx

n

ϖn
ρ

n
ÿ

l“0

ˆ

n

l

˙

p´1ql
al

xl
ϖρ

ÿ

jě0

pj ` 1q
aj

xj
dp

1

x
q.

Then its residue at 8 only comes from the term of j “ n´ 1´ l. Thus
the residue equals

nai,na
n´1

ϖn´1
ρ

n´1
ÿ

l“0

p´1ql
ˆ

n ´ 1

l

˙

“

"

0 pn ą 1q,
ai,1 pn “ 1q.

Hence the lemma follows also for this case. □
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10.4. Connected affinoids in P1
K. .

Let I “ tD1, . . . , Dru be a nonempty finite set of closed discs in P1
K.

Let ai P K be a center of Di and let D˝
i “ IntaiDi. Suppose either

(1) D˝
1, . . . , D

˝
r are disjoint to each other and 8 P D˝

i for some i, or
(2) D1, . . . , Dr are disjoint to each other.

Put

FI “ P1
Kz

r
ď

i“1

D˝
i , F ˝

I “ P1
Kz

r
ď

i“1

Di.

Then they are admissible open subsets of P1
K. Since

FI “

r
č

i“1

pP1
KzD˝

i q

is a finite intersection of closed discs in P1
K, we see that FI is an affinoid

variety over K. Moreover, since P1
K is reduced so is FI , and by [BGR,

Theorem 6.2.4/1] the supremum semi-norm on FI is a complete norm
which defines the Banach topology on OpFIq.

Lemma 10.18. Let I “ tD1, . . . , Dru and ai P K be as above. Then
there exists γ P GL2pKq satisfying the following conditions.

‚ γpD1q “ D1
Kp0, 1q.

‚ γpDiq is a closed disc in P1
K for any i.

‚ With some choice of centers of γpDiq, the interiors γpDiq
˝ are

disjoint to each other.

Proof. First suppose 8 R FI . We may assume D1 “ D1
Kpa1, ρ1q and

Di “ DKpai, ρiq for i ‰ 1 with some ρi P |Kˆ|. Take any ϖi P K

satisfying |ϖi| “ ρi and put γ “

ˆ

1 ´a1
0 ϖ1

˙

. Then γpD1q “ D1
Kp0, 1q

and γpD˝
1q “ D1˝

Kp0, 1q. For any i ‰ 1, we have |0 ¨ ai ` ϖ1| “ ρ1 ą

0 “ ρi|0|. By Lemma 4.8 and the complement of the former equality
of Lemma 4.9, we obtain

γpDKpai, ρiqq “ DK

ˆ

γpaiq,
ρi
ρ1

˙

, γpD˝
Kpai, ρiqq “ D˝

K

ˆ

γpaiq,
ρi
ρ1

˙

.

Since D˝
1, . . . , D

˝
r are disjoint, so are γpD˝

1q, . . . , γpD˝
rq and the lemma

holds for IntγpaiqγpDiq “ γpD˝
i q.

Next suppose 8 P FI , so that the assumption (2) holds. For any i “

1, . . . , r, we can write Di “ DKpai, ρiq with some ρi P |Kˆ| satisfying
|ai ´ aj| ą maxtρi, ρju. Take any ϖi P K satisfying |ϖi| “ ρi and put

γ “

ˆ

0 ϖ1

1 ´a1

˙

. Then γpD1q “ D1
Kp0, 1q and γpD˝

1q “ D1˝
Kp0, 1q. For
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any i ‰ 1, we have |1 ¨ ai ´ a1| “ |ai ´ a1| ą ρi “ ρi|1|. By Lemma 4.8
and the complement of the former equality of Lemma 4.9, we obtain

γpDKpai, ρiqq “ DK

ˆ

γpaiq,
ρ1ρi

|a1 ´ ai|2

˙

, γpD˝
Kpai, ρiqq “ D˝

K

ˆ

γpaiq,
ρ1ρi

|a1 ´ ai|2

˙

.

Then the lemma holds similarly for IntγpaiqγpDiq “ γpD˝
i q. □

Lemma 10.19. There exists a finite covering tYλuλPΛ of FI satisfying
the following conditions.

(1) Each Yλ is an affinoid subdomain of FI which is isomorphic to

F0 :“ tz P K | ρ ď |z| ď 1uz

m
ď

i“1

tz P K | |z ´ ci| ă 1u

with some ρ ă 1, m ě 0 and ci P K satisfying |ci| “ 1.
(2) For any λ, λ1 P Λ, there exist λ1, . . . , λN P Λ such that λ “ λ1,

λ1 “ λN and Yλi X Yλi`1
‰ H for any i “ 1, . . . , N ´ 1.

Proof. By Lemma 10.18, we may assume D1 “ D1
Kp0, 1q. Then for any

i “ 2, . . . , r, we can write

Di “ DKpai, ρiq, |ai| ď 1, ρi ď 1,

where we have |ai ´ aj| ě ρi for any i, j P t2, . . . , ru satisfying i ‰ j.
Then

FI “ tz P K | |z| ď 1, |z ´ ai| ě ρi for all i “ 2, . . . , ru.

Put

Fi “ tz P FI | |z ´ ai| ď |z ´ aj| for all j “ 2, . . . , ru,

which is a rational subdomain of FI satisfying FI “
Ťr
i“2 Fi.

Fix some i “ 2, . . . , r. Note that we have ρi ď |ai ´ aj| ď 1 for any
j ‰ i. Let

ρi “ r1 ă r2 ă ¨ ¨ ¨ ă rs ă rs`1 “ 1

be the elements of the set tρi, 1u Y t|ai ´ aj| | j ‰ iu. Put

Jt “ tj “ 2, . . . , r | |ai ´ aj| “ rtu.

Take some r1
i P |Kˆ| satisfying ri ă r1

i ă ri`1. Define

Xt “ tz P K | rt ď |z ´ ai| ď r1
tuz

ď

jPJt

tz P K | |z ´ aj| ă rtu,

X 1
t “ tz P K | r1

t ď |z ´ ai| ď rt`1uz
ď

jPJt`1

tz P K | |z ´ aj| ă rt`1u.

Then we claim Fi “
Ťs
t“1pXt Y X 1

tq.
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Take any z P Xt. Then |z ´ ai| ě rt ě ρi. Since |z ´ ai| ď r1
t ď 1

and |ai| ď 1, we have |z| ď 1. For any j ‰ i satisfying j R Jt, we have
|ai ´ aj| ‰ rt and rt ď |z ´ ai| ď r1

t. Hence |z ´ ai| ‰ |ai ´ aj| and

|z ´ aj| “ maxt|z ´ ai|, |aj ´ ai|u,

which yields |z ´ aj| ě |z ´ ai| and |z ´ aj| ě |aj ´ ai| ě ρj. For any
j P Jt, we have |z ´ aj| ě rt “ |ai ´ aj| ě ρj. If |z ´ ai| ą |z ´ aj|, then
rt “ |ai ´ aj| “ |z ´ ai| ą |z ´ aj|, which is a contradiction. Hence we
obtain |z ´ ai| ď |z ´ aj| and z P Fi.

Take any z P X 1
t. Then |z ´ ai| ě r1

t ě ρi. Since |z ´ ai| ď rt`1 ď 1
and |ai| ď 1, we have |z| ď 1. For any j ‰ i satisfying j R Jt`1, we
have |ai ´ aj| ‰ rt`1 and r

1
t ď |z ´ ai| ď rt`1. Hence |z ´ ai| ‰ |ai ´ aj|

and
|z ´ aj| “ maxt|z ´ ai|, |aj ´ ai|u,

which yields |z ´ aj| ě |z ´ ai| and |z ´ aj| ě |aj ´ ai| ě ρj. For any
j P Jt`1, we have |z ´ aj| ě rt`1 “ |ai ´ aj| ě ρj. If |z ´ ai| ą |z ´ aj|,
then rt`1 “ |ai ´ aj| “ |z ´ ai| ą |z ´ aj|, which is a contradiction.
Hence we obtain |z ´ ai| ď |z ´ aj| and z P Fi.

On the other hand, take any z P Fi. Since |z| ď 1 and |aj| ď 1, we
have |z ´ ai| ď |z ´ aj| ď 1 for any j.

Suppose rt ă |z ´ ai| ă rt`1 with some t “ 1, . . . , s. For any j P Jt,
we have rt “ |aj ´ ai| and |z ´ aj| “ |z ´ ai| ą rt. Similarly, for any
j P Jt`1, we have rt`1 “ |aj ´ ai| and |z ´ aj| “ rt`1. This implies
z P Xt if |z ´ ai| ď r1

t and z P X 1
t otherwise.

Suppose |z ´ ai| “ 1. Then we have 1 “ |z ´ ai| ď |z ´ aj| ď 1 and
|z ´ aj| “ 1 for any j. This yields z P X 1

s.
Suppose |z ´ ai| “ rt with some t “ 1, . . . , s. For any j P Jt, we

have |z ´ aj| “ |z ´ ai ` pai ´ ajq| ď rt “ |z ´ ai|. Since z P Fi, the
inequality |z ´ aj| ě |z ´ ai| forces |z ´ aj| “ |z ´ ai| “ rt. Hence we
obtain z P Xt. This concludes the proof of the claim.

SinceXt andX
1
t are rational subdomains of DKp0, 1q, [BGR, Proposi-

tion 7.2.2/4] implies that they are also affinoid subdomains of FI . Take
any ϖt P K satisfying |ϖt| “ rt. For j P Jt`1, write aj ´ ai “ ϖt`1cj
with |cj| “ 1. Then the map z ÞÑ z´ai

ϖt`1
induces an isomorphism

tz P K |
r1
t

rt`1

ď |z| ď 1uz
ď

jPJt`1

tz P K | |z ´ cj| ă 1u Ñ X 1
t.

On the other hand, for j P Jt, write aj ´ai “ ϖtuj with |uj| “ 1. Then
the map z ÞÑ ϖt

z´ai
gives an isomorphism

tz P K |
rt
r1
t

ď |z| ď 1uz
ď

jPJt

tz P K | |z´1 ´ uj| ă 1u Ñ Xt.
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For any z P K satisfying |z´1 ´ uj| ă 1, we have |z| “ 1 and thus
|z ´ u´1

j | “ |z||u´1
j ||z´1 ´ uj| ă 1. Since the converse also holds, for

any j P Jt we obtain

tz P K | |z´1 ´ uj| ă 1u “ tz P K | |z ´ u´1
j | ă 1u

and thus the map above gives an isomorphism

tz P K |
rt
r1
t

ď |z| ď 1uz
ď

jPJt

tz P K | |z ´ u´1
j | ă 1u Ñ Xt.

Hence the condition (1) holds.
Let us show the condition (2). Let t P t1, . . . , su. Take any z P K

satisfying |z ´ ai| “ r1
t. For any j P Jt, we have |ai ´ aj| “ rt ă r1

t and
|z ´ aj| “ |z ´ ai| “ r1

t ą rt, which shows z P Xt. For any j P Jt`1,
we have |ai ´ aj| “ rt`1 ą r1

t and |z ´ aj| “ rr`1, which shows z P X 1
t.

Hence Xt X X 1
t ‰ H.

Let t P t1, . . . , s´1u. Since k is an infinite field, we can choose u P K
such that |u| “ 1 and |u´cj| “ 1 for any j P Jt`1. Then z “ ai`ϖt`1u
satisfies |z ´ ai| “ |z ´ aj| “ rt`1 for any j P Jt`1. Thus z P X 1

t XXt`1

and X 1
t X Xt`1 ‰ H.

Now we are reduced to showing
Şr
i“2 Fi ‰ H. For this, fix some

i P t2, . . . , ru. Since k is an infinite field, we can take u P K satisfying
|u| “ |u ` ai ´ aj| “ 1 for all j P Js`1. Put z “ ai ` u. Then we have
|z| ď 1, |z ´ ai| “ |u| “ 1 and

|z ´ aj| “ |u ` pai ´ ajq| “ 1 for any j ‰ i,

which yields z P
Şr
i“2 Fi. This concludes the proof of the lemma. □

Lemma 10.20. Let |´| be the Gauss norm on the Tate algebra Kxx, yy.
Let f P OKxx, yy satisfy |f | “ 1 and let f̄ be its image in krx, ys by
the natural reduction map. Let R “ Kxx, yy{pfq and R̄ “ krx, ys{pf̄q.
Suppose that the rings R and R̄ are reduced and SpecpR̄q is connected.
Then the affinoid variety SppRq is connected.

Proof. By [BGR, Proposition 9.1.4/8], it is enough to show that SpecpRq

is connected.
For this, first we claim that the OK-algebra

R0 “ OKxx, yy{pfq

is torsion free as an OK-module. Suppose that we have aF “ fG
with some a P OKzt0u and F,G P OKxx, yy. Since the Gauss norm on
Kxx, yy is a valuation, we have |a||F | “ |f ||G| “ |G|. Since |F | ď 1,
we have |G| ď |a| and thus G “ aH with some H P OKxx, yy, which
yields F “ fH and the claim follows.
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The claim implies that R0 is a subalgebra of R. Hence R0 agrees
with the image of OKxx, yy by the natural surjection

Kxx, yy Ñ R.

Since R is reduced, [BGR, Proposition 6.2.1/4 (iii)] implies that the
supremum semi-norm |´|sup on R is a norm. Since the ring R̄ “ R0bOK

k is reduced, [BGR, Proposition 6.4.3/4] shows R0 “ R˝. By [BGR,
Remark after Proposition 6.3.4/1], the ring R0 is integrally closed in
R.
Let e P R be an idempotent. Since e2 “ e, we have e P R0 and

|e|sup ď 1. Since |e|sup “ |e2|sup ď |e|2sup, we have e “ 0 or |e|sup “ 1.

Suppose e ‰ 0. Since SpecpR̄q is connected, there is no nontrivial
idempotent in R̄ and thus |1 ´ e|sup ă 1. Since p1 ´ eq2 “ 1 ´ e, this
forces e “ 1. □
Lemma 10.21. The affinoid variety F0 in Lemma 10.19 is connected.

Proof. Let ρ ă 1 and ci be as in Lemma 10.19 (1). Take ϖ P K
satisfying |ϖ| “ ρ. For any i “ 1, . . . ,m, let

Yi “ tz P OK | |z ´ ci| “ 1u “ SppKxx, yy{pypx ´ ciq ´ 1qq,

Y0 “ tz P OK | ρ ď |z|u “ SppKxx, yy{pxy ´ ϖqq.

Then they are rational subdomains of SppKxxyq satisfying F0 “
Şm
i“0 Yi.

Since Lemma 10.20 shows that each Yi is connected, we are reduced
to showing

Şm
i“0 Yi ‰ H. For this, since k is an infinite field we can

find u P K satisfying |u| “ |u ´ ci| “ 1 for all i “ 1, . . . ,m. Then
u P

Şm
i“0 Yi and the lemma follows. □

Lemma 10.22. The affinoid variety FI is connected.

Proof. Take a finite covering tYλuλPΛ of FI as in Lemma 10.19. Suppose
that we have a nontrivial decomposition FI “ U \ V into the disjoint
union of affinoid subdomains. By Lemma 10.21 each Yλ is connected
and it is contained in either of U or V . Put

ΛU “ tλ P Λ | Yλ Ď Uu, ΛV “ tλ P Λ | Yλ Ď V u.

Since U and V are nonempty, so are ΛU and ΛV . Take λ P ΛU and
λ1 P ΛV . By Lemma 10.19 (2), we have a finite subset of Λ

λ “ λ1, λ2, . . . , λN “ λ1

satisfying Yλi X Yλi`1
‰ H. Then there exists i such that λi P ΛU and

λi`1 P ΛV . Since U X V “ H, this is a contradiction. □
Lemma 10.23. The ring OpFIq is a PID of dimension one. Moreover,
it contains the ring RpFIq of rational functions on P1

K with no poles in
FI as a dense subring.
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Proof. By Lemma 10.18, we may assume D1 “ D1
Kp0, 1q. Then for any

i “ 2, . . . , r, we can write

Di “ DKpai, ρiq, |ai| ď 1, ρi ď 1,

where we have |ai ´ aj| ě ρi for any i ‰ j. Take ϖi P K satisfying
|ϖi| “ ρi. Then the affinoid algebra of FI is written as

OpFIq “ Kxx,
ϖ2

x ´ a2
, . . . ,

ϖr

x ´ ar
y.

By Lemma 10.1 and Lemma 10.22, the ring OpFIq is a PID of di-
mension one. Since k is an infinite field, we can find infinitely many
u P Oˆ

K satisfying |u ´ ai| “ 1 for all i P t2, . . . , ru. Thus the function
x is non-constant on FI .

We claim that the natural map

Kpxq Ñ KpFIq

into the fraction field KpFIq of OpFIq is injective. If not, we can find
a nonzero element P pxq P Krxs which is zero on FI . Since OpFIq is a
domain, this implies that x is a constant on FI , which is a contradiction.

Let a P KzFI . Then x´a P OpFIq
ˆ and 1

x´a
P OpFIq. By the partial

fraction decomposition, we obtain RpFIq Ď OpFIq. For the density, we
have

Krx,
ϖ2

x ´ a2
, . . . ,

ϖr

x ´ ar
s Ď RpFIq Ď OpFIq

and the leftmost ring is dense in OpFIq. Thus RpFIq is also dense in
OpFIq. □
Remark 10.24. Let r, s be integers satisfying s ě ´r. By Lemma
5.20, the affinoid variety Ωr,s is an example of FI . Then Proposition
5.24 and Lemma 10.23 give the following description of the ring OpΩq:
A function f : Ω Ñ C8 lies in OpΩq if and only if for any r, s P Zě0,
the restriction f |Ωr,s is the limit of a sequence tFnpxquně0 with respect
to the supremum norm on Ωr,s such that Fnpxq P C8pxq has no poles
on Ωr,s.

10.5. Rigid analytic residue theorem on connected affinoids in
P1
K. Let I “ tD1, . . . , Dru be a nonempty finite set of closed discs in P1

K
which are disjoint to each other. By Lemma 10.22, the affinoid algebra
OpFIq is a PID. Thus we may consider the module KpFIq bOpFIq Ω

1
FI{K

of meromorphic differential forms on FI .

Theorem 10.25. Let I “ tD1, . . . , Dru be a nonempty finite set of
closed discs in P1

K which are disjoint to each other. Let ai P K be a
center of Di. We equip the circle BDi “ BaiDi with the orientation ψDi
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associated with Di. Let ω be a meromorphic differential form on FI
which has no poles on BDi for all i. Then we have

ÿ

cPF ˝
I

Rescpωq `

r
ÿ

i“1

ResBDi
pωq “ 0.

Proof. Take any a P KzFI . Put t “ 1
x´a

P OpFIq so that C8pxq “

C8ptq. By the maximal modulus principle, we can find ρ P |Kˆ| satis-
fying FI Ď D :“ tt P K | |t| ď ρu.

For any b P K and σ P |Kˆ|, we have

|x ´ b| ď σ ô |pa ´ bqt ` 1| ď σ|t|,

x “ 8 or |x ´ b| ě σ ô |pa ´ bqt ` 1| ě σ|t|.

Thus FI is a rational subdomain of D.
We can write

OpFIq “ OpDqxy1, . . . , yry{pa1y1 ´ b1, . . . , aryr ´ brq

with some ai, bi P OpDq. Note that the relation aiyi ´ bi “ 0 implies

dyi “
b1
i´a

1
iyi

ai
dt. Hence we can write ω “ fdt with some f P KpFIq.

Moreover, since dt P Ω1
FI{K is nowhere vanishing, for any c P FI we have

(10.3) ordx“cpfdtq “ ordx“cpfq.

By Lemma 10.1, the ring OpFIq is a PID whose prime element is t
or t ´ 1

α´a
with some α P FIzt8u. Thus we can write

f “
g

śs
j“1pt ´ βjqnj

with some nj P Zě0, g P OpFIq and βj P K satisfying

αj :“ pβj : ´p1 ` aβjqq P FI , t ´ βj ∤ g.
When βj ‰ 0, we have αj P K and

t ´ βj “
1

x ´ a
´

1

αj ´ a
“ ´

x ´ αj
pαj ´ aqpx ´ aq

.

For any j “ 1, . . . , s and c P FI , this implies

(10.4) ordx“cpt ´ βjq “

"

1 pc “ αjq,
0 pc ‰ αjq.

Since ω has no poles on BDi, (10.3) and (10.4) yield αj P F ˝
I so that

t ´ βj P OpBDiq
ˆ for all i “ 1, . . . , r.

By Lemma 10.23, there exists a sequence tgjujě0 in the ring RpFIq
which converges to g with respect to the Banach topology of OpFIq.
By the continuity of Resc as in Lemma 10.16 and that of the circular
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residue map ResBDi
: Ω1

BDi{K Ñ K, we may assume that g P RpFIq and

thus ω is a meromorphic differential form on P1
K without poles on BDi

for all i.
Now the residue theorem on algebraic curves implies

ÿ

cPP1
K

Rescpωq “ 0.

Since D1, . . . , Dr are disjoint, this yields

0 “
ÿ

cPP1
K

Rescpωq “
ÿ

cPF ˝
I

Rescpωq `

r
ÿ

i“1

ÿ

cPDi

Rescpωq

“
ÿ

cPF ˝
I

Rescpωq `

r
ÿ

i“1

ÿ

cPD˝
i

Rescpωq

and the theorem follows from Lemma 10.17. □

11. Harmonic cocycles and Drinfeld modular forms

11.1. Annular residue. Let e P T o
1 and let Vpeq be the annulus in

P1pC8q as in Definition 5.13. Recall that we have

Vpeq “ P1pC8qzpUpeq \ Up´eqq “ Vp´eq.

Here Upeq is the distinguished closed disc in P1pC8q associated with
the edge e (Definition 4.19). Let a P K8 be a center of Upeq, so that
for some ρ P qZ we have

tUpeq,Up´equ “ tDC8pa, ρq, D1
C8

pa, qρqu.

Thus we can write

Vpeq “ tz P C8 | ρ ă |z ´ a| ă qρu.

Definition 11.1. For any σ P qQ satisfying ρ ă σ ă qρ, put

Cσpeq “ tz P C8 | |z ´ a| “ σu

and call it the concentric circle in Vpeq of radius σ.

Lemma 11.2. Let a, b P K8 and ρ P qZ. Suppose

tz P C8 | ρ ă |z ´ a| ă qρu “ tz P C8 | ρ ă |z ´ b| ă qρu.

Then for any σ P qQ satisfying ρ ă σ ă qρ, we have

tz P C8 | |z ´ a| “ σu “ tz P C8 | |z ´ b| “ σu.

In particular, the concentric circle Cσpeq is independent of the choice
of a center a of Upeq.
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Proof. First we claim |a ´ b| ď ρ. Indeed, taking the complement we
see that for any z P C8,

p|z ´ a| ď ρ or |z ´ a| ě qρq ô p|z ´ b| ď ρ or |z ´ b| ě qρq.

For z “ a this yields |a ´ b| ď ρ or |a ´ b| ě qρ. Suppose |a ´ b| ě qρ.
Take any z P C8 satisfying ρ ă |z ´ a| ă qρ. Then we have

|z ´ b| “ |z ´ a ` pa ´ bq| “ |a ´ b| ě qρ,

which is a contradiction.
Now, for any z P C8 satisfying |z ´ a| “ σ, we have

|z ´ b| “ |z ´ a ` pa ´ bq| “ |z ´ a| “ σ

and the lemma follows. □

Let Cσpeq be the concentric circle of radius σ in Vpeq. Then

Cσpeq “ BaDC8pa, σq “ BaD
1
C8

pa, σq.

By the inequality ρ ă σ ă qρ, we have

DC8pa, ρq Ď DC8pa, σq Ğ D1
C8

pa, qρq,

D1
C8

pa, qρq Ď D1
C8

pa, σq Ğ DC8pa, ρq.

Thus there exists a unique element Dσ P tDC8pa, σq, D1
C8

pa, σqu satis-
fying Upeq Ď Dσ.

Lemma 11.3. The closed disc Dσ is independent of the choice of a
center of Upeq.

Proof. Let a, b be centers of Upeq. Note that D1
C8

pa, ρq “ D1
C8

pb, ρq

implies |a ´ b| ă ρ. Thus we have |a ´ b| ď ρ ă σ and Lemma 4.2
shows DC8pa, σq “ DC8pb, σq and D1

C8
pa, σq “ D1

C8
pb, σq. □

Definition 11.4. Let Cσpeq be the concentric circle of radius σ in Vpeq.
Let a P K8 be a center of Upeq and let Dσ P tDC8pa, σq, D1

C8
pa, σqu be

the unique element satisfying Upeq Ď Dσ. For D˝
σ :“ IntaDσ, we also

have Upeq Ď D˝
σ. We call Dσ the canonical closed disc of radius σ for

the edge e. We refer to the orientation ψDσ of Cσpeq as the canonical
orientation of concentric circles in Vpeq for the edge e.

Definition 11.5. Let f P OpVpeqq and consider the holomorphic dif-
ferential form fdz on Vpeq. Take any concentric circle Cσpeq in Vpeq
and equip it with the canonical orientation ψDσ for e. Then we define

Resepfdzq :“ RespCσpeq,ψDσ qpfdzq

and call it the annular residue of fdz for the edge e.
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Lemma 11.6. Resepfdzq is independent of the choice of a concentric
circle Cσpeq in Vpeq.

Proof. Let a P K8 be a center of Upeq. Take any σ ‰ σ1 P qQ satisfying
σ, σ1 P pρ, qρq. By exchanging them if necessary, we may assume

Upeq Ď Dσ1 Ď D˝
σ “ IntaDσ.

Let D1
σ P tDC8pa, σq, D1

C8
pa, σquztDσu, so that the orientation ψDσ of

the circle Cσpeq is opposite to ψD1
σ
. Then applying Theorem 10.25 to

I “ tDσ1 , D1
σu we obtain

0 “ ResBaDσ1 pfdzq ` ResBaD1
σ
pfdzq “ ResCσ1 peqpfdzq ´ ResCσpeqpfdzq.

This concludes the proof. □

Lemma 11.7.

Res´epfdzq “ ´Resepfdzq.

Proof. Take a concentric circle Cσ in Vpeq “ Vp´eq. For a center
a P K8 of Upeq, write

tDσ, D
1
σu “ tDC8pa, σq, D1

C8
pa, σqu with Upeq Ď Dσ.

Then we have Up´eq Ď D1
σ. Thus the canonical orientation of Cσ for

the edge ´e is the opposite of that for e. This yields

Res´epfdzq “ RespCσ ,ψD1
σ

qpfdzq “ ´RespCσ ,ψDσ qpfdzq “ ´Resepfdzq.

□

Lemma 11.8. For any γ P GL2pKq, let γ˚pfdzq be the pull-back of
fdz by the Möbius transformation γ : Ω Ñ Ω. Then we have

Resγ˝epfdzq “ Resepγ
˚pfpdzqqq.

Proof. Write γ “

ˆ

a b
c d

˙

and

tUpeq, Up´equ “ tDpz, ρq, D1pz, qρqu

with some z P K8 and ρ P qZ. Take any σ P qQ satisfying ρ ă σ ă qρ.
Let

Cσ “ tx P C8 | |x ´ z| “ σu

be the concentric circle of radius σ in Vpeq and letDσ P tDC8pz, σq, D1
C8

pz, σqu

be the canonical closed disc of radius σ for e. Then we have

γpCσq Ď γpVpeqq “ Vpγ ˝ eq, Upγ ˝ eq “ γpUpeqq Ď γpDσq.
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First we claim that γpCσq is a concentric circle in Vpγ ˝eq and γpDσq

is a closed disc in P1
C8

satisfying γpCσq “ BwγpDσq with some center w
of Upγ ˝ eq. Note that

γpVpeqq “ P1pC8qz
`

γpDC8pz, ρqq \ γpD1
C8

pz, qρqq
˘

.

Since z P K8, we have either |cz ` d| ě qρ|c| or |cz ` d| ď ρ|c|. If
|cz ` d| ě qρ|c|, then by Lemma 4.7, Lemma 4.8 and Lemma 4.9 we
have

tγpUpeqq, γpUp´eqqu “

"

D

ˆ

γpzq, ρ
|ad ´ bc|

|cz ` d|2

˙

, D1

ˆ

γpzq, qρ
|ad ´ bc|

|cz ` d|2

˙*

,

γpVpeqq “

"

x P C8

ˇ

ˇ

ˇ

ˇ

ρ
|ad ´ bc|

|cz ` d|2
ă |x ´ γpzq| ă qρ

|ad ´ bc|

|cz ` d|2

*

,

γpCσq “

"

x P C8

ˇ

ˇ

ˇ

ˇ

|x ´ γpzq| “ σ
|ad ´ bc|

|cz ` d|2

*

,

γpDσq P

"

DC8

ˆ

γpzq, σ
|ad ´ bc|

|cz ` d|2

˙

, D1
C8

ˆ

γpzq, σ
|ad ´ bc|

|cz ` d|2

˙*

and γ induces an isomorphism

Cσ “ BzDσ Ñ BγpzqγpDσq “ γpCσq.

Similarly, if |cz ` d| ď ρ|c|, then we have

tγpUpeqq, γpUp´eqqu “

"

D1

ˆ

a

c
,
1

ρ

|ad ´ bc|

|c|2

˙

, D

ˆ

a

c
,
1

qρ

|ad ´ bc|

|c|2

˙*

,

γpVpeqq “

"

x P C8

ˇ

ˇ

ˇ

ˇ

1

qρ

|ad ´ bc|

|c|2
ă

ˇ

ˇ

ˇ
x ´

a

c

ˇ

ˇ

ˇ
ă

1

ρ

|ad ´ bc|

|c|2

*

,

γpCσq “

"

x P C8

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
x ´

a

c

ˇ

ˇ

ˇ
“

1

σ

|ad ´ bc|

|c|2

*

,

γpDσq P

"

D1
C8

ˆ

a

c
,
1

σ

|ad ´ bc|

|c|2

˙

, DC8

ˆ

a

c
,
1

σ

|ad ´ bc|

|c|2

˙*

and γ induces an isomorphism

Cσ “ BzDσ Ñ Ba
c
γpDσq “ γpCσq.

Hence the claim follows.
Now Lemma 10.13 yields

RespCσ ,ψDσ qpγ
˚pfdzqq “ RespγpCσq,ψγpDσqqpfdzq,

from which the lemma follows. □



172 SHIN HATTORI

11.2. Harmonic cocycles attached to Drinfeld modular forms.
Let Γ be an arithmetic subgroup of GL2pKq and let k ě 2 be an integer.

Definition 11.9. For any f P OpΩq, we define a map Respfq : T o
1 Ñ

VkpC8q by

RespfqpeqpX iY k´2´iq :“ Resepp´zqk´2´ifpzqdzq.

Note that p´zqk´2´i is obtained by plugging in pX,Y q “ p1,´zq into
X iY k´2´i.

Lemma 11.10. For any γ P GL2pKq, e P T o
1 and f P OpΩq, we have

Respfqpγ ˝ eq “ γ ˝ Respf |kγqpeq.

Proof. Take any integer i P r0, k ´ 2s. By Lemma 11.8, we have

Respfqpγ ˝ eqpX iY k´2´iq “ Resγ˝epp´zqk´2´ifpzqdzq

“ Resepγ
˚pp´zqk´2´ifpzqdzqq.

Then the differential form inside Rese equals

γ˚pp´zqk´2´ifpzqdzq “

ˆ

´
az ` b

cz ` d

˙k´2´i

fpγpzqqd

ˆ

az ` b

cz ` d

˙

“

ˆ

´
az ` b

cz ` d

˙k´2´i

fpγpzqq
ad ´ bc

pcz ` dq2
dz

“
pad ´ bcqk´1

pcz ` dqk
fpγpzqq

¨ pcz ` dqip´paz ` bqqk´2´ipad ´ bcq2´kdz

“ pf |kγqpzqpcz ` dqip´paz ` bqqk´2´ipad ´ bcq2´kdz.

This and (9.1) yield

Respfqpγ ˝ eqpX iY k´2´iq

“ Respf |kγqpeqppad ´ bcq2´kpdX ´ cY qip´bX ` aY qk´2´iq

“ pγ ˝ Respf |kγqpeqqpX iY k´2´iq,

from which the lemma follows. □
Proposition 11.11. For any f P MkpΓq, we have

Respfq P Char
k pΓq.

Proof. By Lemma 11.7, we have Respfqp´eq “ ´Respfqpeq.
Next we prove the harmonicity, namely

ÿ

opeq“v

Respfqpeq “ 0
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for any v P T0. For this, put Λv “ te P T o
1 | opeq “ vu. Let e ‰ e1 P Λv,

so that Upeq X Upe1q “ H. By Lemma 4.6, we have

(11.1) Upeq X Upe1q “ H.

Since tp´eq “ v “ ope1q, the equality (4.5) and Lemma 4.5 yield Upe1q Ď

Up´eq and thus

(11.2) Vpeq X Upe1q “ H.

Since dptpeq, tpe1qq “ 2, Definition 5.13 and Lemma 5.15 imply

(11.3) Vpeq X Vpe1q “ Upvq X Uptpeqq X Uptpe1qq “ H.

For any e P Λv, take a concentric circle Cpeq of some radius σ in
Vpeq. Let Dpeq be the canonical closed disc of radius σ for e. Then

Upeq Ď Dpeq˝, Dpeq Ď Vpeq Y Upeq.

By (11.1), (11.2) and (11.3), this implies that Dpeq X Dpe1q “ H for
any e ‰ e1 P Λv.

We equip the circle Cpeq with the canonical orientation for e, namely
the orientation ψDpeq associated with Dpeq. Put I “ tDpeq | e P Λvu.
Let Dpeq˝ be the interior of Dpeq for a center of Upeq and consider the
connected affinoid variety

FI “ P1pC8qz
ž

opeq“v

Dpeq˝.

Then Definition 5.1 and Lemma 5.4 imply FI Ď Upvq Ď Ω and thus
the differential form ω “ p´zqk´2´ifpzqdz is holomorphic on FI . Now
Theorem 10.25 yields

ÿ

opeq“v

Resepωq “
ÿ

opeq“v

ResBDpeqpωq “ 0

and the harmonicity follows.
Finally, since f P MkpΓq, we have f |kγ “ f for any γ P Γ and Lemma

11.10 yields

Respfqpγ ˝ eq “ γ ˝ Respf |kγq “ γ ˝ Respfq

and Respfq is Γ-equivariant. This concludes the proof. □

11.3. Drinfeld cusp forms associated with harmonic cocycles.
Let Γ be an arithmetic subgroup of GL2pKq and let k ě 2 be an
integer. Let Ak be the set of locally meromorphic functions on P1pK8q

of Definition 9.14.

Lemma 11.12. For any z P Ω, the function x ÞÑ 1
z´x

is an element of
Ak.
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Proof. Since z P Ω, the function 1
z´x

has no pole on K8. Take any
x P K8. Then z ´ x ‰ 0 and |z ´ x| ą 0. Around x we have

1

z ´ X
“

1

z ´ x ´ pX ´ xq
“

1

z ´ x
¨

1

1 ´ X´x
z´x

“
1

z ´ x

ÿ

ně0

ˆ

X ´ x

z ´ x

˙n

,

which is analytic on DC8px, q´nq for any n P Z satisfying q´n ă |z´x|.
Around x “ 8, we have

1

z ´ X
“

1

X
¨

´1

1 ´ z
X

“
´1

X

ÿ

ně0

´ z

X

¯n

,

which is analytic on DC8p8, q´nq “ D1
C8

p0, qnq for any n P Z satisfying
qn ą |z|.

□

Definition 11.13. For any c P Char
k pΓq, using the integration of The-

orem 9.16 we define a function Fc : Ω Ñ C8 by

Fcpzq :“

ż

P1pK8q

1

z ´ x
dµcpxq.

Lemma 11.14. We have Fc P OpΩq. Moreover, there exists a constant
C1 such that for any sufficiently small integer r we have

sup
zPΩr

|Fcpzq| ď C1q
k
2
r.

Proof. For any integers r, s satisfying s ě ´r, consider the affinoid
variety Ωr,s of Definition 5.19. By Lemma 5.20, we can write

P1pK8q “ D˝p8, q´sq \
ž

aPJ

D˝pa, q´rq “ Dp8, q´s´1q \
ž

aPJ

Dpa, q´r´1q,

Ωr,s “ P1pC8qz

˜

D˝
C8

p8, q´sq \
ž

aPJ

D˝
C8

pa, q´rq

¸

for some finite subset J Ď K8. Put

Fs,8pzq “

ż

Dp8,q´s´1q

1

z ´ x
dµcpxq, Fr,apzq “

ż

Dpa,q´r´1q

1

z ´ x
dµcpxq.

By Theorem 9.16 (1), we have

Fcpzq “ Fs,8pzq `
ÿ

aPJ

Fr,apzq.
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First consider Fs,8. For any z P Ωr,s, we have |z| ď qs and the
function

1

z ´ x
“

´1

x
¨

1

1 ´ z
x

“ ´
ÿ

ně0

zn

xn`1

lies in C8x 1
πs`1

8 x
y. Then Theorem 9.16 (4) implies

Fs,8pzq “ ´
ÿ

ně0

ˆ
ż

Dp8,q´s´1q

1

xn`1
dµcpxq

˙

zn if |z| ď qs.

In particular, for an “
ş

Dp8,q´s´1q
1

xn`1dµcpxq the power series ´
ř

ně0 anz
n

converges on DC8p0, qsq. Thus Fs,8 is the restriction of an element
OpDC8p0, qsqq to Ωr,s Ď DC8p0, qsq, which gives Fs,8 P OpΩr,sq. By
Theorem 9.16 (3), with the constant C of the theorem we obtain

sup
zPΩr,s

|Fs,8pzq| ď C sup
ně0

qp´s´1qpn`1` k´2
2

q`ns “ Cq´ k
2

ps`1q.

Next consider Fr,a. For any z P Ωr,s, we have |z ´ a| ě q´r and the
function

1

z ´ x
“

1

z ´ a
¨

1

1 ´ x´a
z´a

“
ÿ

ně0

px ´ aqn

pz ´ aqn`1

lies in C8x x´a
πr`1

8
y. Then Theorem 9.16 (4) implies

Fr,apzq “
ÿ

ně0

ˆ
ż

Dpa,q´r´1q

px ´ aqndµcpxq

˙

1

pz ´ aqn`1
if |z´a| ě q´r.

In particular, Fr,a is the restriction of an element OpD1
C8

pa, q´rqq to
Ωr,s Ď D1

C8
pa, q´rq, which gives Fr,a P OpΩr,sq. By Theorem 9.16 (3),

we obtain

sup
zPΩr,s

|Fr,apzq| ď C sup
ně0

qp´r´1qpn´ k´2
2

q`pn`1qr “ Cq
k
2

pr`1q´1.

Hence, we have Fc P OpΩr,sq for any integers r, s satisfying s ě ´r.
Since it holds for any integers r, s ě 0, Proposition 5.24 yields Fc P

OpΩq.
Moreover, we have

sup
zPΩr,s

|Fcpzq| ď Cmaxtq´ k
2

ps`1q, q
k
2

pr`1q´1u.

Since s ě ´r is arbitrary and k ą 0, this yields

sup
zPΩr

|Fcpzq| ď Cmaxtq´ k
2

p´r`1q, q
k
2

pr`1q´1u ď Cq
k´2
2 q

k
2
r,

which concludes the proof. □
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Lemma 11.15. For any γ P GL2pKq, we have Fγc|kγ “ Fc. In partic-
ular,

Fc|kγ “ Fc for any γ P Γ.

Proof. Write γ “

ˆ

a b
c d

˙

. First we claim that

ż

P1pK8q

pcx ` dqk´2

γpzq ´ γpxq
dµcpxq “

pcz ` dqk

ad ´ bc
Fcpzq

for any z P Ω.
Indeed, note that we have

pcz ` dqk´2

γpzq ´ γpxq
“

pcx ` dqk´1pcz ` dq

paz ` bqpcx ` dq ´ pax ` bqpcz ` dq

“
pcx ` dqk´1pcz ` dq

pad ´ bcqpz ´ xq
.

This shows

pcz ` dqk´2

γpzq ´ γpxq
´

pcz ` dqk

pad ´ bcqpz ´ xq

“
pcz ` dq

ad ´ bc
¨

pcx ` dqk´1 ´ pcz ` dqk´1

z ´ x
.

Since we can write

pcx ` dqk´1 ´ pcz ` dqk´1 “ pz ´ xqP pxq

with some P pxq P C8rxs satisfying degpP q ď k ´ 2, the claim follows
from Lemma 9.7 (2).

Take any v P T0. By the claim and Proposition 9.55, we have

Fγcpγpzqq “

ż

P1pK8q

1

γpzq ´ x
dµγcpxq

“
ÿ

opeq“v

ż

Upγ˝eq

1

γpzq ´ x
dµγcpxq

“
ÿ

opeq“v

ż

Upeq

detpγq2´kpcx ` dqk´2

γpzq ´ γpxq
dµcpxq

“

ż

P1pK8q

detpγq2´kpcx ` dqk´2

γpzq ´ γpxq
dµcpxq

“ detpγq1´kpcz ` dqkFcpzq.

This concludes the proof. □
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Lemma 11.16. For any arithmetic subgroup Γ of GL2pKq, an integer
k ě 2 and c P Char

k pΓq, the rigid analytic function Fc vanishes at r8s.

Proof. Since Lemma 11.14 yields

lim
rÑ´8

sup
zPΩr

|Fcpzq| “ 0,

Lemma 11.15 and Lemma 6.60 (2) conclude the proof. □

Lemma 11.17. For any arithmetic subgroup Γ of GL2pKq, an integer
k ě 2 and c P Char

k pΓq, we have

Fc P SkpΓq.

Proof. Let ν “

ˆ

a b
c d

˙

P GL2pKq and s “ νp8q. Note that we have

c “ νν´1
c “ νpν

´1
cq.

By Lemma 11.15, we have

Fc|kν “ Fνpν
´1cq|kν “ Fν´1c.

Since ν´1
c P Char

k pν´1Γνq, Lemma 11.16 and Lemma 6.60 imply that
Fc|kν “ Fν´1c vanishes at r8s, namely Fc vanishes at rss. □

Lemma 11.18. Let a P K8 and ρ, η P |Kˆ
8|. Suppose η ă mintρ, ρ´1u

and |a| ă η´1. Then there exists a finite subset Λ Ď K8 satisfying

D1pa, ρq “ Dp8, ηq \
ž

a1PΛ

Dpa1, ηq.

Proof. Since mintρ, ρ´1u ď 1, we have η ă 1 and η ă η´1.
First we show Dp8, ηq Ď D1pa, ρq. Let x P K8 satisfy |x| ě η´1.

Then |x ´ a| “ |x| ě η´1 ą ρ and x P D1pa, ρq.
Next we show Dpa1, ηq Ď D1pa, ρqzDp8, ηq for any a1 P K8 satisfying

|a1 ´ a| ě ρ and |a1| ă η´1. Let x P K8 satisfy |x ´ a1| ď η. Then

|x ´ a| “ |x ´ a1 ` pa1 ´ aq| “ |a1 ´ a| ě ρ

and x P D1pa, ρq. Moreover, we have |x| “ |x ´ a1 ` a1| ă η´1 and
x R Dp8, ηq. Now Lemma 4.2 (1) concludes the proof. □

Lemma 11.19. Let c P Char
k pΓq and let e P T o

1 . Suppose 8 R Upeq.
Write Upeq “ Dpa, ρq with some a P K8 and ρ P |Kˆ

8|. Then for any
integer m ě 0, we have

Reseppz ´ aqmFcpzqdzq “

ż

Upeq

px ´ aqmdµcpxq.
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Proof. For any σ P qQ, choose ϖσ P C8 satisfying |ϖσ| “ σ. Write

Fcpzq “

ż

Upeq

1

z ´ x
dµcpxq `

ż

Up´eq

1

z ´ x
dµcpxq.

To compute Rese, take any σ P qQ X pρ, qρq and consider the concentric
circle of radius σ in Vpeq

Cσ “ tz P C8 | |z ´ a| “ σu.

Then its canonical orientation for the edge e is given by its parameter
z´a
ϖσ

.

For any z P Vpeq, we have ρ ă |z ´ a| ă qρ and

1

z ´ x
“

1

z ´ a
¨

1

1 ´ x´a
z´a

“
ÿ

ně0

px ´ aqn

pz ´ aqn`1
P C8

B

x ´ a

ϖρ

F

and Theorem 9.16 (4) yields

(11.4)

ż

Upeq

1

z ´ x
dµcpxq “

ÿ

ně0

1

pz ´ aqn`1

ż

Upeq

px ´ aqndµcpxq.

Since the series converges for any z P Cσ, the right-hand side of (11.4)
lies in OpCσq and

ResCσ

ˆ

pz ´ aqm
ż

Upeq

1

z ´ x
dµcpxqdz

˙

“

ż

Upeq

px ´ aqmdµcpxq.

Now it is enough to show

ResCσ

ˆ

pz ´ aqm
ż

Up´eq

1

z ´ x
dµcpxqdz

˙

“ 0.

For this, choose η P qZ satisfying η ă mintqρ, pqρq´1u and |a| ă η´1.
By Lemma 11.18, we can find a decomposition

Up´eq “ D1pa, qρq “ Dp8, ηq \
ž

a1PΛ

Dpa1, ηq

with some finite subset Λ Ď K8. Then we have
ż

Up´eq

1

z ´ x
dµcpxq “

ż

Dp8,ηq

1

z ´ x
dµcpxq `

ÿ

a1PΛ

ż

Dpa1,ηq

1

z ´ x
dµcpxq.

Note that a1 satisfies σ ă qρ ď |a1 ´ a| ď pqηq´1 ă η´1.
For any z P Vpeq, we have ρ ă |z ´ a| ă qρ and

|z ´ a1| “ |z ´ a ` pa ´ a1q| “ |a ´ a1| ě qρ.



NOTES ON DRINFELD MODULAR FORMS 179

Since η ă qρ, we have

1

z ´ x
“

1

z ´ a1
¨

1

1 ´ x´a1

z´a1

“
ÿ

ně0

px ´ a1qn

pz ´ a1qn`1
P C8

B

x ´ a1

ϖη

F

and Theorem 9.16 (4) yields

(11.5)

ż

Dpa1,ηq

1

z ´ x
dµcpxq “

ÿ

ně0

1

pz ´ a1qn`1

ż

Dpa1,ηq

px ´ a1qndµcpxq.

We claim that the right-hand side of (11.5) lies in C8x z´a
ϖσ

y. In-
deed, consider the supremum norm on this affinoid algebra, which is a
valuation by [BGR, Corollary 5.1.4/6]. Then |z ´ a|sup “ σ and

|z ´ a1|sup “ |z ´ a ` pa ´ a1q|sup “ |a1 ´ a| ě qρ.

Moreover, since |a1 ´ a| ą σ we have z´ a1 P C8x z´a
ϖσ

yˆ. Now Theorem

9.16 (3) implies
ˇ

ˇ

ˇ

ˇ

pz ´ a1q´n

ż

Dpa1,ηq

px ´ a1qndµcpxq

ˇ

ˇ

ˇ

ˇ

sup

ď pqρq´nCηn´ k´2
2 “ Cη´ k´2

2

ˆ

η

qρ

˙n

,

which goes to zero when n Ñ 8 and the claim follows. Since m ě 0,
we obtain

ResCσ

ˆ

pz ´ aqm
ż

Dpa1,ηq

1

z ´ x
dµcpxqdz

˙

“ 0.

Finally, let us consider the integration over Dp8, ηq. Since |a| ă η´1,
for any z P Vpeq we have ρ ă |z ´ a| ă qρ ă η´1 and

|z| “ |z ´ a ` a| ă η´1.

This implies

1

z ´ x
“

´1

x
¨

1

1 ´ z
x

“ ´
ÿ

ně0

zn

xn`1
P C8

B

1

ϖηx

F

and Theorem 9.16 (4) yields

(11.6)

ż

Dp8,ηq

1

z ´ x
dµcpxq “ ´

ÿ

ně0

zn
ż

Dp8,ηq

1

xn`1
dµcpxq.

We claim that the right-hand side of (11.6) lies in C8x z´a
ϖσ

y. Indeed,
for the supremum norm of this affinoid algebra, we have

|z|sup “ |z ´ a ` a|sup ă η´1

and Theorem 9.16 (3) yields
ˇ

ˇ

ˇ

ˇ

zn
ż

Dp8,ηq

1

xn`1
dµcpxq

ˇ

ˇ

ˇ

ˇ

sup

“ |z|nsupCη
n`1` k´2

2 “ Cη
k
2 p|z|supηqn Ñ 0
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when n Ñ 8 and the claim follows. Since m ě 0, we obtain

ResCσ

ˆ

pz ´ aqm
ż

Dp8,ηq

1

z ´ x
dµcpxqdz

˙

“ 0.

This concludes the proof. □
Proposition 11.20. For any c P Char

k pΓq, we have RespFcq “ c. In
particular, the map

Char
k pΓq Ñ SkpΓq, c ÞÑ Fc

is an injective C8-linear map.

Proof. Take any e P T o
1 . We need to show RespFcqpeq “ cpeq. Replacing

e by ´e if necessary, we may assume 8 R Upeq. Let i be any integer
satisfying 0 ď i ď k ´ 2. Write Upeq “ Dpa, ρq with some a P K8 and
ρ P |Kˆ|. Put

p´zqk´2´i “

k´2
ÿ

m“0

cmpz ´ aqm, cm P K8.

By Definition 11.9 and Lemma 11.19, we have

RespFcqpeqpX iY k´2´iq “ Resepp´zqk´2´iFcpzqdzq

“

k´2
ÿ

m“0

cmReseppz ´ aqmFcpzqdzq

“

k´2
ÿ

m“0

cm

ż

Upeq

px ´ aqmdµcpxq

“

ż

Upeq

p´xqk´2´idµcpxq.

By (9.2), this equals cpeqpX iY k´2´iq and we obtain RespFcq “ c. Hence
the map of the proposition is injective. Its C8-linearity follows from
Corollary 9.17. □

12. Description of Drinfeld cuspforms via harmonic
cocycles and the Steinberg module

Let Γ be an arithmetic subgroup of GL2pKq and let k ě 2. In this
section, we show that the injection Char

k pΓq Ñ SkpΓq of Proposition
11.20 for Γ is an isomorphism. Moreover, under the assumption that
Γ is p1-torsion free, we give a description of Char

k pΓq, and thus of SkpΓq,
using the Steinberg module St.

For this, first we recall the notion of Γ-stable simplices and their
properties, following [Ser, Ch. II, §2.9].
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12.1. Stable and unstable simplices. In this subsection, we assume
that Γ is p1-torsion free.

Definition 12.1. We say a vertex (resp. an edge) s of T is Γ-stable if

StabΓpsq “ tidu, and Γ-unstable if not. We denote by T Γ-st
0 (resp. T o,Γ-st

1 )

the set of Γ-stable vertices (resp. edges), and by T Γ-un
0 (resp. T o,Γ-un

1 )
the set of Γ-unstable vertices (resp. edges).

Note that (3.2) implies that for any g P GL2pKq, a simplex s is Γ-
stable if and only if g ˝ s is gΓg´1-stable. On the other hand, (3.1)
implies that if e P T o

1 is Γ-unstable, then ´e, opeq and tpeq are all Γ-
unstable. Thus Γ-unstable vertices and edges form a subgraph of the
tree T which we denote by T8.

Lemma 12.2. Let G Ď GL2pKq be a nontrivial finite p-subgroup. Then
there exists a unique rational end of T that is fixed by G.

Proof. Note that the set of rational ends EndKpT q is identified with
P1pKq via the isomorphism of Lemma 2.10. Thus it is enough to show
that there exists a unique line in K2 that is fixed by G.

Since G is a nontrivial finite p-group, its center Z is nontrivial. Since
Z is a nontrivial finite abelian p-group, we can find g P Z of order p.
Since g P GL2pKq satisfies gp “ id, its minimal polynomial divides
pX ´ 1qp in the polynomial ring KrXs. Thus g has the eigenvalue one,
and there exists a line D Ď K2 which is fixed by g. Since g ‰ id, such
a line is unique.

For any h P G, we have ghpDq “ hgpDq “ hpDq and the uniqueness
of the line D yields hpDq “ D. Thus D is stable under the action of
G, and the action defines a character χ : G Ñ Kˆ. Since charpKq “ p,
there is no nontrivial p-power roots of unity in K. Hence χ “ 1 and D
is fixed by G. Since G ‰ tidu, such D is unique. This concludes the
proof. □
Lemma 12.3. Suppose that Γ is an arithmetic subgroup of GL2pKq

which is p1-torsion free. For any Γ-unstable simplex s of T , the stabi-
lizer subgroup StabΓpsq is a nontrivial finite p-group.

Proof. By Lemma 3.6, the group StabΓpsq is finite. The assumption
that Γ is p1-torsion free implies that it is a p-group. Since s is Γ-
unstable, it is nontrivial. □
Lemma 12.4. Let v P T Γ-un

0 .

(1) There exists a unique rational end bpvq P EndKpT q fixed by
StabΓpvq.

(2) For any γ P Γ, we have bpγ ˝ vq “ γ ˝ bpvq.
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(3) There exists a unique half-line Hpvq starting from v that repre-
sents bpvq.

(4) The half-line Hpvq is fixed by StabΓpvq. In particular, if we
write Hpvq “ twiuiě0, then the edge pwi Ñ wi`1q is Γ-unstable
for any i.

Proof. By Lemma 12.3, the group G :“ StabΓpvq is a nontrivial finite
p-group. Then Lemma 12.2 yields (1).

For (2), by (3.2) we have StabΓpγ ˝ vq “ γStabΓpvqγ´1 for any γ P Γ
and γ ˝ bpvq is a rational end fixed by this group. Hence the uniqueness
in (1) yields bpγ ˝ vq “ γ ˝ bpvq.
Since T is connected, we can find a half-line H “ twiuiě0 starting

with w0 “ v and representing the end bpvq. If H 1 “ tw1
iuiě0 is another

such half-line, then H 1 agrees with H except finitely many vertices.
Thus they yield a circuit unless H “ H 1. Since T is a tree, this shows
H “ H 1 and (3) follows.

For any g P G, put g ˝H “ tg ˝wiuiě0. Since G fixes v and bpvq, the
uniqueness yields H “ g ˝H. This implies pg ˝wi Ñ g ˝wi`1q “ pwi Ñ

wi`1q for any i and (4) also follows. □

Lemma 12.5. Let e P T Γ-un
0 .

(1) There exists a unique rational end bpeq P EndKpT q fixed by
StabΓpeq.

(2) For any w P topeq, tpequ, we have bpeq “ bpwq.

Proof. Since StabΓpeq is a nontrivial finite p-group, Lemma 12.2 yields
a unique rational end bpeq that is fixed by StabΓpeq and (1) follows.

For (2), note that w is Γ-unstable. Since we have

StabΓpeq Ď StabΓpwq,

the rational end bpwq of Lemma 12.4 (1) is fixed by StabΓpeq. Then
the uniqueness of bpeq implies bpeq “ bpwq and (2) follows. □

Lemma 12.6. Let b P EndKpT q be a rational end and let H “ twnuně0

be a half-line representing b. Then there exists an integer N ě 0 such
that for any n ě N , the edge fn “ pwn Ñ wn`1q is Γ-unstable and
StabΓpfnq “ StabΓpwnq Ď StabΓpfn`1q.

Proof. Take ν P GL2pKq satisfying νΓν´1 Ď GL2pAq. By (3.2), replac-
ing H by ν ˝ H we may assume that Γ is a congruence subgroup. By
Lemma 3.15, there exists γ P Γ and g P GL2pAq such that tγg ˝ vnuně0

and H agree up to finitely many vertices. Replacing Γ by the congru-
ence subgroup γgΓpγgq´1, we may assume H “ tvnuně0.
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Take any P P AzFq satisfying ΓppP qq Ď Γ. By Lemma 3.10 (2), for
any n ě degpP q we have
"ˆ

1 FqP
0 1

˙*

Ď StabΓpvnq “ StabΓpenq Ď StabΓpvn`1q “ StabΓpen`1q,

from which the lemma follows. □
Lemma 12.7. Let π0pT8q be the set of connected components of T8.
For any v P T Γ-un

0 , let rvs be the connected component of T8 that con-
tains v. Then we have a Γ-equivariant bijection

π0pT8q Ñ EndKpT q » P1pKq, rvs ÞÑ bpvq.

Proof. First we show that the map of the lemma is well-defined. Sup-
pose that Γ-unstable vertices v, v1 P T0 satisfy rvs “ rv1s. This means
that there exist vertices w0, . . . , wn of T8 satisfying w0 “ v, wn “ v1

and such that for any i the edge pwi Ñ wi`1q is Γ-unstable. Thus we
may assume n “ 1, so that e “ pv Ñ v1q is a Γ-unstable edge. Then
Lemma 12.5 (2) yields bpvq “ bpeq “ bpv1q. The Γ-equivariance of this
map follows from Lemma 12.4 (2).

Next we show that the map of the lemma is injective. Let v, v1 P

T Γ-un
0 and suppose bpvq “ bpv1q. Then the half-lines Hpvq and Hpv1q of

Lemma 12.4 (3) agree except finitely many vertices. By Lemma 12.4
(4), each edge in these half-lines is Γ-unstable and thus v and v1 are
connected with a chain of Γ-unstable edges. Hence we obtain rvs “ rv1s.

For the surjectivity, take any b P EndKpT q and let twnuně0 be a
half-line which represents b. By Lemma 12.6, we may assume that for
any n the edge fn “ pwn Ñ wn`1q is Γ-unstable with StabΓpwnq Ď

StabΓpwn`1q. Then StabΓpw0q fixes b and the uniqueness of Lemma
12.4 (1) yields b “ bpw0q. This concludes the proof. □
Lemma 12.8. For any v P T Γ-un

0 , let epvq be the first edge of the
half-line Hpvq so that opepvqq “ v. Then the map

T Γ-un
0 Ñ T o,Γ-un

1 {t˘1u, v ÞÑ repvqs

is a Γ-equivariant bijection.

Proof. The Γ-equivariance follows from Lemma 12.4 (2) and the unique-

ness of Hpvq. For any e P T o,Γ-un
1 , consider the rational end bpeq of T .

For any w P topeq, tpequ, Lemma 12.5 (2) yields bpeq “ bpwq. Thus
there exists a unique element vpeq P topeq, tpequ such that the half-
line Hpvpeqq contains both of opeq and tpeq. Since the definition shows
vpeq “ vp´eq, we obtain a map

T o,Γ-un
1 {t˘1u Ñ T Γ-un

0 , res ÞÑ vpeq,
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which gives the inverse of the map v ÞÑ repvqs. □

Definition 12.9. Let e P T o
1 . We define a subset srcΓpeq of T o,Γ-st

1 as
follows:

‚ If e is Γ-stable, then srcΓpeq “ teu.
‚ If e is Γ-unstable, then srcΓpeq consists of Γ-stable edges e1 sat-
isfying the conditions below.
(1) There exists a Γ-unstable vertex v1 P tope1q, tpe1qu such that

the half-line Hpv1q starting from v1 and representing bpv1q

passes though e. This means that if we write Hpv1q “

twnuně0, then e “ pwn Ñ wn`1q or e “ ´pwn Ñ wn`1q for
some n.

(2) e1 has the same orientation as e with respect to Hpv1q. This
means that

e “

"

pwn Ñ wn`1q pv1 “ tpe1qq,
´pwn Ñ wn`1q pv1 “ ope1qq.

Any element of srcΓpeq is called a Γ-source of e.

Note that for any Γ-unstable edge e and any e1 P srcΓpeq, the vertex
v1 P tope1q, tpe1qu satisfying the condition of Definition 12.9 (1) is unique.
Indeed, suppose that both of ope1q and tpe1q are Γ-unstable. Since e1

is Γ-stable, Lemma 12.4 (4) implies that neither Hpope1qq nor Hptpe1qq

passes through e1. Hence, if both of these half-lines pass through e,
then they form a circuit. This is a contradiction.

Moreover, since StabΓpv1q fixes Hpv1q, we have StabΓpv1q Ď StabΓpeq
and bpeq “ bpv1q.

From the definition, we have

(12.1) srcΓp´eq “ ´srcΓpeq :“ t´e1 | e1 P srcΓpequ.

Lemma 12.10 ([Ser], Ch. I, §2.1, Exercise 2). Let G be a connected
locally finite graph containing no injective infinite path. Then G is
finite.

Proof. We may assume G ‰ H. Take any vertex v P G. Put G0 “ tvu.
For any integer i ą 0, let Gi Ă VertpGq be the subset consisting of
vertices w such that w is adjacent to a vertex in Gi´1 and w R Gj for
any j ď i ´ 1. Since G is locally finite, each Gi is finite. Since G is
connected, we have G “

Ť

iě0Gi.
For any i and any w P Gi, choose a vertex gipwq P Gi´1 which is

adjacent to w. This gives a map gi : Gi Ñ Gi´1. For any j ą i, put
gj,i “ gi`1 ˝ ¨ ¨ ¨ ˝ gj : Gj Ñ Gi and gi,i “ id. Then pGi, gj,iq forms an
inverse system.
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Suppose that G is infinite. Then for any n ě 0 there exists i ě n
satisfying Gi ‰ H. By taking the image of gi,n, we see that Gn ‰ H

for any n ě 0, and [Sta, Lemma 4.21.7] implies lim
ÐÝiě0

Gi ‰ H. Now

pwiqiě0 P lim
ÐÝiě0

Gi gives an injective infinite path in G, which is a

contradiction. □
Lemma 12.11. Let e P T o

1 .

(1) For any g P GL2pKq, we have

srcgΓg´1pg ˝ eq “ g ˝ srcΓpeq.

(2) srcΓpeq is a finite set.
(3) Suppose that e is Γ-unstable. Let v P topeq, tpequ be the farther

one from bpeq. If v “ opeq (resp. v “ tpeq), then let f1, . . . , fq
be the edges with terminus (resp. origin) v. Then we have

srcΓpeq “

q
ž

i“1

srcΓpfiq.

Proof. (1) follows from (3.2) and g ˝ pv Ñ wq “ pg ˝ v Ñ g ˝ wq.
For (2), we may assume that e is Γ-unstable. Let T8peq be the

connected component of T8 containing e. Then Lemma 12.5 (2) yields
bpeq “ bpopeqq and by Lemma 12.4 it is represented by the half-line
Hpopeqq “ twnuně0 starting from opeq and consisting of Γ-unstable
edges. Hence Lemma 12.7 implies that Hpopeqq represents the unique
end in T8peq.

Now Lemma 12.10 implies that for some m ě 0, omitting twnuněm

and t˘pwn Ñ wn`1quněm from T8peq defines a finite subgraph. Thus
we can find an integer N ě 0 such that all the half-lines starting from
opeq or tpeq except those representing bpeq pass through Γ-stable edges
before passing through N edges. This shows |srcΓpeq| ď 2qN .

Let us show (3). Note that if fi is Γ-unstable, then bpfiq “ bpvq “

bpeq. From the definition we see srcΓpeq “
Ťq
i“1 srcΓpfiq. Suppose

f P srcΓpfiq X srcΓpfjq. Then the unique path starting from f and
connecting with Hpvq passes through both of fi and fj, which yields
i “ j and the union is disjoint. This concludes the proof. □

12.2. Steinberg module and its resolution. Also in this subsec-
tion, we assume that Γ is p1-torsion free. Let ZrP1pKqs be the free
abelian group with basis P1pKq.

Definition 12.12. Consider the augmentation map

aug : ZrP1pKqs Ñ Z,
ÿ

xPP1pKq

nxrxs ÞÑ
ÿ

xPP1pKq

nx.
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Then we put St :“ Kerpaugq and call it the Steinberg module, so that
we have an exact sequence

0 // St // ZrP1pKqs
aug // Z // 0.

By Lemma 2.3, the group Γ acts without inversion and thus we can
choose an orientation T `

1 of T o
1 which is stable under the action of Γ.

Definition 12.13. Put T `,Γ-st
1 “ T `

1 X T o,Γ-st
1 and

S0 :“ T Γ-st
0 , S1 :“ T `,Γ-st

1 .

Lemma 12.14. The group Γ acts freely on S0 and S1 from the left via
the action ˝.

Proof. By (3.2), the group Γ acts on S0 “ T Γ-st
0 and T o,Γ-st

1 from the
left via ˝. Since the orientation T `

1 is Γ-stable, it also acts on S1. For
any Γ-stable simplex s we have StabΓpsq “ tidu and the freeness of the
action follows. □

Definition 12.15. Put

l0 “ |ΓzS0|, l1 “ |ΓzS1|.

Lemma 12.16. The cardinality li is finite for i “ 0, 1.

Proof. Take g P GL2pKq satisfying gΓg´1 Ď GL2pAq. By (3.2), the
map s ÞÑ g ˝ s induces bijections

ΓzT Γ-st
0 Ñ gΓg´1zT gΓg´1-st

0 , ΓzT o,Γ-st
1 {t˘1u Ñ gΓg´1zT o,gΓg´1-st

1 {t˘1u.

Thus we may assume Γ Ď GL2pAq.
By Lemma 3.12 and Lemma 3.15, we see that the quotient graph ΓzT

is the union of a finite graph and the image of finitely many rational
ends in T . Hence Lemma 12.6 implies that any Γ-stable simplex is Γ-
equivalent to a simplex which lies in the finite graph obtained from ΓzT
by cutting off injective infinite paths. This concludes the proof. □

Definition 12.17. Define

L0 :“ ZrS0s, L1 :“ ZrS1s.

By the action induced by ˝, they are considered as left ZrΓs-modules.
Then the left ZrΓs-module Li is free of rank li for i “ 0, 1.

Though the definition of L1 depends on the choice of a Γ-stable
orientation T `

1 of T , we have the following description of L1 which is
independent of the choice.
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Lemma 12.18. The natural map

L1 “ ZrS1s Ñ ZrT o,Γ-st
1 s{xres ` r´es | e P T o,Γ-st

1 y, res ÞÑ res

is an isomorphism of left ZrΓs-modules.

Proof. The map of the lemma is ZrΓs-linear. It is enough to construct
its inverse as a morphism of Z-modules. Define a Z-linear map

F : ZrT o,Γ-st
1 s Ñ ZrS1s

by F presq “ res if e P T `
1 and F presq “ ´r´es if not. Then we have

F pres ` r´esq “ 0 for any e P T o,Γ-st
1 and the map F induces a Z-linear

map

ZrT o,Γ-st
1 s{xres ` r´es | e P T o,Γ-st

1 y Ñ ZrS1s,

which gives the inverse of the map of the lemma. □

The graph T defines a simplicial complex X whose set of zero-
dimensional simplices is T0 and that of one-dimensional simplices is
T `
1 . Similarly, T8 defines a simplicial complex X8. We denote the

group of i-dimensional chains of them by CipXq and CipX8q. Put

CipX,X8q :“ CipXq{CipX8q.

Then we have a natural isomorphism of left ZrΓs-modules

Li Ñ CipX,X8q.

Proposition 12.19. The left ZrΓs-modules St ‘ L0 and L1 are iso-
morphic. In particular, we have l1 ě l0 and the left ZrΓs-module St is
finitely generated and projective.

Proof. The long exact sequence of relative homology groups gives an
exact sequence of left ZrΓs-modules

0 // H1pX8q // H1pXq // H1pX,X8q // H0pX8q

// H0pXq // H0pX,X8q // 0.

Since T is a connected tree, we have H1pXq “ 0 and H0pXq “ Z.
Since the map H0pX8q Ñ H0pXq can be identified with the map send-
ing a connected component of T8 to that of T , it is surjective and
H0pX,X8q “ 0.
Thus we have an exact sequence of left ZrΓs-modules

0 // H1pX,X8q // H0pX8q
aug // Z // 0,
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where the map aug sends any connected component of T8 to one.
By Lemma 12.7, this map is identified with the augmentation map
ZrP1pKqs Ñ Z and we obtain an isomorphism of left ZrΓs-modules

H1pX,X8q Ñ St “ Kerpaugq.

On the other hand, by the definition of relative homology groups we
have an exact sequence of ZrΓs-modules

0 // H1pX,X8q // C1pX,X8q // C0pX,X8q // H0pX,X8q “ 0,

which yields an exact sequence of ZrΓs-modules

(12.2) 0 // St // L1
B // L0

// 0.

Here the map B : L1 Ñ L0 is given by Bpresq “ rtpeqs ´ ropeqs, where
we put rvs “ 0 when v P T Γ-un

0 . Since the left ZrΓs-module Li is free of
rank li, the exact sequence (12.2) splits. Hence the ZrΓs-module St is
finitely generated and projective. By tensoring the augmentation map
ZrΓs Ñ Z from the left to (12.2), we obtain l1 ě l0. This concludes the
proof. □
Lemma 12.20. Let χpΓq be the Euler–Poincaré characteristic of Γ, as
in Definition 3.17. Then we have

χpΓq “ l0 ´ l1.

Proof. Recall that χpΓq is defined as the absolutely convergent series

χpΓq “
ÿ

vPΓzT0

1

|StabΓpvq|
´

ÿ

ePΓzT o
1 {t˘1u

1

|StabΓpeq|
.

Put

χstpΓq “
ÿ

vPΓzT Γ-st
0

1

|StabΓpvq|
´

ÿ

ePΓzT o,Γ-st
1 {t˘1u

1

|StabΓpeq|
,

χunpΓq “
ÿ

vPΓzT Γ-un
0

1

|StabΓpvq|
´

ÿ

ePΓzT o,Γ-un
1 {t˘1u

1

|StabΓpeq|
,

so that they are also absolutely convergent and χpΓq “ χstpΓq`χunpΓq.
For χstpΓq, the stabilizer subgroups are all trivial and thus

χstpΓq “ |ΓzT Γ-st
0 | ´ |ΓzT o,Γ-st

1 {t˘1u| “ l0 ´ l1.

Thus we are reduced to showing χunpΓq “ 0.
Consider the Γ-equivariant bijection

T Γ-un
0 Ñ T o,Γ-un

1 {t˘1u, v ÞÑ repvqs
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of Lemma 12.8. By definition, we have opepvqq “ v and thus StabΓpepvqq Ď

StabΓpvq. On the other hand, by Lemma 12.4 (4) the group StabΓpvq

fixes the half-line Hpvq and thus StabΓpvq Ď StabΓpepvqq. Hence we
obtain StabΓpvq “ StabΓpepvqq and

χunpΓq “
ÿ

vPΓzT Γ-un
0

ˆ

1

|StabΓpvq|
´

1

|StabΓpepvqq|

˙

“ 0.

This concludes the proof. □

12.3. Euler–Poincaré characteristic and group homology. Let
Γ be an arithmetic subgroup of GL2pKq. For any left ZrΓs-module M ,
we denote by MΓ the module of Γ-coinvariants of M . Then the group
homology HipΓ,Mq is the i-th left derived functor of M ÞÑ MΓ.

Since T is a tree, the boundary map B : C1pXq Ñ C0pXq gives an
exact sequence of ZrΓs-module

0 // C1pXq
B // C0pXq // Z // 0.

For i “ 0, 1, put CipXqQ “ Q bZ CipXq. Then we have the long exact
sequence of group homology
(12.3)

¨ ¨ ¨ // HipΓ, C1pXqQq // HipΓ, C0pXqQq // HipΓ,Qq

// Hi´1pΓ, C1pXqQq // ¨ ¨ ¨ .

Lemma 12.21. Let Γ be an arithmetic subgroup of GL2pKq. Then we
have an isomorphism of Q-vector spaces

H1pΓ,Qq » H1pΓzX,Qq.

Proof. Let Σ0 and Σ1 be complete sets of representatives of ΓzT0 and
ΓzT `

1 , respectively. Then for i “ 0, 1 we have Γ-equivariant isomor-
phisms

CipXq Ñ
à

sPΣi

ZrΓ{StabΓpsqs, CipXqQ Ñ
à

sPΣi

QrΓ{StabΓpsqs.

By Shapiro’s lemma [Bro, Ch. III, Proposition 6.2], we also have an
isomorphism

HipΓ,QrΓ{StabΓpsqsq » HipStabΓpsq,Qq.

By Lemma 3.6, the group StabΓpsq is finite. Then [Bro, Ch. III, Propo-
sition 9.5 (ii)] implies HipStabΓpsq,Qq “ 0 for any i ą 0. Hence (12.3)
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yields an exact sequence

0 // H1pΓ,Qq // H0pΓ, C1pXqQq // H0pΓ, C0pXqQq.

Since for i “ 0, 1 we have an isomorphism

H0pΓ, CipXqQq “ pCipXqQqΓ » CipΓzXqQ

compatible with boundary maps, the lemma follows. □

Let Σ be a complete set of representatives of CuspspΓq “ ΓzP1pKq.
Then we have an isomorphism of left ZrΓs-modules

ZrP1pKqs »
à

σPΣ

ZrΓ{StabΓpσqs,

which yields an exact sequence of left ZrΓs-modules

0 // St //
À

σPΣ ZrΓ{StabΓpσqs // Z // 0.

Hence we have the long exact sequence of group homology
(12.4)

¨ ¨ ¨ //
À

σPΣHipStabΓpσq,Qq // HipΓ,Qq // Hi´1pΓ,Q bZ Stq

//
À

σPΣHi´1pStabΓpσq,Qq // ¨ ¨ ¨ .

Lemma 12.22. Let Γ be an arithmetic subgroup of GL2pKq which is
p1-torsion free. For any i ą 0, we have

HipΓ,Q bZ Stq “ 0, dimQpH0pΓ,Q bZ Stqq “ ´χpΓq.

Proof. Since HipΓ,QbZ Stq » Tor
ZrΓs

i pQ, Stq, the first assertion follows
from Proposition 12.19. Applying the functor Q bZrΓs ´ with (12.2)
and using the isomorphism

H0pΓ,Q bZ Stq “ pQ bZ StqΓ » Q bZrΓs St,

we obtain an exact sequence of Q-vector spaces

0 // H0pΓ,Q bZ Stq // Ql1 // Ql0 // 0.

Thus Lemma 12.20 concludes the proof. □

Lemma 12.23. Let σ P P1pKq. Then

Q bZ StabΓpσqab “ 0.
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Proof. Replacing Γ by its conjugate, we may assume that Γ is a con-
gruence subgroup. Since we have g ˝ 8 “ σ with some g P GL2pAq,
replacing Γ by gΓg´1 we may also assume σ “ 8. Then we have

StabΓp8q Ď

"

γ “

ˆ

a b
0 d

˙ ˇ

ˇ

ˇ

ˇ

a, d P Fˆ
q , b P A

*

.

Suppose γ P StabΓp8q. If a ‰ d, then as in the proof of Lemma 6.50
we have γq´1 “ id. Otherwise

γppq´1q “

ˆ

a

ˆ

1 a´1b
0 1

˙˙ppq´1q

“

ˆ

1 a´1b
0 1

˙ppq´1q

“ id.

Thus the module StabΓp8qab is torsion. This concludes the proof. □
Proposition 12.24 ([Ser], Ch. II, §2.9, Exercise 2). Let Γ be an arith-
metic subgroup of GL2pKq which is p1-torsion free. Let

g :“ dimQpH1pΓzX,Qqq, h :“ |CuspspΓq|.

Then we have χpΓq “ ´pg ` h ´ 1q.

Proof. By Lemma 12.23 and the universal coefficient theorem [Bro,
Ch. III, §1, Exercise 3], for any σ P Σ we have

H1pStabΓpσq,Qq “ Q bZ StabΓpσqab “ 0, H0pStabΓpσq,Qq “ Q.

Note that h “ |Σ| and H0pΓ,Qq “ Q. By Lemma 12.21 and Lemma
12.22, the sequence (12.4) yields an exact sequence of Q-vector spaces

0 // H1pΓzX,Qq // Q´χpΓq // Qh // Q // 0,

from which the proposition follows. □

12.4. Description of Drinfeld cuspforms via harmonic cocycles.

Definition 12.25. Let k ě 2 be an integer. Suppose that Γ is p1-
torsion free. We denote by Cst,har

k pΓq the C8-vector space consisting of

maps c : T o,Γ-st
1 Ñ VkpC8q satisfying the following conditions.

(1) For any v P T Γ-st
0 , we have

ÿ

ePT o
1 , tpeq“v

cpeq “ 0.

Note that the assumption v P T Γ-st
0 forces e in the sum to be

Γ-stable.
(2) For any e P T o,Γ-st

1 , we have cp´eq “ ´cpeq.
(3) For any γ P Γ and e P T Γ-st

0 , we have γ ˝ cpeq “ cpγ ˝ eq.
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Moreover, we denote by Cst,˘
k pΓq the C8-vector space consisting of

maps c : T o,Γ-st
1 Ñ VkpC8q satisfying the conditions (2) and (3).

Lemma 12.26. Let Λ1 be a complete set of representatives of ΓzS1 “

ΓzT `,Γ-st
1 . For any e P T o,Γ-st

1 , there exists a unique triple pεe, γe, rpeqq P

t˘1u ˆ Γ ˆ Λ1 satisfying e “ εeγe ˝ rpeq. Moreover, for any δ P Γ we
have

pε´e, γ´e, rp´eqq “ p´εe, γe, rpeqq, pεδ˝e, γδ˝e, rpδ˝eqq “ pεe, δγe, rpeqq.

Proof. Since T `
1 is an orientation, we can find εe P t˘1u satisfying

εee P T `,Γ-st
1 . This yields the existence of such a triple.

For the uniqueness, suppose triples pεe, γe, rpeqq and pε1
e, γ

1
e, r

1peqq

satisfy
e “ εeγe ˝ rpeq “ ε1

eγ
1
e ˝ r1peq.

Since T `
1 is a Γ-stable orientation, both of γe ˝ rpeq and γ1

e ˝ r1peq lie
in T `

1 and thus εe “ ε1
e. Since Λ1 is a complete set of representatives,

we have rpeq “ r1peq and γ´1
e γ1

e ˝ rpeq “ rpeq. Since rpeq is Γ-stable, we
obtain γe “ γ1

e. The last assertion follows from the uniqueness. □
Lemma 12.27. Let Λ1 be a complete set of representatives of ΓzS1.
Then we have a C8-linear isomorphism

Cst,˘
k pΓq Ñ

à

ePΛ1

VkpC8q, c ÞÑ pcpeqqePΛ1 .

Proof. By Lemma 12.26, for any f P T o,Γ-st
1 , we can find a unique triple

pεf , γf , rpfqq P t˘1u ˆΓˆΛ1 satisfying f “ εfγf ˝ rpfq. Then the map
à

ePΛ1

VkpC8q Ñ Cst,˘
k pΓq, pωeqePΛ1 ÞÑ pf ÞÑ εfγf ˝ ωrpfqq

is well-defined and gives the inverse of the map of the lemma. □
Lemma 12.28. Suppose that Γ is p1-torsion free. Then

dimC8pCst,har
k pΓqq ě pk ´ 1qpl1 ´ l0q.

Proof. Let Λi be a complete set of representatives of ΓzSi. Consider the
basis tXk´2´lY lul“0,...,k´2 ofHk´2pC8q and its dual basis tpXk´2´lY lq_ul“0,...,k´2

of VkpC8q. For any c P Cst,˘
k pΓq and e P Λ1, write

cpeq “

k´2
ÿ

l“0

ae,lpcqpXk´2´lY lq_, ae,lpcq P C8.

By Lemma 12.27, we have a C8-linear isomorphism

(12.5) Cst,˘
k pΓq Ñ

à

ePΛ1

k´2
à

l“0

C8, c ÞÑ pae,lpcqqe,l.
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Moreover, by Lemma 12.26, for any e P T o,Γ-st
1 we can uniquely write

e “ εeγe ˝ rpeq, pεe, γe, rpeqq P t˘1u ˆ Γ ˆ Λ1.

Fix v P Λ0. Then we have
ÿ

tpeq“v

cpeq “ 0 ô
ÿ

tpeq“v

εepγe ˝ cprpeqqqpXk´2´lY lq “ 0 for any l.

Thus the condition that c P Cst,˘
k pΓq lies in Cst,har

k pΓq is identified, via

the isomorphism (12.5), with pk´1ql0 linear relations on Cpk´1ql1
8 . Thus

the C8-vector space C
st,har
k pΓq is isomorphic to the null space

tx P Cpk´1ql1
8 | Bx “ 0u

for some pk ´ 1ql0 ˆ pk ´ 1ql1 matrix B with entries in C8. Now
Proposition 12.19 yields l1 ě l0 and

dimC8pChar,st
k pΓqq “ pk ´ 1ql1 ´ rankpBq ě pk ´ 1ql1 ´ pk ´ 1ql0.

This concludes the proof. □
Lemma 12.29. Suppose that Γ is p1-torsion free. Then the restriction
to T o,Γ-st

1 gives a C8-linear isomorphism

Char
k pΓq Ñ Cst,har

k pΓq, c ÞÑ c|T o,Γ-st
1

.

In particular, we have

dimC8pChar
k pΓqq ě pk ´ 1qpl1 ´ l0q.

Proof. From the definition of Γ-sources, we see that for any c P Char
k pΓq

and any e P T o
1 we have

cpeq “
ÿ

e1PsrcΓpeq

cpe1q.

Thus the harmonic cocycle c is determined by its restriction to Γ-stable
edges, and the map of the lemma is injective.

For the surjectivity, take any c P Cst,har
k pΓq. We define a map c̃ :

T o
1 Ñ VkpC8q by

c̃peq :“
ÿ

e1PsrcΓpeq

cpe1q.

By Lemma 12.11 (2), it is well-defined and its restriction to T o,Γ-st
1

is c. By Lemma 12.11 (1), the map c̃ is Γ-equivariant. (12.1) yields
c̃p´eq “ ´c̃peq.

Let us show that c̃ is harmonic at any vertex v P T0. We may assume
that v is Γ-unstable. Consider the half-line Hpvq of Lemma 12.4 (3).
Then Lemma 12.4 (4) shows that the first edge e of Hpvq is Γ-unstable
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and satisfies opeq “ v. Let f1, . . . , fq be the edges with terminus v. By
Lemma 12.11 (3), we have

c̃peq “
ÿ

e1PsrcΓpeq

cpe1q “

q
ÿ

i“1

ÿ

e1PsrcΓpfiq

cpe1q “

q
ÿ

i“1

c̃pfiq,

which shows the harmonicity of c̃ at the vertex v. Thus the map of the
lemma is surjective. The last assertion follows from Lemma 12.28. □
Theorem 12.30. Let Γ be an arithmetic subgroup of GL2pKq and let
k ě 2 be an integer. Then the map

Char
k pΓq Ñ SkpΓq, c ÞÑ Fc

of Proposition 11.20 is a C8-linear isomorphism with the inverse f ÞÑ

Respfq.

Proof. By Proposition 11.20, the theorem is equivalent to the inequality

(12.6) dimC8pChar
k pΓqq ě dimC8pSkpΓqq.

For any ν P GL2pKq, we have an isomorphism

Char
k pΓq Ñ Char

k pν´1Γνq, c ÞÑ ν´1

c : pe ÞÑ ν´1 ˝ cpν ˝ eqq.

By Lemma 6.62, replacing Γ with its conjugate, to show the inequality
(12.6) we may assume Γ Ď GL2pAq. Then we have Γpnq ◁ Γ for some
nonzero ideal n Ď A.

Note that the group Γ{Γpnq acts on Char
k pΓpnqq from the right via

c ÞÑ γ´1
c for any γ P Γ and

Char
k pΓq “ Char

k pΓpnqqΓ{Γpnq.

If the theorem holds for Γpnq, then Lemma 11.15 and Lemma 6.63 yield
dimC8pChar

k pΓqq “ dimC8pSkpΓqq. Hence the theorem also holds for Γ.
Therefore, we reduce ourselves to showing the theorem for Γpnq, which
is p1-torsion free.

For this, by Lemma 12.29 and Lemma 12.20 we have

dimC8pChar
k pΓpnqqq ě pk ´ 1qpl1 ´ l0q “ ´pk ´ 1qχpΓpnqq.

On the other hand, Lemma 3.18 and (3.8) yield

´χpΓpnqq “
rGL2pAq : Γpnqs

pq ´ 1q2pq ` 1q
.

Let gn be the genus of the compactification Xpnq of ΓpnqzΩ and let
h “ |CuspspΓpnqq|. Then [Gek1, Ch. VII, Theorem 5.11] gives

gn “ 1 ´ χpΓpnqq ´ h.
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By [Gos1, Corollary 1.81], we have an invertible sheaf ω on the pro-
jective smooth curve Xpnq such that degpωq “ gn ´ 1 ` h and there
exists a natural isomorphism

SkpΓpnqq Ñ H0pXpnq, ωkp´Cuspsqq.

Since k ě 2 and h ě 1, we have

degpωkp´Cuspsqq “ kpgn ´ 1 ` hq ´ h ą 2gn ´ 2.

Now the Riemann–Roch theorem yields

dimC8pSkpΓpnqqq “ kpgn ´ 1 ` hq ´ h ` 1 ´ gn

“ pk ´ 1qpgn ´ 1 ` hq “ ´pk ´ 1qχpΓpnqq,

from which the theorem follows. □

Remark 12.31. The use of Gekeler’s genus formula can be bypassed
by using Proposition 12.24 and the fact that the graph obtained from
ΓzT by cutting off all ends agrees with the dual graph of the semi-
stable reduction of the compactification XpΓq of ΓzΩ and the first Betti
number of the dual graph gives the genus of XpΓq. A construction of
the compactification is explained in [Böc, §3.7]. On the other hand, in
order to construct the Hodge bundle ω we need the theory of Drinfeld
modules and Tate–Drinfeld modules. I hope to add these topics to the
notes when I have time.

12.5. Steinberg module and harmonic cocycles. Let Γ be an
arithmetic subgroup of GL2pKq which is p1-torsion free. For i “ 0, 1,
let Si be the set of Definition 12.13 and let Li “ ZrSis as in Definition
12.17. Let Λi be a complete set of representatives of ΓzSi.

For any left ZrΓs-module M P tL0, L1, Stu, we consider M as a right
ZrΓs-module by

m ¨ γ :“ γ´1 ˝ m, γ P Γ, m P M,

so that for any integer k ě 2, we can form the tensor product M bZrΓs

VkpC8q. Then for i “ 0, 1, the right ZrΓs-module Li is also free. Hence
(12.2) induces an exact sequence of C8-vector spaces
(12.7)

0 // St bZrΓs VkpC8q // L1 bZrΓs VkpC8q
Bb1 // L0 bZrΓs VkpC8q // 0.

Definition 12.32. For any k ě 2, define a C8-linear map ϕst
Γ by

ϕst
Γ : Cst,˘

k pΓq Ñ L1 bZrΓs VkpC8q, c ÞÑ
ÿ

ePΛ1

res b cpeq.
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Then Lemma 12.27 implies that ϕst
Γ is an isomorphism. For any γ P Γ

and e P S1 “ T `,Γ-st
1 , in the module L1 bZrΓs VkpC8q we have

rγ ˝ es b cpγ ˝ eq “ res ¨ γ´1 b γ ˝ cpeq “ res b cpeq.

Hence the map ϕst
Γ is independent of the choice of Λ1.

Lemma 12.33. The map ϕst
Γ induces a C8-linear isomorphism

Cst,har
k pΓq Ñ St bZrΓs VkpC8q.

Proof. Note that for i “ 0, 1, the freeness of the right ZrΓs-module Li
implies that the C8-linear map

à

sPΛi

VkpC8q Ñ Li bZrΓs VkpC8q, pωsqsPΛi
ÞÑ

ÿ

sPΛi

rss b ωs

is an isomorphism. Let c P Cst,˘
k pΓq and write

pB b 1qpϕst
Γ pcqq “

ÿ

vPΛ0

rvs b ωc,v

with some ωc,v P VkpC8q. By the exact sequence (12.7), it is enough to

show that ωc,v “ 0 for any v P Λ0 if and only if c P Cst,har
k pΓq.

Take any v P Λ0. Let Λpvq “ te P T o
1 | tpeq “ vu. Since T `

1 is an
orientation, for any e P Λpvq there exists a unique εe P t˘1u satisfying
εee P T `

1 . Put

Λpvq` :“ tεee | e P Λpvqu.

Since v is Γ-stable, any edge in Λpvq is Γ-stable. Moreover, for any
e, e1 P Λpvq we have e1 R Γe, and Lemma 2.3 also implies e1 R ´Γe.

Then it follows that Λpvq` Ď T `,Γ-st
1 and any two distinct elements

of Λpvq` are not Γ-equivalent. Thus we can find a complete set of

representatives Λ1 of ΓzT `,Γ-st
1 satisfying Λpvq` Ď Λ1.

Note that for any e P Λ1zΛpvq`, we have v R topeq, tpequ. Hence

rvs b ωc,v “
ÿ

ePΛpvq

εervs b cpεeeq “ rvs b
ÿ

ePΛpvq

cpeq

and ωc,v “
ř

ePΛpvq cpeq, from which the lemma follows. □

Corollary 12.34. Let Γ be an arithmetic subgroup of GL2pKq which
is p1-torsion free and let k ě 2. Then the C8-linear map

ϕΓ : Char
k pΓq Ñ St bZrΓs VkpC8q, c ÞÑ

ÿ

ePΛ1

res b cpeq

is an isomorphism which is independent of the choice of Λ1.
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Proof. Since Λ1 Ď T o,Γ-st
1 , we have

ϕΓpcq “ ϕst
Γ pc|T o,Γ-st

1
q.

Thus the corollary follows from Lemma 12.29 and Lemma 12.33. □
Remark 12.35. The assumption that Γ is p1-torsion free in Corollary
12.34 is removed by [BGP, Theorem 1.14].
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[DH] P. Deligne and D. Husemöller: Survey of Drinfel’d modules, Current trends in
arithmetical algebraic geometry (Arcata, Calif., 1985), 25–91. Contemp. Math.
67, American Mathematical Society, Providence, RI, 1987.

[DS] F. Diamond and J. Shurman: A first course in modular forms, Grad. Texts
in Math. 228 Springer–Verlag, New York, 2005.

[Dri] V. G. Drinfeld: Elliptic modules, Math. USSR-Sb. 23 (1974), no. 4, 561–592
(1976).
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