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Abstract. Let p be a rational prime, q ą 1 a power of p and F “ Fqptq. For

an integer d ě 2, let D be a central division algebra over F of dimension d2

which is split at 8 and has invariant invxpDq “ 1{d at any place x of F at
which D ramifies. Let XD be the Drinfeld–Stuhler variety, the coarse moduli
scheme of the algebraic stack over F classifying D-elliptic sheaves. In this
paper, we establish various arithmetic properties of D-elliptic sheaves to give

an explicit criterion for the non-existence of rational points of XD over a finite

extension of F of degree d. As an application, for d “ 2, we present explicit
infinite families of quadratic extensions of F over which the curve XD violates

the Hasse principle.
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1. Introduction

Let p be a rational prime and let q ą 1 be a power of p. Let A “ Fqrts be the
polynomial ring over Fq and let F “ Fqptq be its fraction field. We denote by 8

the place of F defined by 1{t. Let d ě 2 be an integer. Let D be a central division
algebra over F of dimension d2 which splits at 8 and such that for any place x of F
at which D ramifies, the invariant of D at x is 1{d. For any global field E and any
place v of E, we denote by Ev the completion of E at v and by Esep a separable
closure of E.

A D-elliptic sheaf is a system of locally free sheaves equipped with an action of
a sheafified version D of D. It is a function field analogue of a polarized abelian
surface equipped with an action of an indefinite quaternion division algebra B over
Q. The modular varieties of D-elliptic sheaves were studied by Laumon–Rapoport–
Stuhler [LRS], with the aim of proving the local Langlands correspondence for
GLpnq in positive characteristic.

Let XD be the Drinfeld–Stuhler variety, the coarse moduli scheme of the alge-
braic stack over F classifying D-elliptic sheaves. Then XD is proper of dimension
d ´ 1. When d “ 2, it is also smooth over F and we call it the Drinfeld–Stuhler
curve. It is a function field analogue of the quaternionic Shimura curve VB corre-
sponding to B. For the latter, Jordan [Jor] proved criteria for the non-existence of
quadratic points on VB , and using them, gave an example of B such that the curve
VB violates the Hasse principle over a quadratic number field E. Namely, in his
example the curve VB has no E-valued point despite that VB has Ev-valued points
for any place v of E.

In this paper, we generalize Jordan’s results to XD. We have three objectives:

(1) Establish various arithmetic properties of D-elliptic sheaves.
(2) Give an explicit criterion for the non-existence of rational points on XD

over finite extensions of F of degree d, using (1).
(3) Produce examples of Drinfeld–Stuhler curves violating the Hasse principle

over infinitely many quadratic extensions of F , by combining (2) with cri-
teria for the existence of local points on Drinfeld–Stuhler curves obtained
by the fourth author [Pap2].

For any field extension K{F , we denote by XDpKq the set of K-valued points
of XD over F (Definition 3.5). Then our main theorems are as follows.

Theorem 1.1 (Theorem 8.5). Let K{F be a field extension of degree d. Assume
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‚ D bF K » MdpKq,
‚ there exists a place y ‰ 8 of F which totally ramifies in K and such that
D splits at y,

‚ there exists a place p of F such that D ramifies at p and p R Ppyq, where
Ppyq is a certain explicitly computable finite set of places of F (Definition
8.4),

‚ D bF F p d
?
µyq fi MdpF p d

?
µyqq for any µ P Fˆ

q .

Then XDpKq “ H.

Theorem 1.2 (Theorem 9.11). Let

pq, p, qq P

$

’

’

’

’

&

’

’

’

’

%

p3, t3 ` t2 ` t` 2, t` 1q,

p3, t4 ` t3 ` 2t` 1, t2 ` 1q, p3, t5 ` 2t` 1, t` 2q,

p5, t3 ` t2 ` 4t` 1, t` 2q, p5, t4 ` 2, t2 ` t` 1q,

p7, t3 ` 2, t` 3q

,

/

/

/

/

.

/

/

/

/

-

and let D be the quaternion division algebra over F which ramifies only at p and
q. Let n P A be any monic square-free polynomial which is coprime to tpq. Put

Sn “

"

Fˆ
q zpFˆ

q q2 pdegpnq ” 1 mod 2q,
Fˆ
q pdegpnq ” 0 mod 2q.

Define
K “ Kn,ε :“ F p

?
εtpqnq, ε P Sn.

Then we have XDpKq “ H and XDpKvq ‰ H for any place v of K.

One significant difference between our work and [Jor] is that Theorem 1.1 is valid
for any d ě 2, not just quaternion algebras and curves. In principle, Theorem 1.2
can be extended to higher dimensional Drinfeld–Stuhler varieties once the results
on local points in [Pap2] are extended to these higher dimensional varieties.

We record here some known cases in which Shimura curves VB violate the Hasse
principle. Jordan showed that VB for B of discriminant 39 is a counterexample
to the Hasse principle over Qp

?
´13q. Other references for counterexamples over

(finitely many) explicit quadratic fields are [Sko, RdVP]. Arai [Ara, Proposition
2.6 (1)] found an explicit infinite family of quartic number fields. The method we
found applies in the number field case as well, and we can obtain an explicit infinite
family of quadratic number fields (using the Weil bound and [Jor, Example 6.4]).

Let us give an outline of the proof of Theorem 1.1. Let D, K, y and p be as in
the theorem and let Fp be the residue field of p. Suppose XDpKq ‰ H. First of all,
we show that any element of XDpKq yields a D-elliptic sheaf E over K (Theorem
3.8). This follows from a Galois descent argument due to Shimura [Shi], once we
know that any point of XDpKq gives rise to a D-elliptic sheaf over a separable
extension of K. We deduce the separability from the fact that the automorphism
group of a D-elliptic sheaf over a finite extension of F is a finite group of order
prime to p (Lemma 3.3).

Next we attach to E a character

ρE,p : GalpKsep{Kq Ñ Fˆ

valued in the extension F{Fp of degree d, and show that ρE,p has very restrictive
properties at each place of K. This eventually leads to a contradiction and we
obtain XDpKq “ H. The strategy of using a character to show the non-existence
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of rational points is standard and originally due to Mazur [Maz]. We loosely follow
its adaptation in [Jor].

Let Π be a prime element in the maximal order of the completion of D at p. Let
Erps be the p-torsion of the abelian t-module associated with E . We define ρE,p as
the Galois representation of the Π-torsion in ErpspKsepq (§7.1), and call ρE,p the
canonical isogeny character of E .

Now our main task is local analysis of the character ρE,p at any place v of K,
to which a large part of the paper is devoted. Let Gv be the decomposition group
and Iv the inertia subgroup of GalpKsep{Kq at v.

When v ∤ p8, we bound the order of ρE,ppIvq independently of v (Proposition
5.8). For this it is enough to bound the degree of an extension over which any
D-elliptic sheaf over Kv acquires good reduction (Proposition 4.16). Since any D-
elliptic sheaf over Kv is known to have potentially good reduction [LRS, Hau], a
standard argument reduces it to bounding the order of the automorphism group of
a D-elliptic sheaf over a finite field (Proposition 4.3).

When v | p, we relate ρE,p|Iv to the Carlitz character (Corollary 6.8). In Jordan’s
case [Jor], a corresponding property is shown by the use of polarization, whereas
we do not have a suitable notion of polarization on D-elliptic sheaves. Instead, we
employ the determinant of t-motives to obtain an explicit description of a small
power of ρE,p|Iv (Proposition 6.5), which is enough for our purpose.

Somewhat delicate is the case of v | 8. Contrary to the number field setting
where the absolute Galois group of R is of order two, that of Kv for v | 8 is of
infinite order. Nonetheless we have a good control of ρE,p at v | 8: by combining the
lemma of the critical index [BS, Lemma 3.3.1] with the descent lemma of Drinfeld
[Dri, Proposition 1.1], we show that ρE,ppGvq has a rather small order (Corollary
7.6).

As a consequence of these local analyses we conclude that, for a positive integer
n which is sufficiently smaller than the order of Fˆ, the dn-th power of the image
by ρE,p of a Frobenius element over y has a very special form (Proposition 8.1),
from which we derive the contradiction as desired.

The organization of the paper is as follows. In §2, we recall definitions and
basic properties concerning D-elliptic sheaves. In §3, we study the automorphism
group of a D-elliptic sheaf over a finite extension K of F and apply it to produce
a D-elliptic sheaf over K from an element of XDpKq when K splits D.

In §4, we investigate the structure of the endomorphism ring of the t-motive
associated with a D-elliptic sheaf E over a finite extension k{Fq. By abuse of
notation, we write EndpEq for this ring. (Warning: we consider endomorphisms as
t-motive and automorphisms as D-elliptic sheaf.) In [LRS, Hau], similar structure
theorems are proved for D-elliptic sheaves over an algebraic closure k̄ of k. Basically
we reduce to that case. Note, however, that this reduction is not immediate, since
we have EndpEq Ď EndpE |k̄q, while the opposite containment holds for the centers
of these rings. Then we apply it to bound the degree of an extension over which a
D-elliptic sheaf over a local field has good reduction.

In §5, we introduce the p-adic Galois representation attached to a D-elliptic
sheaf over a field, and study the reduced characteristic polynomial of the Frobenius
action on it using results in §4. We also give a bound on the local monodromy of
the mod p Galois representation when the base field is a finite extension of F .
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In §6, we study the determinant of the t-motive associated with a D-elliptic
sheaf and relate it to the Carlitz character. In §7, we define the canonical isogeny
character of a D-elliptic sheaf and show that the image of the decomposition group
at 8 under the character is small. Its local property at p is also deduced from
results in §6.

In §8, we put these results together to prove Theorem 1.1. In §9, we combine
it with [Pap2] to obtain Theorem 1.2, with the help of computer calculation using
PARI/GP. (The codes we used can be found at [Hat].)
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out, for their hospitality, excellent working conditions, and financial support. M.P.
was also supported in part by a Collaboration Grant for Mathematicians from the
Simons Foundation, Award No. 637364.

2. D-elliptic sheaves

2.1. Definition of D-elliptic sheaves. Let p be a rational prime and let q ą 1
be a power of p. We denote by X the projective line over Fq and by |X| the set
of closed points of X. For 8 P X, put A “ ΓpXzt8u,OXq and we identify it with
Fqrts. Put F “ Fqptq. For any x P |X|, we denote by Fx the completion of F at x
and by Ox the valuation ring of Fx.

For any two schemes X1 and X2 over Fq, we write their fiber product over Fq
as X1 ˆX2. Similarly, we denote by b the tensor product over Fq. For any valued
field L, we write OL for its valuation ring.

Let d ě 2 be an integer. Let D be a central division F -algebra of dimension d2

such that DbF F8 splits (that is, DbF F8 » MdpF8q). Let R “ RampDq be the
subset of |X| consisting of x P |X| such that Dx “ D bF Fx does not split. We
assume

(2.1) invpDxq “ 1{d for any x P R.

This assumption, in particular, implies that Dx is a division algebra for x P R.
Let D be a locally free coherent OX -algebra such that the stalk at the generic

point of X is equal to D and that for any x P |X|, the completion Dx “ D bOX,x
Ox

of the stalk at x is a maximal order ODx
of Dx. Put OD “ H0pXzt8u,Dq, which

is a maximal A-order of D. For any monic irreducible polynomial p P A, by abuse
of notation, we also let p denote the place of F defined by p. We write

Fp :“ A{ppq and |p| :“ |Fp|.
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For any scheme S over Fq, we denote by FrobS the q-th power Frobenius mor-
phism of S. For anyOXˆS-module E , put τE “ pidXˆFrobSq˚E . For any Fq-algebra
R, the q-th power Frobenius endomorphism of R is denoted by σ “ σq.

We define D-elliptic sheaves following [LRS, Definition 2.2], except that we allow
fibers at the infinity and ramified places by using [BS, Definition 4.4.1] and [Hau,
Définition 3.5] (see also [Spi, Definition 5.9]).

Definition 2.1. A D-elliptic sheaf over an Fq-scheme S is a sequence E “ pEi, ji, tiqiPZ
consisting of locally free OXˆS-modules Ei of rank d2 equipped with an OX -linear
right action of D and injective OXˆS-linear maps

ji : Ei Ñ Ei`1, ti :
τEi Ñ Ei`1

compatible with D-actions, satisfying the following conditions for any i P Z:
(1) The diagram

Ei
ji // Ei`1

τEi´1 τji´1

//

ti´1

OO

τEi

ti

OO

is commutative.
(2) Ei`d “ Ei bOXˆS

pOXp8q b OSq and the composite

ji`d´1 ˝ ¨ ¨ ¨ ˝ ji : Ei Ñ Ei`d
is induced by the natural map OX Ñ OXp8q. Here b denotes the external
tensor product.

(3) For the projection prS : X ˆ S Ñ S, the direct image pprSq˚pCokerpjiqq is
a locally free OS-module of rank d.

(4) Cokerptiq is supported by the graph of a morphism i0 : S Ñ X over Fq
which is independent of i. Moreover, Cokerptiq is the direct image of a
locally free OS-module of rank d via the graph S Ñ X ˆ S of i0. We refer
to i0 as the zero of the D-elliptic sheaf E and put

ZpEq “ i0pSq.

(5) For any geometric point s P S, the Euler-Poincaré characteristic χpE0|Xˆsq

lies in r0, d2q.
(6) E is special in the sense of [Hau, Définition 3.5].

Let us recall the condition (6) briefly. Take any p P R. Let F
pdq
p be the unramified

extension of degree d of Fp. Note that the maximal order ODp
of Dp contains

Opdq
p “ O

F
pdq
p

as an Op-subalgebra. Let Fpdq
p be the residue field of F

pdq
p . Let

Erp8s be the p-divisible group associated with E (see §5.2). The condition (6)
means that, for any p P R and any geometric point s “ Specpkpsqq of S satisfying

i0psq “ p, the Opdq
p -action on LiepErp8ssq is decomposed as the sum of d embeddings

Opdq
p {pOpdq

p “ Fpdq
p Ñ kpsq of extensions of Fp.

For an Fq-algebra R, we refer to a D-elliptic sheaf over SpecpRq also as a D-
elliptic sheaf over R. If 8 R ZpEq, then the zero i0 defines a homomorphism of
Fq-algebras A Ñ R, by which we consider R as an A-algebra.

When 8 R ZpEq and R “ K is a field, we refer to the kernel (or its monic
generator) of the map A Ñ K as the characteristic of K and denote it by charApKq.
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If charApKq “ 0, we say K is of generic characteristic. From the definition of the
zero i0, we see that if 8 R ZpEq and charApKq R R Y t0u, then OD bA K is
isomorphic to MdpKq.

Definition 2.2. Let R be an Fq-algebra equipped with a morphism SpecpRq Ñ X
over Fq and let E be a D-elliptic sheaf over R. We say E is sound if the zero
i0 : SpecpRq Ñ X agrees with the given map.

For example, when K{F is a field extension, we say a D-elliptic sheaf over K
of generic characteristic is sound if its zero agrees with the composite SpecpKq Ñ

SpecpF q Ñ X of natural maps. Similarly, for any x P |X| we can consider sound
D-elliptic sheaves over an Ox-algebra, in particular those over a field extension of
the residue field at x.

Definition 2.3. A morphism of D-elliptic sheaves pEi, ji, tiqiPZ Ñ pE 1
i, j

1
i, t

1
iqiPZ is a

system of homomorphisms tψi : Ei Ñ E 1
iuiPZ of OXˆS-modules which is compatible

with the actions of D , ji and ti.

For any D-elliptic sheaf E , we denote its automorphism group by AutpEq.
For the zero i0 of a D-elliptic sheaf E over S, note that

‚ the zero of any D-elliptic sheaf over S which is isomorphic to E is i0, and
‚ for any morphism f : T Ñ S of Fq-schemes, the sequence

E |T :“ pp1 ˆ fq˚Ei, p1 ˆ fq˚ji, p1 ˆ fq˚tiqiPZ

defines a D-elliptic sheaf over T whose zero is i0 ˝ f .

Definition 2.4. Let v P |X| and let L{Fv be an extension of complete discrete
valuation fields. We say a sound D-elliptic sheaf E over L of generic characteristic
has good reduction if there exists a D-elliptic sheaf EOL

over OL such that its
restriction EOL

|L to L is isomorphic to E as D-elliptic sheaves over L. Then EOL

is also sound and we have ZpEOL
q X |X| “ tvu.

2.2. Level I structure and moduli schemes. Let I be a finite closed subscheme
of SpecpAq. Let S be a scheme over Fq. Let E “ pEi, ji, tiqiPZ be a D-elliptic sheaf
over S satisfying I X ZpEq “ H. Then Ei|IˆS and ti|IˆS are independent of i. Let
us denote them by E |IˆS and t̃|IˆS .

Let EI be the functor from the category of schemes over S to that of right
H0pI,Dq-modules defined by

T ÞÑ KerpH0pI ˆ T, t̃|IˆS ´ idE|IˆS
qq.

Then it is representable by a finite étale H0pI,Dq-module scheme of rank one over
S [LRS, Lemma 2.6]. Note that EI is also independent of i. We consider the right
action of D on itself by the right translation (that is, the multiplication from the
right).

Definition 2.5. Let I be a finite closed subscheme of SpecpAq. Let S be a scheme
over Fq. Let E “ pEi, ji, tiqiPZ be a D-elliptic sheaf over S satisfying I XZpEq “ H.
A level I structure on E is an isomorphism of OIˆS-modules

ι : D |I b OS Ñ E |IˆS
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compatible with the right actions of D |I such that the following diagram is com-
mutative.

τE |IˆS

t̃|IˆS // E |IˆS

D |I b OS

τι

eeKKKKKKKKKK ι

99sssssssss

By [Dri, Proposition 2.1], to give a level I structure on E is the same as to give
an isomorphism

OD|I Ñ EI

of finite étale right OD-module schemes over S, where the source is the constant
group scheme with OD-action defined by the right translation.

Let E ℓℓD,I be the fppf stack of D-elliptic sheaves with level I structure over the
category of Fq-schemes and put E ℓℓD “ E ℓℓD,H, as in [LRS, §2]. The zero map i0
defines a morphism E ℓℓD,I Ñ X, which factors as

(2.2) E ℓℓD,I Ñ XzI.

Then E ℓℓD,I is a Deligne–Mumford stack which is smooth of relative dimension
d´ 1 over Xzpt8u Y R Y Iq [LRS, Theorem 4.1].

Let w be a place of F satisfying w R I. When I ‰ H, the stack E ℓℓD,I is
representable by a projective scheme EllD,I over Xzppt8u Y R Y Iqztwuq. This is
proved in [LRS, Corollary 6.2] for w R t8u YR, [Hau, Théorème 6.4] for w P R and
[BS, Theorem 4.4.8 and Theorem 4.4.9] for w “ 8 (see also [Spi, Remark 4.12]).
We note that, if I ‰ H, then for any scheme S over Xzppt8u Y R Y Iqztwuq each
object of E ℓℓD,IpSq has no non-trivial automorphism.

2.3. D-elliptic sheaves and t-motives. Let R be a (commutative) local Fq-
algebra. We denote by Rrτ s the skew polynomial ring defined by the relation
τb “ bqτ for any b P R.

Let E “ pEi, ji, tiqiPZ be a D-elliptic sheaf over R. As in [LRS, (3.4)], put

P “ H0ppXzt8uq bR, Eiq,

which is independent of i. The A b R-module P is locally free of rank d2. We
consider P as an Rrτ s-module, by letting τ act on P via ti :

τEi Ñ Ei`1. Then the
R-module H0pX bR,Cokerpji´1qq is free of rank d

Moreover, the Rrτ s-module P admits a natural right OD-action which commutes
with the left Rrτ s-action. It gives a homomorphism of Fq-algebras

φ : Oop
D Ñ EndRrτspP q,

which is compatible with the natural action of the subring A Ď Oop
D on the R-

module P . We refer to P as the t-motive associated with the D-elliptic sheaf E .
When R “ L is a field, the AbL-module P is free of rank d2. The proof of [LRS,

Lemma 3.7] works for this case and shows that the map φ : Oop
D Ñ EndLrτspP q is

injective.
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If 8 R ZpEq, then the zero A Ñ R of E yields the commutative diagram

(2.3) Oop
D

φ //

��

EndRrτspP q

��
Oop
D bA R // EndRpCokerpτqq,

where we consider τ as an R-linear map τ : p1 b σq˚P Ñ P . If 8 R ZpEq and
R “ L is a perfect field, then the Lrτ s-module P is free of rank d [LRS, Lemma
3.5] (see also [And, Proposition 1.4.4]) and we have Cokerpτq “ P {τP .

Lemma 2.6 ([Pap3], Lemma 2.5). Let L{Fq be a field extension and let E be a
D-elliptic sheaf over L with 8 R ZpEq. Suppose charApLq R R. Then the map at
the bottom of the diagram (2.3)

Oop
D bA L Ñ EndLpCokerpτqq » MdpLq

is an isomorphism.

Proof. When charApLq ‰ 0, the assumption shows that Oop
D bA L is isomorphic

to MdpLq. When charApLq “ 0, the source equals Dop bF L. Since in both cases
the map of the lemma is a homomorphism of unitary rings from a simple algebra,
its kernel is trivial. Since both sides have the same dimension over L, it is an
isomorphism. □

Since X ˆ SpecpLq is an integral scheme, we have injections

(2.4) AutpEq Ñ AutOD

Lrτs
pP q Ñ AutLrτspP q,

where AutOD

Lrτs
pP q denotes the group of automorphisms of the Lrτ s-module P that

commute with the OD-action.
By abuse of notation, we write EndpEq for the endomorphism ring of the t-motive

associated with a D-elliptic sheaf E over a field L:

(2.5) EndpEq :“ EndOD

Lrτs
pP q.

When L is a finite extension of Fq, the A b L-module P is free of rank d2 and
thus P is also free of finite rank as an A-module. This implies that if L{Fq is a
finite extension, then the A-module EndpEq is free of finite rank.

3. Coarse moduli scheme

3.1. Automorphisms of D-elliptic sheaves in generic characteristic. Let
K{F be a field extension. Let E be a D-elliptic sheaf over K of generic character-
istic. Then its zero i0 : A Ñ K factors through the natural inclusion A Ñ F .

Lemma 3.1 ([Pap3], Lemma 2.12). Let K{F be an extension and let E be a D-
elliptic sheaf over K of generic characteristic. Let K̄ be an algebraic closure of K.
Let P and P̄ “ P bK K̄ be the t-motives associated with E and E |K̄ , respectively.
Then the natural map

AutpEq Ñ AutK̄pP̄ {τP̄ q

is injective and factors through K̄ˆ. In particular, AutpEq is an abelian subgroup
of K̄ˆ such that any element of finite order has an order prime to p.
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Proof. Since AutpEq Ď AutpE |K̄q, we may assume K “ K̄.
Consider the diagram (2.3). Since K “ K̄ is perfect, the Krτ s-module P is free

of rank d and the ring EndKrτspP q is identified with the matrix ring MdpKrτ sopq.
For any a P A, by the commutativity of (2.3) we can write

φpaq “ aId `
ÿ

iě1

Aiτ
i, Ai P MdpKq,

where Id P MdpKq is the identity matrix .
To show that the natural map AutpEq Ñ AutKpP {τP q is injective, suppose that

there exists f ‰ id in the kernel of this map. Using (2.4), we identify f with an
element of EndKrτspP q which we write

f “ Id `
ÿ

iěm

Biτ
i, Bi P MdpKq, Bm ‰ 0

with some positive integer m. Since f commutes with the OD-action, it also com-
mutes with φptq. This yields tBm “ tq

m

Bm and Bm “ 0, which is a contradiction.
Now Lemma 2.6 implies that the image of f in AutKpP {τP q lies in its center,

namely Kˆ. Thus we obtain an injection AutpEq Ñ Kˆ. Then the lemma follows
since Kˆ has no non-trivial element of p-power order. □

For any positive integer n, let

lqpnq “ lcmpqi ´ 1 | 1 ď i ď nq

be the least common multiple. We have

p ∤ lqpnq and lqp2q “ q2 ´ 1.

Lemma 3.2. Let π P A be an irreducible polynomial of degree one. Let H be a
cyclic subgroup of pOD{πODqˆ of order prime to p. Then |H| divides lqpdq.

Proof. Let x P X be the closed point that π defines. Since Dx is a central simple
algebra over Fx, there exist integers e,m satisfying d “ em and a central division
algebra D̃x of degree m2 over Fx satisfying Dx » MepD̃xq. By assumption Dx is a
maximal order of Dx, and by [Rei, Theorem 17.3 (ii)] it is identified with MepOD̃x

q

for the maximal order OD̃x
of D̃x. Thus we have

OD{πOD » MepOD̃x
{πOD̃x

q.

For the division algebra D̃x, by [Rei, Theorem 14.5] we can write

OD̃x
{πOD̃x

“

m´1
à

i“0

FqmΠi, Πm “ 0, Πω “ ωq
r

Π

for any ω P Fqm , with some integer r P r1,ms which is coprime to m. Then we have
the exact sequence of groups
(3.1)

1 // Ie ` ΠMepOD̃x
{πOD̃x

q // pOD{πODqˆ // GLepFqmq // 1,

where Ie P MepFqmq is the identity matrix.
Since the first term is a group of p-power order, its intersection with H is trivial.

Thus we obtain an injection

H Ñ GLepFqmq.
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Take any element h P H. Since h is of order prime to p, its image in GLepFqmq

is semisimple. Note that for any element of GLepFqmq, its eigenvalue is a root of a
monic polynomial of degree e with coefficients in Fqm . Thus its eigenvalue lies in
an extension of Fqm of degree no more than e, hence in a finite extension over Fq of
degree no more than d. Therefore we obtain hlqpdq “ id. This proves the claim. □

For any ring R which is not necessarily commutative and z P R, we denote by
zl : R Ñ R the left translation of z, so that pzz1ql “ zl ˝ z1

l for any z, z
1 P R.

Lemma 3.3. Let E be a D-elliptic sheaf over K of generic characteristic. Then
AutpEq is a cyclic group of order dividing lqpdq.

Proof. We may assume that K is algebraically closed. Let x be a closed point of
Xzt8u of degree one. Let π P A be an irreducible polynomial defining x. Note that
E admits a level x structure over K “ K̄. Let us identify it with an isomorphism
of right OD-modules

ι : OD{πOD Ñ ExpKq.

Since OD{πOD is a finite ring, any element with right inverse is invertible. Thus
the set of level x structures on E is an pOD{πODqˆ-torsor, where the action of
g P pOD{πODqˆ is given by ι ÞÑ ι˝gl. Since the group AutpEq acts on this set from
the left, we have a homomorphism

AutpEq Ñ pOD{πODqˆ,

which is injective since any element of E ℓℓD,xpKq has no non-trivial automorphism.
Thus AutpEq is a finite group, and Lemma 3.1 shows that it is a cyclic group of
order prime to p. Now Lemma 3.2 concludes the proof. □
3.2. Galois descent for D-elliptic sheaves. Let K{F be a finite extension such
that there exists an isomorphism of K-algebras

η : OD bA K » MdpKq.

Let L{K be a finite Galois extension with the Galois group G “ GalpL{Kq. Let
W be a right OD bA L-module satisfying dimLpW q “ d. Let Ld be the L-vector
space of row vectors on which MdpLq acts naturally from the right. Since any
right MdpLq-module of dimension d over L is isomorphic to Ld, there exists an
isomorphism

ψ :W » Ld

which is compatible with the actions of ODbAL andMdpLq under the isomorphism
η b 1 : OD bA L » MdpLq.

For any g P G, consider the right OD bA L-module W bL,g L. The action is
given by

pv bL,g 1qpδ b aq “ vδ bL,g a, δ P OD, a P L.

We regard it as an L-vector space by the action on L on the right factor.
Let g P G and let λ : W Ñ W bL,g L be an isomorphism of right OD bA L-

modules. We consider the following diagram:

(3.2)

W
λ //

ψ

��

W bL,g L

ψbL,g1

&&NN
NNN

NNN
NN

Ld
f

// Ld Ld bL,g L.
Ψ

oo
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The maps λ, ψ and ψ bL,g 1 are isomorphisms and the isomorphism Ψ is given by

Ψppa1, . . . , adq b aq “ pagpa1q, . . . , agpadqq.

We define f to be the isomorphism that makes the diagram commutative.
We claim that f is an isomorphism as MdpLq-modules. Indeed, since the map

ψ is compatible with the isomorphism η : OD bA K » MdpKq, the right action
of OD bA L on W bL,g L is identified with the right action of MdpKq bK L on
Ld bL,g L defined by

ppa1, . . . , adq bL,g 1qpB b aq “ ppa1, . . . , adqBq bL,g a, B P MdpKq, a P L.

This implies that the right MdpLq-action on Ld induced by the latter action via Ψ
agrees with the right multiplication. Since the only endomorphism of the tautolog-
ical right MdpLq-module Ld is a scalar multiple, the map f is the multiplication by
an element, say cW pλ, gq P Lˆ.

Thus, for any h P G and λ1 :W Ñ W bL,h L as above, we have

(3.3) cW ppλ1 bL,g 1q ˝ λ, ghq “ gpcW pλ1, hqqcW pλ, gq.

For any Fq-algebra R and its automorphism g P AutFq
pRq as an Fq-algebra, we

write
fg “ idX ˆ Specpgq : X ˆ SpecpRq Ñ X ˆ SpecpRq,

so that fgh “ fh ˝ fg for any g, h P AutFq pRq. Now the following lemma can be
proved in a manner similar to that of the proof of [Shi, Theorem 9.5] (see also [Jor,
Proposition 1.3] and [Pap3, Theorem 6.13]).

Lemma 3.4. Let K{F be a finite extension satisfying OD bA K » MdpKq. Let
L{K be a finite Galois extension and let E be a sound D-elliptic sheaf over L of
generic characteristic. Suppose that we are given an isomorphism of D-elliptic
sheaves over L

θg : E Ñ f˚
g E

for any g P G “ GalpL{Kq. Then there exist a sound D-elliptic sheaf E 1 over K
of generic characteristic, a finite extension L1{L and an isomorphism of D-elliptic
sheaves E |L1 » E 1|L1 over L1.

Proof. Take a finite Galois extension L̃{K containing L and all lqpdq-th roots of

unity. For any g P GalpL̃{Kq, we have g|L P GalpL{Kq and θg|L induces an isomor-

phism of D-elliptic sheaves over L̃

θg|L |L̃ : E |L̃ Ñ pf˚
g|L

Eq|L̃ » f˚
g pE |L̃q.

Thus we may assume that L contains all lqpdq-th roots of unity.
For any g, h P G, define αg,h P AutpEq by

θgh “ f˚
g θh ˝ θg ˝ αg,h.

Let P be the t-motive associated with E and let W be the cokernel of the map
τ : p1 b σq˚P Ñ P . Then the map θg induces an isomorphism of right OD bA L-
modules

λg :W Ñ W bL,g L.

Put e “ |AutpEq| and let L̄ be an algebraic closure of L. By Lemma 3.3, the
group AutpEq is cyclic and e | lqpdq. By Lemma 3.1, the restriction to W defines
an injection

B : AutpEq Ñ L̄ˆ
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whose image agrees with the subgroup µepLq of e-th roots of unity in L. Thus the
automorphism αg,h induces the multiplication by Bαg,h P µepLq on W .

Put cg “ cW pλg, gq P Lˆ. Then (3.3) yields

cgh “ gpchqcgBαg,h

and cegh “ gpcehqceg. Hence g ÞÑ ceg defines a 1-cocycle G Ñ Lˆ and by Hilbert 90

there exists an element a P Lˆ satisfying ceg “
gpaq

a for any g P G.
Take b P Lsep satisfying be “ a and put L1 “ Lpbq. Then the extension L1{K is

Galois. Put G1 “ GalpL1{Kq and let π : G1 Ñ G be the natural projection. We
have

gpbq P cπpgqbµepLq, g P G1.

This implies that for any g P G1, there exists a unique element αg P AutpEq satis-

fying cπpgq “
gpbq

b Bαg. Put

θ1
g :“ pθπpgqα

´1
g q|L1 : E |L1 Ñ f˚

g E |L1 .

For any g, h P G1, define α1
g,h P AutpE |L1 q by

θ1
gh “ f˚

g θ
1
h ˝ θ1

g ˝ α1
g,h.

Put W 1 “ W bL L
1. For any g P G1, we denote by

λ1
g :W

1 Ñ W 1 bL1,g L
1

the map induced by θ1
g. By (3.3), c1

g “ cW 1 pλ1
g, gq satisfies

c1
g “

gpbq

b
, c1

gh “ g

ˆ

hpbq

b

˙

gpbq

b
Bα1

g,h

and thus Bα1
g,h “ 1. Since the map B is injective, we obtain α1

g,h “ id. Hence

tθ1
gugPG1 defines a descent datum on E |L1 . Now the lemma follows by Galois descent.

□
3.3. Coarse moduli scheme and its rational points. Since E ℓℓD |F is a Deligne–
Mumford stack, it admits a coarse moduli space.

Let x be the closed point of X of degree one defined by an irreducible polynomial
π P A. Put

G “ pOD{πODqˆ.

We let G act from the right on the moduli scheme Z :“ EllD,x|F by

rgs : rpE , ιqs ÞÑ rpE , ι ˝ glqs, g P G,

where rpE , ιqs denotes the isomorphism class of the pair pE , ιq of a D-elliptic sheaf
E and a level x structure ι on it. The forget-the-level-structure map E ℓℓD,x|F Ñ

E ℓℓD |F is representable, finite, étale and surjective.
Moreover, the morphism E ℓℓD |F Ñ rZ{Gs, sending E to theG-torsor IsompOD{πOD, Exq

equipped with the tautological map to Z, is an equivalence of categories. Then [DR,
Ch. I, (8.2.2)] implies that the coarse moduli space of E ℓℓD |F is represented by the
quotient scheme XD :“ Z{G, which we call the Drinfeld–Stuhler variety. Note that
since Z is projective over F the quotient exists and XD is proper over F . When
d “ 2, [KM, p. 508, Theorem] implies that XD is a proper smooth curve over F .

Definition 3.5. For any field extension K{F , we denote by XDpKq the set of
morphisms SpecpKq Ñ XD over F , where we consider SpecpKq as an F -scheme
via the natural inclusion F Ñ K and XD via (2.2).
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The authors learned the following lemma from [CES, p. 347] and [Ces, p. 2084].

Lemma 3.6. Let S be a local ring with maximal ideal mS. Let H be a finite group
acting on the ring S from the left. Put R “ SH . Note that S is an integral extension
of R and thus R is also a local ring. Let L and K be the residue fields of S and R,
respectively. Suppose that for the inertia subgroup

Hi “ th P H | h ” id mod mSu,

its order |Hi| is invertible in R. Then the extension L{K is finite Galois. Moreover,
the action of H on S induces a surjection

H Ñ GalpL{Kq.

Proof. By [Sta, Lemma 15.110.9], the extension L{K is algebraic normal and the
natural map H Ñ AutpL{Kq is surjective. It is enough to show that L{K is finite
separable. Let Ri “ SHi , which is a local ring with maximal ideal mRi “ mS XRi.
By [Sta, Lemma 58.12.4], the map R Ñ Ri is étale at mRi and thus the residue
field Ri{mRi

is finite separable over K. Hence we may assume H “ Hi.
Since |H| “ |Hi| is invertible in R, by [KM, Proposition A7.1.3 (4)] we have

pS bR KqH “ K.

Write B “ S bR K. Let mB be the maximal ideal of the local ring B, which is
stable under the H-action. Note that the residue field of B is L. The H-action on
B induces its action on the residue field L which fixes its subfield K.

Since |H| is invertible in B, by [Ser2, Ch. VIII, §2, Corollary 1] we have the
exact sequence of K-vector spaces

0 // mH
B

// BH // LH // H1pH,mBq “ 0.

Since BH “ K and LH is nonzero, we obtain LH “ K. Now a classical theorem of
Artin shows that the extension L{K is finite Galois. This concludes the proof. □

Lemma 3.7. Let z0 P Z be a closed point and let w0 P XD be its image in XD. Let
Kpz0q and Kpw0q be the residue fields at z0 and w0, respectively. We consider these
residue fields as F -algebras by using the structure map XD Ñ SpecpF q. Then the
finite extension Kpz0q{Kpw0q is Galois. Moreover, the action of G on Z induces a
surjection

η : Gz0 Ñ GalpKpz0q{Kpw0qq,

where Gz0 is the stabilizer of z0 in G.

Proof. We denote by R the complete local ring ÔXD,w0
of XD at w0 and write

Z ˆXD SpecpRq “ SpecpSq. Then S is a finite R-algebra and Hensel’s lemma
implies that S is the product of complete local rings of S at the maximal ideals.
Since the formation of quotient by G commutes with any flat base change [Sta,
Lemma 15.110.7], we have R “ SG.

We denote by Sz1
0
the complete local ring of S at a closed point z1

0 P SpecpSq.

Note that any g P G induces an isomorphism Sgpz0q Ñ Sz0 and we have R “ S
Gz0
z0 .

The point z0 P Z “ EllD,x|F corresponds to the isomorphism class of a pair pE , ιq,
where E is a sound D-elliptic sheaf over Kpz0q and ι is a level x structure on it.
We identify ι with an isomorphism of right OD-modules

ι : OD{πOD Ñ ExpKpz0qsepq.
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Since Kpz0q is of generic characteristic, Lemma 3.3 shows that AutpEq is cyclic
of order dividing lqpdq. Note that g P Gz0 lies in its inertia subgroup Gz0,i if and
only if the following diagram is commutative:

SpecpKpz0qq // Z

rgs

��
SpecpKpz0qq // Z.

This is the same as saying that there exists an element f P AutpEq satisfying

ι ˝ gl “ f |Ex ˝ ι.

Since no non-trivial automorphism of E fixes ι, such f is unique and we obtain a
homomorphism

Gz0,i Ñ AutpEq,

which is injective since the set of level x structures is a G-torsor. Thus Gz0,i is also
cyclic of order dividing lqpdq. Since the order is prime to p, applying Lemma 3.6 to
pS,Hq “ pSz0 , Gz0q yields the lemma. □

For any algebraic closure F̄ of F , the natural map Z Ñ XD induces a bijection
between the set of isomorphism classes of sound D-elliptic sheaves over F̄ of generic
characteristic and XDpF̄ q.

Theorem 3.8. Let K{F be a finite extension satisfying ODbAK » MdpKq. Let F̄
be an algebraic closure of F containing K. For any w P XDpKq, there exists a sound
D-elliptic sheaf over K of generic characteristic which represents the isomorphism
class corresponding to the image of w by the natural map XDpKq Ñ XDpF̄ q.

Proof. Let w0 P XD be the image of the map w : SpecpKq Ñ XD. Since the
projection Z “ EllD,x|F Ñ XD is finite and surjective, we can choose a closed
point z0 P Z above w0. By Lemma 3.7, the residue extension Kpz0q{Kpw0q is finite
Galois.

Choose an embedding of F -algebras Kpz0q Ñ F̄ and let M be a composite field
of Kpz0q and K over Kpw0q inside F̄ . Then the composite

SpecpMq Ñ SpecpKpz0qq Ñ Z “ EllD,x|F

corresponds to an isomorphism class rpEM , ιqs of the pair consisting of a sound
D-elliptic sheaf EM over M and a level x structure ι on it.

The extension M{K is Galois, and we have a natural embedding

GalpM{Kq » GalpKpz0q{K XKpz0qq Ď GalpKpz0q{Kpw0qq.

We identify GalpM{Kq with a subgroup of GalpKpz0q{Kpw0qq by this embedding.
For any g P GalpM{Kq, its action onM is induced by the action of some hg P Gz0

on Z via the surjection η of Lemma 3.7. Namely, we have the commutative diagram

SpecpMq //

Specpgq

��

SpecpKpz0qq //

Specpg|Kpz0qq

��

Z

rhgs

��
SpecpMq // SpecpKpz0qq // Z.

Hence, there exists an isomorphism of D-elliptic sheaves over M

θg : EM Ñ f˚
g EM
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sending the level x structure ι ˝ phgql to g
˚ι.

Now Lemma 3.4 implies that there exist a sound D-elliptic sheaf E 1 over K of
generic characteristic and an isomorphism EM |F̄ » E 1|F̄ over F̄ . Since the image of
w by the map XDpKq Ñ XDpF̄ q corresponds to the isomorphism class represented
by EM |F̄ , the theorem follows. □

4. D-elliptic sheaves over finite fields

For any global field L over Fq and any place v of L, we identify v with the
normalized additive valuation which represents v. We denote by degpvq the degree
of the residue field of v over Fq. For any finite extension L1{L and any place v1 of
L1 over v, we write

degpv1{vq, epv1{vq

for the residue degree and the ramification index of v1 over v.

4.1. Endomorphism rings. Let y P A be an irreducible polynomial. Let k be a
finite extension of Fy “ A{pyq and write |k| “ qn. Let E be a sound D-elliptic sheaf
over k of characteristic y as in [LRS, (9.1)] and let P be the associated t-motive.
We defined EndpEq by (2.5), which is an A-algebra. Put

D1 :“ F bA EndpEq, F̃ :“ ZpD1q,

where ZpD1q denotes the center of D1.
Let k̄ be an algebraic closure of k. To study the structure of D1, we use corre-

sponding results over k̄ obtained in [LRS, §9] and [Hau, §5]. Put

D1
0 :“ F bA EndpE |k̄q, F̃0 :“ ZpD1

0q.

Consider the natural injection

D1 “ F bA EndpEq Ñ D1
0 “ F bA EndpE |k̄q, f ÞÑ f |k̄,

by which we identify D1 with an F -subalgebra of D1
0.

Put

Pk̄ “ P bk k̄ “ H0ppXzt8uq b k̄, E0|k̄q.

Note that F bA Pk̄, equipped with the induced actions of τ and D, is equal to the
φ-space associated with E |k̄ [LRS, §9.1], which we denote by pV0, φ0, ι0q. We have

EndpV0, φ0, ι0q “ EndDk̄rτspF bA Pk̄q “ F bA EndOD

k̄rτs
pPk̄q “ D1

0.

By [LRS, Propositon 9.9 (ii)] and [LRS, Corollary 9.10] when y R R and [Hau,

Proposition 5.2] when y P R, there exists a unique place 8̃0 of F̃0 over the place 8

of F , since in the latter case [Hau, Proposition 5.2] shows F̃0 “ F .
Moreover, by [LRS, Corollary 9.10] and [Hau, Proposition 5.2], we see that D1

0

is a central division algebra over the finite extension F̃0 of F satisfying

rD1
0 : F̃0s “

ˆ

d

rF̃0 : F s

˙2

and inv8̃0
pD1

0q “
rF̃0 : F s

d
.

Thus the completion D1
0,8̃0

of D1
0 at 8̃0 is a central division algebra over F̃0,8̃0

.

Lemma 4.1. Let L be a field. Let D̄ be a division L-algebra of finite dimension.
Then any L-subalgebra B of D̄ is also a division algebra.
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Proof. Take any nonzero b P B. Since D̄ is division, the left translation by b is
injective on B. Since B is also of finite dimension over L, it is bijective and b has
the right inverse. The existence of the left inverse follows similarly. □

Lemma 4.2. D1 is a division F -algebra of finite dimension and F̃ is a field exten-
sion of F of finite degree.

Proof. SinceD1
0 is a division F -algebra of finite dimension, this follows from Lemma

4.1. □

Proposition 4.3. Let E be a sound D-elliptic sheaf over k of characteristic y.
Then AutpEq is a cyclic group of order dividing qd ´ 1.

Proof. Let π P A be an irreducible polynomial of degree one which is coprime to y.
Note that π always exists since A has at least two monic irreducible polynomials
of degree one. Let x be the place of F which π defines, and put G “ pOD{πODqˆ

as before.
The set of level x structures on E |k̄ is a G-torsor on which AutpEq acts naturally.

As in the proof of Lemma 3.3, it yields an injective homomorphism

AutpEq Ñ G.

Hence AutpEq is a finite group.

Consider the central division algebra B “ D1
0,8̃0

over F̃0,8̃0
. We have

degp8̃0{8q | rF̃0,8̃0
: F8s “ rF̃0 : F s.

Let NB{F8 be the (usual) norm map and let w “ rB : F8s´1p8 ˝NB{F8 q, which is
the valuation on B extending 8 [Rei, Theorem 12.10]. We denote by

OB “ tb P B | wpbq ě 0u and mB “ tb P B | wpbq ą 0u

the valuation ring and the maximal ideal of B, respectively. By [Rei, Theorem
14.3], the residue field FB “ OB{mB satisfies

(4.1) rFB : Fqs “
d

rF̃0 : F s
degp8̃0{8q

ˇ

ˇ

ˇ

ˇ

d.

By (2.4), we have inclusions

AutpEq Ď EndpEqˆ Ď EndpE |k̄qˆ Ď Bˆ.

Since the multiplicative group 1`mB is torsion free and we have shown that AutpEq

is finite, we obtain an injection AutpEq Ñ Fˆ
B . Then the proposition follows from

(4.1). □

4.2. Determination of the center. For the map τ on P , the element π “ τn

satisfies π P EndpEq Ď D1. We call π the qn-th power Frobenius endomorphism
of E . Since any element of EndpEq commutes with π, the F -subalgebra F rπs of
D1 “ F bA EndpEq generated by π is commutative. By Lemma 4.1 and Lemma
4.2, we see that F rπs is a field extension of F of finite degree satisfying

(4.2) F rπs Ď F̃ .

Since the krτ s-module P is free and dimkpP {τP q “ d, we see that the action of
π on P is neither zero nor invertible. This shows that π is transcendental over Fq.
Indeed, if π is algebraic over Fq, then we have πm “ id for some integer m ě 1 and
π is invertible on P , which is a contradiction.
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Let kpτq be the fraction field of krτ s [LRS, Lemma 3.2] and put

E “ EndkpτqpV q, V “ kpτq bkrτs P.

Since E is isomorphic to a matrix algebra over the division ring kpτqop, it is a central
simple algebra over its center Fqpπq. By [LRS, Corollary 3.8], we have an injection
φ : Dop Ñ EndkpτqpV q “ E, by which we identify Dop and F with subrings of E.

Lemma 4.4. The natural map

Fqpπq bFqrπs End
OD

krτs
pP q Ñ EndDkpτqpV q.

is an isomorphism.

Proof. First note that the Fqrπs-algebra krτ s is a maximal Fqrπs-order of the cen-
tral division Fqpπq-algebra kpτq [Gos, Lemma 4.12.6]. Thus we have a natural
isomorphism

Fqpπq bFqrπs Mdpkrτ sopq Ñ Mdpkpτqopq,

which implies that the natural map

Fqpπq bFqrπs EndkrτspP q Ñ EndkpτqpV q

is an isomorphism.
In particular, for any g P EndkpτqpV q there exists a non-zero element a P Fqrπs

satisfying ag P EndkrτspP q. Since the OD-action on V commutes with that of krτ s,
this shows that we also have an isomorphism

Fqpπq bFqrπs End
OD

krτs
pP q Ñ EndOD

kpτq
pV q.

Since V is a torsion free A-module, if f P E commutes with any element of OD,
then it commutes with any element of D. Thus we obtain the equality EndOD

kpτq
pV q “

EndDkpτqpV q of subalgebras of E. This concludes the proof. □

Lemma 4.5. The natural map

D1 “ F bA EndOD

krτs
pP q Ñ EndDkpτqpV q

is an isomorphism.

Proof. Since EndOD

krτs
pP q is an A-subalgebra of the F -algebra EndDkpτqpV q, the map

is injective.
On the other hand, Lemma 4.4 implies that the Fqpπq-algebra EndDkpτqpV q is

generated by its subring EndOD

krτs
pP q, which contains π. Since F rπs is a field, it

contains Fqpπq as a subring. Hence the map of the lemma is surjective. □

Note that any element of Dop commutes with π. Let Doprπs be the image of the
natural map

Dop bF F rπs Ñ E,

which is a subalgebra of E.

Lemma 4.6. Doprπs is a central simple algebra of dimension d2 over F rπs.

Proof. Since Dop is a central simple algebra of dimension d2 over F , so is Dop bF

F rπs over F rπs. Since we have a surjection

Dop bF F rπs Ñ Doprπs

and the left-hand side is simple, it is an isomorphism. This concludes the proof. □
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Lemma 4.7.

F̃ “ F rπs, rE : D1s “ rDoprπs : Fqpπqs.

Proof. This follows similarly to [Lau, Proposition 2.2.2 (i)]. For any subset S of E,
we denote by CEpSq the commutant of S in E. By Lemma 4.5, we have

D1 “ CEpDopq “ CEpDoprπsq.

Since F rπs is a field, it contains Fqpπq. Thus Doprπs is an algebra over the center
Fqpπq of E, and it is simple by Lemma 4.6. Then [Rei, Theorem 7.11] yields

Doprπs “ CEpD1q Ě F̃ .

Since any element of Doprπs commutes with any element of D1, Lemma 4.6 implies

F̃ Ď ZpDoprπsq “ F rπs. By (4.2), the first equality of the lemma follows. Moreover,
[Rei, Corollary 7.13] gives

rE : Fqpπqs “ rDoprπs : FqpπqsrD1 : Fqpπqs,

which yields the second equality. □

4.3. Structure of the endomorphism ring. In this subsection, we assume y R

R.
By [LRS, (A.4) and Corollary 9.10], there exists a positive integer N satisfying

F̃0 “ F rπN s. In particular, we have

(4.3) F Ď F̃0 Ď F̃ Ď D1 Ď D1
0.

Moreover, put

π0 :“ πN , Π̃0 :“ π
1

Nn
0 P F̃ˆ

0 b Q.
Then pF̃0, Π̃0q is the φ-pair associated with the φ-space pV0, φ0, ι0q [LRS, (A.4)].

For the field F̃0, by [LRS, Proposition 9.9 (ii)] the unique place 8̃0 of F̃0 over 8

satisfies

(4.4) degp8̃0q8̃0pΠ̃0q “ ´
rF̃0 : F s

d
.

Lemma 4.8. (1) rF̃ : F s divides d.

(2) There exists a unique place 8̃ of F̃ over 8. It satisfies

degp8̃q8̃pπq “ ´
nrF̃ : F s

d
.

Proof. As mentioned in §4.1, the F̃0,8̃0
-algebra D1

0,8̃0
is a central division alge-

bra satisfying rD1
0,8̃0

: F̃0,8̃0
s “ rD1

0 : F̃0s “ pd{rF̃0 : F sq2. Since the F̃0-linear

embedding F̃ Ñ D1
0 of (4.3) induces an F8-linear injection

F8 bF F̃ Ñ F8 bF D
1
0 “ pF8 bF F̃0q bF̃0

D1
0 “ F̃0,8̃0

bF̃0
D1

0 “ D1
0,8̃0

,

Lemma 4.1 shows that F8 bF F̃ is a field extension of F̃0,8̃0
of degree dividing

d{rF̃0 : F s. This implies the first assertion of (2) and

rF̃ : F s

rF̃0,8̃0
: F8s

ˇ

ˇ

ˇ

ˇ

ˇ

d

rF̃0 : F s
.

Since rF̃0,8̃0
: F8s “ rF̃0 : F s, we obtain (1).
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On the other hand, the equality

8̃0pΠ̃0q “
1

Nn
8̃0pπ0q

and (4.4) yield

degp8̃0q8̃0pπ0q “ ´
Nn

d
rF̃0 : F s.

Hence we obtain

degp8̃q8̃pπq “
1

N
degp8̃{8̃0qdegp8̃0qep8̃{8̃0q8̃0pπ0q

“ ´
n

d
rF̃ : F̃0srF̃0 : F s “ ´

n

d
rF̃ : F s.

Thus the second assertion of (2) follows. □

Corollary 4.9. For any a P F̃ , we denote by |a|8 its normalized absolute value
defined by 8, namely

|a|8 “ q´8̃paqep8̃{8q´1

.

Then we have |π|8 “ |k|1{d.

Proof. Lemma 4.8 yields

8̃pπq “ ´
nrF̃ : F s

d degp8̃{8q
“ ´

n

d
ep8̃{8q,

which gives the equality of the corollary. □

By [LRS, Proposition 9.9 (iii)], there exists a unique place ỹ0 ‰ 8̃0 of F̃0 sat-

isfying ỹ0pΠ̃0q ‰ 0. Moreover, ỹ0 lies over y. It is shown in [LRS, p. 265] that we
have

1

h
“

degpỹ0qỹ0pΠ̃0q

rF̃0,ỹ0
: Fys

with some positive integer h. In particular,

(4.5) ỹ0pΠ̃0q ą 0.

Lemma 4.10. The element π P F̃ is integral over A and NF̃ {F pπq P A. Moreover,

the only prime divisor of NF̃ {F pπq is y.

Proof. By (2.5), the A-module EndpEq is finitely generated and contains Arπs as a
subring. Thus π is integral over A and we obtain NF̃ {F pπq P A.

Since πN P F̃0, we have

NF̃ {F pπqN “ NF̃ {F pπN q “ NF̃0{F pπN qrF̃ :F̃0s.

Thus it is enough to show that the only prime divisor of NF̃0{F pπN q is y. For this,

let v0 be any place of F̃0 which is not over 8. If v0pπN q ą 0, then we also have

v0pΠ̃0q ą 0. Hence, [LRS, Proposition 9.9 (iii)] implies v0 “ ỹ0 and v0 | y. Thus

every place of F̃0 dividing NF̃0{F pπN q is a conjugate of v0, which divides y. This

yields the lemma. □
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We have a diagram of field extensions

F̃

EE
EE

EE
EE

E

Fqpπq

F̃0

EE
EE

EE
EE

E

Fqpπ0q

F.

Since F̃ is an Fqpπq-subalgebra of E, it is a finite extension of Fqpπq.
Let 8π be the place of Fqpπq defined by 1{π, and let 8π0 be a similar place of

Fqpπ0q. Then 8π lies over 8π0 . By Lemma 4.8 (2) and (4.4), the values 8̃pπq and
8̃0pπ0q are negative. Thus we have

8̃ | 8π, 8̃0 | 8π0
.

Lemma 4.11. The place 8̃ is the unique place of F̃ which lies over 8π.

Proof. Let v be a place of F̃ over 8π and put v0 “ v|F̃0
. Then v0 lies over 8π0

and

v0pΠ̃0q “
1

Nn
v0pπ0q “ ´

1

Nn
epv0{8π0

q ă 0.

By [LRS, Proposition 9.9 (iii)] and (4.5), we obtain v0 “ 8̃0. Then Lemma 4.8 (2)
yields v “ 8̃. □

Proposition 4.12.

rD1 : F̃ s “

ˆ

d

rF̃ : F s

˙2

.

Proof. By Lemma 4.11 and Lemma 4.8 (2), we have

rF̃ : Fqpπqs “ degp8̃{8πqep8̃{8πq “ ´degp8̃q8̃pπq “
nrF̃ : F s

d
.

On the other hand, Lemma 4.6 and Lemma 4.7 yield

rE : D1s “ rDoprπs : Fqpπqs “ d2rF̃ : Fqpπqs.

Since E » Mdpkpτqopq and rkpτq : Fqpπqs “ n2, we obtain

rD1 : Fqpπqs “
rE : Fqpπqs

rE : D1s
“

d2n2

d2rF̃ : Fqpπqs
“

n2

rF̃ : Fqpπqs
,

which gives

rD1 : F̃ s “
rD1 : Fqpπqs

rF̃ : Fqpπqs
“

n2

rF̃ : Fqpπqs2
“

ˆ

d

rF̃ : F s

˙2

.

□
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Proposition 4.13. There exists an embedding of F -algebras F̃ Ñ D.

Proof. For any place x̃ of F̃ , we denote by x̃0 and x the places of F̃0 and F below
x̃. By [LRS, Corollary 9.10], the F̃0-algebra D1

0 is a central division algebra of

dimension pd{rF̃0 : F sq2. Moreover, for any place x̃ of F̃ satisfying x̃ ∤ ỹ08̃0, we
have

(4.6) invx̃0
pD1

0q “ rF̃0,x̃0
: FxsinvxpDq.

Applying [Lau, Corollary A.3.4] to the F̃0-linear embedding F̃ Ñ D1
0 of (4.3),

(4.6) yields

d

rF̃ : F s
rF̃x̃ : FxsinvxpDq

“
d{rF̃0 : F s

rF̃ : F̃0s
rF̃x̃ : F̃0,x̃0

srF̃0,x̃0
: FxsinvxpDq P Z

for any place x̃ of F̃ satisfying x̃ ∤ ỹ08̃0. When x̃ | ỹ08̃0, we have invxpDq P Z
by assumption and Lemma 4.8 (1) shows that the same integrality holds. Now the
proposition follows from [Lau, Corollary A.3.4]. □
4.4. Potentially good reduction of D-elliptic sheaves.

Lemma 4.14. Let v P |X| and z P |X|ztv,8u. Let K{Fv be an extension of
complete discrete valuation fields and let L{K be a finite Galois extension. Let H
be a subgroup of GalpL{Kq. Let E be a sound D-elliptic sheaf over L of generic
characteristic with a level z structure ι.

(1) There exist a sound D-elliptic sheaf EOL
over OL satisfying ZpEOL

qX|X| “

tvu with a level z structure ιOL
and an isomorphism ξ : E » EOL

|L sending
ι to ιOL

|L.
(2) Let tθh : E Ñ f˚

h EuhPH be a family of isomorphisms of D-elliptic sheaves
over L satisfying the cocycle condition. Then it extends to a family of
isomorphisms tΘh : EOL

Ñ f˚
h EOL

uhPH of D-elliptic sheaves over OL

satisfying the cocycle condition.

Proof. We have rpE , ιqs P EllD,zpLq. Since E is sound, the natural map SpecpOLq Ñ

XzpR Y tz,8uztvuq fits into the commutative diagram

EllD,z // XzpR Y t8, zuztvuq

SpecpLq //

rpE,ιqs

OO

SpecpOLq.

OO

Since the map EllD,z Ñ XzppR Y t8, zuqztvuq is proper, the valuative criterion of
properness implies that there exists an element rpEOL

, ιOL
qs P EllD,zpOLq which

agrees with rpE , ιqs over L. Hence (1) follows.
For (2), let πz P A be the monic irreducible polynomial defining z. Note that the

isomorphism θh : E Ñ f˚
h E sends ι ˝ νphql to f

˚
h ι with some νphq P pOD{πzODqˆ.

Since the map EllD,zpOLq Ñ EllD,zpLq is injective, we have

rpEOL
, ιOL

˝ νphqlqs “ rpf˚
h EOL

, f˚
h ιOL

qs.

Hence there exists an isomorphism

Θh : EOL
Ñ f˚

h EOL
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of D-elliptic sheaves over OL sending ιOL
˝ νphql to f

˚
h ιOL

. Since there is no non-
trivial automorphism fixing a level z structure, we see that the restriction of Θh to
L is identified with θh under the isomorphism ξ of (1). From the cocycle condition
satisfied by θh, it follows that ν : H Ñ pOD{πzODqˆ is a homomorphism and thus
the cocycle condition also holds for Θh. This concludes the proof. □

Lemma 4.15. Let y ‰ 8 P |X| and let x P |X|zty,8u be a closed point of degree
one. Let K{Fy be a finite extension and let E be a sound D-elliptic sheaf over K of
generic characteristic. Then there exists a finite Galois extension L{K such that its
inertia subgroup is cyclic of order dividing qd´1 and E |L admits a level x structure.

Proof. Let π P A be the monic irreducible polynomial that defines x and put
G “ pOD{πODqˆ as before. Let Ksep be a separable closure of K and let GK “

GalpKsep{Kq be the Galois group. We denote by Ex the finite étale right OD{πOD-
module scheme over K defined in §2.2. Let L{K be the finite Galois extension
corresponding to the kernel of the GK-action on ExpKsepq, so that we have a
natural injection

(4.7) GalpL{Kq Ñ AutpExpLqq.

Then E |L admits a level x structure ι.
Let I be the inertia subgroup of GalpL{Kq. By Lemma 4.14, there exists a sound

D-elliptic sheaf EOL
over OL satisfying ZpEOL

qX|X| “ tyu such that the canonical
isomorphism rhsL : E |L Ñ f˚

h E |L for any h P I extends to an isomorphism

rhs : EOL
Ñ f˚

h EOL

of D-elliptic sheaves over OL satisfying the cocycle condition.
We denote by mL the maximal ideal of OL and by kL the residue field of OL.

Since h P I, the reduction of rhs modulomL defines an element rhskL P AutpEOL
|kLq

and by the cocycle condition on rhs we obtain a homomorphism

ψ : I Ñ AutpEOL
|kLq, h ÞÑ rh´1skL .

Since kL is a finite field of characteristic y and EOL
|kL is sound, Proposition 4.3

implies that I{Kerpψq is a cyclic group of order dividing qd ´ 1.
Let EOL,x be the group scheme defined in a manner similar to Ex for EOL

. Since
EOL,x is étale over OL, we have an isomorphism of Fq-vector spaces

(4.8) ExpLq » pEOL,x|kLqpkLq.

The action of h P I on the right-hand side of (4.8) is described as follows: for
the canonical isomorphism rhsx,L : Ex|L Ñ f˚

h pEx|Lq, the reduction modulo mL

of its unique extension rhsx : EOL,x Ñ f˚
hEOL,x defines an element rhsx,kL P

AutpEOL,x|kLq. Then the action of h agrees with rh´1sx,kL .
For any scheme S and any locally free OS-module L, we denote by V˚pLq the

covariant vector bundle associated with L, which represents the functor

T ÞÑ H0pT,L|T q

over S. Note that x “ SpecpFqq and we have natural closed immersions

Ex|L Ñ V˚pEi|xˆSpecpLqq, EOL,x Ñ V˚pEOL,i|xˆSpecpOLqq
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which are independent of i. By functoriality and the uniqueness of the extension
rhsx, we have commutative diagrams

Ex|L
rhsx,L //

��

f˚
h pEx|Lq

��
V˚pEi|xˆSpecpLqq

V˚prhsLq

// V˚pf˚
h pEi|xˆSpecpLqqq,

EOL,x

��

rhsx // f˚
hEOL,x

��
V˚pEOL,i|xˆSpecpOLqq

V˚prhsq

// V˚pf˚
h pEOL,i|xˆSpecpOLqqq.

This implies that the map rh´1sx,kL agrees with the automorphism of EOL,x|kL
induced by rh´1skL , and thus Kerpψq acts trivially on ExpLq. Since the map (4.7)
is injective, it follows that Kerpψq is trivial and I is cyclic of order dividing qd ´ 1.
This concludes the proof. □

Proposition 4.16. Let y ‰ 8 P |X|. Let K{Fy be a finite extension and let E be
a sound D-elliptic sheaf over K of generic characteristic.

(1) E has good reduction over a finite Galois extension L{K with cyclic inertia
subgroup of order dividing qd ´ 1.

(2) E has good reduction over a finite totally ramified extension K 1{K with
ramification index epK 1{Kq dividing qd ´ 1.

Proof. Let x P |X|zty,8u be a closed point of degree one. By Lemma 4.15, there
exists a finite Galois extension L{K with cyclic inertia subgroup of order dividing
qd ´ 1 such that E |L admits a level x structure ι. Then Lemma 4.14 (1) yields (1).

For (2), put e “ epL{Kq. Let ϖL and ϖ be uniformizers of L and K. Write
ϖe
L “ ϖu with some u P Oˆ

L . Since p ∤ e, Hensel’s lemma shows that there exists
an unramified extension N{K such that the composite field L1 “ LN contains all
e-th root of u. This implies that L1 is unramified over K 1 “ Kpϖ1{eq.

By Lemma 4.14 (2), the canonical descent datum on E |L1 for the Galois extension
L1{K 1 extends to that on EOL

|OL1 for the Galois covering SpecpOL1 q Ñ SpecpOK1 q

with Galois group GalpL1{K 1q. Hence it descends to a D-elliptic sheaf over OK1

such that its restriction to K 1 is naturally isomorphic to E |K1 . This concludes the
proof of the proposition. □

5. p-adic properties of D-elliptic sheaves

In this section, we fix p P |X|zt8u.

5.1. The functor Gr. Let R be a local Fq-algebra and let σ “ σq be the q-th
power Frobenius map on R. We say a pair pM, τq is a (finite) φ-sheaf over R if M
is a finite locally free R-module and τ : σ˚M Ñ M is an R-linear map [Dri, §2].
By [Dri, Proposition 2.1], we can associate with it a finite locally free Fq-module
scheme over R which we denote by GrRpMq. Here we briefly recall the construction.
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For any R-algebra S, we denote by FS the q-th power Frobenius map of S. Put
SM “ SymRpMq. Let JM be its ideal generated by pFSM

b 1 ´ τqpσ˚Mq. Define

GrRpMq “ SpecpSM{JM q.

Note that SymRpMq has the following universal property: for any (commutative)
R-algebra S, the natural map

HomR-alg.pSymRpMq, Sq Ñ HomRpM,Sq

is a bijection. This yields a bijection

(5.1) GrRpMqpSq Ñ tf P HomRpM,Sq | fpmqq “ fpτpσ˚pmqqq for any m P Mu.

Thus GrRpMq has a natural structure of an Fq-module scheme, which is compatible
with the one on SpecpSymRpMqq. Its zero section is defined by the zero map
M Ñ S. Then GrR gives an exact functor from the category of φ-sheaves over R
to that of finite locally free Fq-module schemes over R [Dri, Proposition 2.1].

A φ-sheaf pM, τq is said to be étale if τ : σ˚M Ñ M is an isomorphism. From
[Dri, Proposition 2.1], we see that the functor GrR defines an anti-equivalence of
categories from the category of étale φ-sheaves over R to that of finite étale Fq-
module schemes over R.

When M admits a right OD-action which commutes with τ , the action induces
a left OD-action on the group scheme GrRpMq.

5.2. p-divisible groups of D-elliptic sheaves. Let E be a D-elliptic sheaf over
a local Fq-algebra R. Let P be the t-motive associated with E . It is a locally free
AbR-module of rank d2 equipped with an OD-action given by

φ : Oop
D Ñ EndRrτspP q.

For any positive integer n, the pair pP {φppnqP, τq defines a φ-sheaf over R. We
write

Erpns :“ GrRpP {φppnqP q.

Since P is a torsion free A-module, we have an exact sequence of φ-sheaves over
R

0 // P {φppiqP
φppnq// P {φppn`iqP // P {φppnqP // 0,

which is compatible with the rightOD-actions. Note that theOD-action on P {φppnqP
induces a right ODp

-action on it, and the exact sequence above is also compatible
with the ODp

-actions.
By [Dri, Proposition 2.1], the functor GrR gives an exact sequence

0 // Erpns
ιn,i // Erpn`is

πn,i // Erpis // 0

of finite locally free Fq-module schemes over R which is compatible with the left
ODp

-actions. Since the multiplication by pi factors as

(5.2) Erpns
πi,n´i

Ñ Erpn´is
ιn´i,i

Ñ Erpns,

we have a natural isomorphism

Erpis » Kerppi : Erpns Ñ Erpnsq

for any n ě i.
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Thus the group schemes Erpns define a p-divisible group over R of height d2 in
the sense of [Tag, §1.2], which we denote by

Erp8s :“ lim
ÝÑ
n

Erpns.

Since the functor GrR commutes with base change, the formation of Erp8s also
commutes with base extension of local Fq-algebras.

5.3. Tate modules attached to D-elliptic sheaves. Suppose that R “ L is a
field. Let E be a D-elliptic sheaf over L satisfying 8 R ZpEq and charApLq ‰ p.
Then the group scheme Erpns is étale over L by [Dri, Proposition 2.1]. Let Lsep be
a separable closure of L and put GL “ GalpLsep{Lq.

Lemma 5.1. Let E be a D-elliptic sheaf over L satisfying 8 R ZpEq and charApLq ‰

p. Then the A{ppnq-module ErpnspLsepq is free of rank d2.

Proof. Put N “ ErpnspLsepq, which is an Op-module of length d2n. By (5.2), we
have an isomorphism of Op-modules

N{pN Ñ ErpspLsepq.

Lifting a basis of the Fp-vector space on the right-hand side to N , we obtain a homo-

morphism of Op-modules pA{ppnqqd
2

Ñ N . By Nakayama’s lemma and comparing
the length, we see that the map is an isomorphism. □

Put

TppEq “ lim
ÐÝ
n

ErpnspLsepq,

where the inverse limit is taken with respect to the map π1,n. It is a left ODp
-module

such that the natural left GL-action commutes with the ODp
-action.

Lemma 5.2. Let E be a D-elliptic sheaf over L satisfying 8 R ZpEq and charApLq ‰

p. Then the ODp
-module TppEq is free of rank one. In particular, for any n we

have an isomorphism of left OD-modules

OD{pnOD Ñ ErpnspLsepq.

Proof. Since the Op-module TppEq is free of rank d2, from [Rei, Theorem 18.7] it
follows that the ODp

-module TppEq is free of rank one. □

5.4. Reduced characteristic polynomial of the Frobenius automorphism.
In this subsection, we assume p P R.

Let y ‰ p be a monic irreducible polynomial in A satisfying y R R. Let k be a
finite extension of Fy and write |k| “ qn, as in §4. Let k̄ be an algebraic closure of
k and put Gk “ Galpk̄{kq.

Let E be a sound D-elliptic sheaf over k of characteristic y.

Lemma 5.3. The natural ring homomorphism

jp : Op bA EndpEqop Ñ EndODp
pTppEqq

is injective.

Proof. By (2.5) and Lemma 5.2, the source and target are p-adically complete.
Hence it is enough to show the injectivity of the A-linear map

A{ppmq bA EndpEq Ñ EndpErpmspk̄qq
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for any m.
Take any f P EndpEq which induces the zero map on Erpmspk̄q. Since Erpms is

étale over k, it is the same as saying that f defines the zero map on Erpms. By [Dri,
Proposition 2.1 (5)], we see that f “ 0 on P {pmP , in particular Impfq Ď pmP .
Since P is p-torsion free, by (2.5) we can write f “ pmg with some g P EndpEq.
Thus 1 b f “ pm b g “ 0 in A{ppmq bA EndpEq. □

By Lemma 5.2, choosing a basis of the left ODp
-module TppEq, we see that the

Gk-action on TppEq defines a homomorphism

ip : Gk Ñ AutDp
pFp bOp

TppEqq » pDop
p qˆ.

Let Frk P Gk be the qn-th power Frobenius automorphism of k̄. Let

PE,kpXq :“ NrdDop
p {Fp

pX ´ ippFrkqq

be the reduced characteristic polynomial of ippFrkq P Dop
p over Fp [Rei, (9.2)], which

is of degree d.
On the other hand, we have the qn-th power Frobenius endomorphism π P

EndpEq Ď D1 “ F bA EndpEq. By Lemma 4.10, we see that π is an integral

element of the center F̃ of D1. We denote the minimal polynomial of π P F̃ over F
by

ME,kpXq P ArXs.

Proposition 5.4.

PE,kpXq “ ME,kpXqd{rF̃ :F s P ArXs.

Proof. By Lemma 5.3, we have an injection of Fp-algebras

jp : pFp bF D
1qop Ñ Dop

p

which induces an injection jp : Fp bF F̃ Ñ Dop
p . Since p P R, the assumption (2.1)

implies that Dp is a division algebra and by Lemma 4.1 we see that F̃v :“ Fp bF F̃
is a field. With the left multiplication via the map jp, we consider Dop

p as an

F̃v-vector space which is of dimension d2{rF̃ : F s.
For any Fp-algebra R of finite dimension and any element a P R, we denote by

charFp
pa;Rq the characteristic polynomial over Fp of the left multiplication of a on

R. By (5.1), the action of Frk on TppEq agrees with that of π P D1. Note that we

have F̃ “ F rπs by Lemma 4.7. Then [Rei, Theorem 9.5] shows

PE,kpXqd “ charFp
pjpp1 b πq;Dop

p q “ charFp
pπ; F̃vqd

2{rF̃ :F s

“ ME,kpXqd
2{rF̃ :F s.

Since PE,kpXq and ME,kpXqd{rF̃ :F s are monic, the proposition follows. □

Lemma 5.5. The polynomial ME,kpXq is irreducible over F8. Moreover, the 8-
adic Newton polygon of PE,kpXq has the unique slope n{d.

Proof. By Lemma 4.7, the extension F̃ {F is generated by π. By Lemma 4.8 (2),

there is only one place 8̃ of F̃ over 8. The first assertion follows from this. This
also implies that the roots ofME,kpXq in an algebraic closure of F8 are conjugate to
each other over F8 and thus their 8-adic valuations are the same. From Proposition
5.4, it follows that the 8-adic Newton polygon of PE,kpXq has a unique slope. It
is equal to n{d by Corollary 4.9. □
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Lemma 5.6. The ideal generated by PE,kp0q in A is pyrk:Fysq.

Proof. By Proposition 5.4, we have

PE,kp0q “ ˘NF̃ {F pπqd{rF̃ :F s.

By Lemma 4.10, we can write pPE,kp0qq “ pysq with some integer s ě 0. Now
Lemma 5.5 yields

´s degpyq “ 8pPE,kp0qq “ ´n “ ´rk : Fqs,

which gives s “ rk : Fys. □

Corollary 5.7. Assume k “ Fy. Then we have

PE,kpXq “ ME,kpXq, F bA EndpEq “ F̃

and F̃ is an extension of F of degree d with a unique place over 8. Moreover, if
we write

PE,kpXq “ Xd ` a1X
d´1 ` ¨ ¨ ¨ ` ad,

then degpaiq ď i degpyq{d for any i P r1, ds and ad “ µy for some µ P Fˆ
q .

Proof. If k “ Fy, then Lemma 5.6 implies PE,kp0q “ µy for some µ P Fˆ
q . In

particular, it is irreducible in A. On the other hand, Proposition 5.4 shows

PE,kp0q “ ME,kp0qd{rF̃ :F s,

from which it follows that d “ rF̃ : F s and PE,kpXq “ ME,kpXq. Then Proposition

4.12 implies D1 “ F̃ . The assertion on 8 follows from Lemma 4.8 (2). Lemma 5.5
shows the assertion on degpaiq. □

5.5. Bounding the local monodromy. Let K{F be a finite extension. For any
place v of K, let Ksep

v be a separable closure of Kv. We denote the inertia subgroup
of GKv “ GalpKsep

v {Kvq by Iv. We fix an embedding Ksep Ñ Ksep
v extending

K Ñ Kv.

Proposition 5.8. Let K{F be a finite extension and let E be a sound D-elliptic
sheaf over K of generic characteristic. Then, for any place v of K satisfying v ∤ p8,
the image of the natural map

ψp,v : Iv Ñ AutpErpspKsepqq

is a cyclic group of order dividing qd ´ 1.

Proof. Let q R tp,8u be the place of F below v. By Proposition 4.16 (1), there
exist a finite Galois extension L{Kv with cyclic inertia subgroup of order dividing
qd ´ 1 and a D-elliptic sheaf EOL

over OL satisfying ZpEOL
q X |X| “ tqu with an

isomorphism EOL
|L » E |L. Since p ‰ q, the finite group scheme pEOL

qrps is étale
over OL and the GL-module ErpspKsep

v q is unramified. Thus the map ψp,v factors
through the inertia subgroup of GalpL{Kvq, which is cyclic of order dividing qd´1.
Hence the proposition follows. □
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6. Determinant of D-elliptic sheaves

In this section, we fix p P R and put |p| “ qr.
Let L be a field over Fq and let E be a D-elliptic sheaf over L satisfying 8 R ZpEq

and charApLq ‰ p. Consider the FprGLs-module ErpspLsepq. As an Fp-vector space,

it is of dimension d2. Thus the GL-action on
Źd2

Fp
ErpspLsepq defines a character

δE,p : GL Ñ Fˆ
p .

The aim of this section is to compute δE,p when L contains Fp.

6.1. Determinant of φ-sheaves.

Definition 6.1. Let L be a field containing Fp and let h be a positive integer. An
pFp, φq-sheaf of rank h over L is a φ-sheaf pM, τq over L equipped with an L-linear
Fp-action on M compatible with τ such that the Fp b L-module M is free of rank
h.

The compatibility condition means that for any λ P Fp, the action rλs of λ on
M makes the following diagram commutative:

σ˚M
τ //

σ˚rλs

��

M

rλs

��
σ˚M

τ
// M.

An pFp, φq-sheaf pM, τq is said to be étale if τ is an isomorphism.

Let pM, τq be an étale pFp, φq-sheaf of rank h over L. Then we have the Fp-vector
space

V pMq :“ GrLpMqpLsepq

of dimension h, on which GL acts Fp-linearly.
On the other hand, the isomorphism

(6.1) Fp b L Ñ
ź

iPZ{rZ
L, ab b ÞÑ paq

i

bqi

induces a decomposition as an L-vector space

(6.2) M “
à

iPZ{rZ
Mi, Mi “ tm P M | rλspmq “ λq

i

m for any λ P Fpu.

Since the Fp b L-module M is free, the L-vector space Mi is of dimension h and τ
induces an L-linear isomorphism

τi : σ
˚Mi Ñ Mi`1.

By taking the exterior product
Źh
L over L, we define a pair

h
ľ

M :“ p
à

iPZ{rZ

h
ľ

L

Mi,
à

iPZ{rZ

h
ľ

L

τiq.

It is an étale pFp, φq-sheaf of rank one over L, where the Fp-action is defined by

rλspmq “ λq
i

m, m P

h
ľ

L

Mi.
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Thus we have the Fp-vector space

V p

h
ľ

Mq :“ GrLp

h
ľ

MqpLsepq

of dimension one, on which GL acts Fp-linearly.

Lemma 6.2. For any étale pFp, φq-sheaf pM, τq of rank h over L, we have a natural
isomorphism of FprGLs-modules

h
ľ

Fp

V pMq » V p

h
ľ

Mq.

Proof. Let ei,1, . . . , ei,h be a basis of the L-vector space Mi. Write

τp1 b ei,1, . . . , 1 b ei,hq “ pei`1,1, . . . , ei`1,hqCi, Ci P GLhpLq.

For any matrix B “ pbijq P MhpLq, write Bpqlq “ pbq
l

ij q. Put

C “ Cr´1 ¨ ¨ ¨C
pqr´2q
1 C

pqr´1q
0 P GLhpLq.

Then we have an isomorphism of FprGLs-modules

V pMq Ñ tpzjqj P pLsepqh | pzq
r

j qj “ pzjqjCu,

pf :M Ñ Lsepq ÞÑ pfpe0,jqqj ,

where the right-hand side is an Fp-vector space consisting of row vectors with the
Fp-action given by rλspzjqj “ pλzjqj .

Let z1 “ pz1,jqj , . . . , zh “ pzh,jqj be a basis of the Fp-vector space V pMq. Put
Z “ pzl,jql,j P MhpLsepq. It satisfies

Zpqrq “ ZC, detpZqq
r

“ detpZqdetpCq.

We claim

Z P GLhpLsepq.

The argument below is similar to the one in the proof of [Fon, Proposition A1.2.6].
Indeed, it is enough to show that z1, . . . , zh are linearly independent over Lsep. Sup-
pose the contrary. Consider the set of non-zero row vectors pajqj P Lsep satisfying
pajqjZ “ 0, and take pajqj with minimal number of non-zero entries. Let aj0 be a
non-zero entry. Multiplying its inverse, we may assume aj0 “ 1. Then we have

0 “ paq
r

j qjZ
pqrq “ paq

r

j qjZC,

which yields paq
r

j qjZ “ 0 and paj ´ aq
r

j qjZ “ 0. This contradicts the minimality

unless aj “ aq
r

j for any j. In this case, we have aj P Fp, which is a contradiction
since z1, . . . , zh are linearly independent over Fp.

Next we consider the φ-sheaf
Źh

M . Note that δi “ ei,1 ^ ¨ ¨ ¨ ^ ei,h is a basis of

the L-vector space
Źh
LMi. Since

˜

h
ľ

τi

¸

p1 b δiq “ detpCiqδi`1,
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we have an isomorphism of FprGLs-modules

(6.3)
V p

h
ľ

Mq Ñ tw P Lsep | wq
r

“ detpCqwu,

pf :
h

ľ

M Ñ Lsepq ÞÑ fpδ0q,

where the Fp-action on the source is given by rλspwq “ λw.
Now we have an Fp-linear map

(6.4)
h

ľ

Fp

V pMq Ñ V p

h
ľ

Mq, z1 ^ ¨ ¨ ¨ ^ zh ÞÑ detpZq.

Since detpZq is non-zero and the source and target are Fp-vector spaces of dimension
one, it is an isomorphism.

For any g P GL, write

gpz1, . . . , zhq “ pz1, . . . , zhqρpgq, ρpgq P GLhpFpq.

Then we have gpZq “ tρpgqZ and gpdetpZqq “ detpρpgqqdetpZq, which shows that
the isomorphism (6.4) is GL-equivariant. □

Lemma 6.3. Let pM, τq be an étale pFp, φq-sheaf of rank h over L. Then the

pFp, φq-sheaf
Źh

M is isomorphic to

p

h
ľ

FpbL

M,
h

ľ

FpbL

τq.

Proof. Let εi P Fp bL be the idempotent corresponding to the i-th factor of (6.1).
SinceMi “ εiM and εiεi1 “ 0 for any i ‰ i1, the lemma follows by using the natural
isomorphism

h
ľ

FpbL

M »
à

j0`¨¨¨`jr´1“h

¨

˝

â

iPZ{rZ

ji
ľ

FpbL

Mi

˛

‚.

□

6.2. Determinant of t-motives. Let L{F be a field extension containing Fp and
let E be a sound D-elliptic sheaf over L of generic characteristic. Let P be the
t-motive associated with E . Recall that P is free of rank d2 over the principal ideal
domain AbL “ Lrts, and for the map τ : p1bσq˚P Ñ P , we have dimLpCokerpτqq “

d. Put

Q “

d2
ľ

AbL

P.

Then Q is a free A b L-module of rank one. The map τ induces an A b L-linear
injection

d2
ľ

AbL

τ : p1 b σq˚Q Ñ Q,

which we also denote by τ .
Let θ be the image of t by the natural inclusion A Ñ L. Since E is sound, we

have θ “ i0ptq for the zero i0 : A Ñ L of E .
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Lemma 6.4. Let e be a basis of the Ab L-module Q. Then we have

τpp1 b σq˚eq “ cpθ ´ tqde, c P Lˆ.

Proof. Consider the A b L-linear injection τ : p1 b σq˚P Ñ P . From the diagram
(2.3), we see that the element θ ´ t annihilates Cokerpτq. Thus any elementary
divisor of the Lrts-linear map τ divides θ´ t, that is, it lies in either of Lˆpθ´ tq or
Lˆ. Since Cokerpτq is an L-vector space of dimension d, the former appears exactly
d times. Taking the determinant yields the lemma. □

We denote by t̄ the image of t by the natural map A Ñ Fp.

Proposition 6.5. The FprGLs-module
Źd2

Fp
ErpspLsepq is identified with the set of

roots in Lsep of the equation

zq
r

“ c
qr´1
q´1 pθ ´ t̄qdpθq ´ t̄qd ¨ ¨ ¨ pθq

r´1

´ t̄qdz

for some c P Lˆ, where the action of λ P Fp is given by rλspzq “ λz. In particular,
for any such root z and any g P GL, we have

gpzq “ δE,ppgqz.

Proof. Put P̄ “ FpbAP . Since L is of generic characteristic, the pair pP̄ , τq defines
an étale pFp, φq-module of rank d2 over L satisfying Erps “ GrLpP̄ q. Write

Q̄ “

d2
ľ

FpbL

P̄ “ Fp bA Q.

Then the map τ induces on Q̄ a structure of an étale pFp, φq-module of rank one
over L. Then Lemma 6.2 and Lemma 6.3 yield an isomorphism of FprGLs-modules

d2
ľ

Fp

ErpspLsepq » GrLpQ̄qpLsepq.

Let e be a basis of the free AbL-module Q of rank one and let ē be the image of
e in Q̄. Let εi P Fp b L be the i-th idempotent as before. Then ε0ē, ε1ē, . . . , εr´1ē
form a basis of the L-vector space Q̄ which satisfies

τpp1 b σq˚pεiēqq “ εi`1τpp1 b σq˚pēqq.

Then εiQ̄ “ Q̄i, where Q̄i is the direct summand as in (6.2).
Now Lemma 6.4 implies

τ rpp1 b σrq˚pε0ēqq “

˜

r´1
ź

i“0

cq
i

pθq
i

´ t̄qd

¸

ε0ē

for some c P Lˆ. Since the φ-sheaf Q̄ is étale, as (6.3) the FprGLs-module GrLpQ̄qpLsepq

is identified with the set of roots of the equation

zq
r

“

˜

r´1
ź

i“0

cq
i

pθq
i

´ t̄qd

¸

z

with prescribed Fp-action. This concludes the proof. □
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6.3. Determinant at p and the Carlitz character. Let K{F be a finite exten-
sion. In this subsection, let w be a place of K which lies over p. We fix a separable
closure Ksep

w of Kw and an embedding Ksep Ñ Ksep
w extending K Ñ Kw. We

denote by Iw the inertia subgroup of GK “ GalpKsep{Kq at w.
Since Fp is perfect, we have the canonical section Fp Ñ Op of the reduction map

Op Ñ Fp. We consider Fp as a subfield of Fp and Kw by this map.
Let vw be the p-adic additive valuation on Ksep

w satisfying vwpKˆ
w q “ Z. Put

e “ vwppq. Let mKsep
w

be the maximal ideal of OKsep
w

and let k̄ be the residue field

of OKsep
w

. We consider k̄ as an Fp-algebra via the reduction map of Op Ñ OKsep
w

.
For any positive rational number l, put

měl
Ksep

w
“ tz P Ksep

w | vwpzq ě lu, mąl
Ksep

w
“ tz P Ksep

w | vwpzq ą lu.

Let

Θl “ měl
Ksep

w
{mąl

Ksep
w
.

It is a k̄-vector space of dimension one on which Iw acts k̄-linearly. Thus it defines
a character

θl : Iw Ñ k̄ˆ.

For any positive rational numbers l1 and l2, the multiplication induces a natural
isomorphism of k̄rIws-modules Θl1 bk̄ Θl2 » Θl1`l2 . Thus we have

(6.5) θl1θl2 “ θl1`l2 .

Let C “ SpecpOKrZsq be the Carlitz module. It is a Drinfeld A-module of rank
one defined by rtsCpZq “ tZ ` Zq. Then the p-torsion subgroup CrpspKsepq is an
Fp-vector space of dimension one. The GK-action on it defines a character

χC,p : GK Ñ Fˆ
p ,

which we refer to as the mod p Carlitz character.

Lemma 6.6.

χC,p|Iw “ θj where j “
e

qr ´ 1
.

Proof. Since Θj is generated by the image of p1{pqr´1q, the character θj factors
through Fˆ

p Ď k̄ˆ.
The action of p on the Carlitz module C is given by the monic polynomial

rpsCpZq “ pZ `

r
ÿ

i“1

biZ
qi , bi P A

satisfying b1, . . . , br´1 P pOp [Hay, Proposition 2.4]. Thus the abelian group
CrpspKsep

w q is identified with the set of z P OKsep
w

satisfying rpsCpzq “ 0. Since
any of its non-zero elements has valuation j, we have an injection of Fq-vector
spaces

ι : CrpspKsep
w q Ñ Θj , z ÞÑ z mod mąj

Ksep
w

which is compatible with the Iw-actions.
We claim that ι is compatible with the natural Fp-actions. The Fp-action on

CrpspKsep
w q is induced by that of A “ Fqrts. Since Fp “ A{ppq is generated over Fq

by the image of t, it suffices to show that ι is compatible with the natural actions
of t. This follows from the equality

rtsCpzq “ tz ` zq ” tz mod mąj
Ksep

w
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for any z P CrpspKsep
w q. Thus we obtain χC,p|Iw “ θj . □

Let θ be the image of t by the natural inclusion A Ñ Op as before.

Lemma 6.7. For t̄ P Fp Ď Kw, we have

vwpθ ´ t̄q “ e and vwpθ ´ t̄q
i

q “ 0

for any integer i P r1, r ´ 1s.

Proof. Let kw be the residue field of Kw. Consider the commutative diagram

A //

��?
??

??
??

? Op
//

��

OKw

��
Fp

// kw,

where the upper horizontal arrows are natural inclusions. Then the image of t P A
by the upper horizontal composite is θ and that by the oblique arrow is t̄. This
implies vwpθ ´ t̄q ą 0.

For any integer i P r1, r ´ 1s, we have t̄ ‰ t̄q
i

in kw since the extension Fp{Fq is

generated by t̄. Hence we obtain vwpt̄´ t̄q
i

q “ 0 and vwpθ ´ t̄q
i

q “ 0. This yields

e “ vwppq “ vwppθ ´ t̄qpθ ´ t̄qq ¨ ¨ ¨ pθ ´ t̄q
r´1

qq “ vwpθ ´ t̄q

as claimed. □

Corollary 6.8. Let w be a place of K which lies over p and let Iw be the iner-
tia subgroup of GK at w. Let E be a sound D-elliptic sheaf over Kw of generic
characteristic. Then we have

pδE,p|Iwqq´1 “ pχC,p|Iwqdpq´1q.

Proof. Since Fp Ď Kw, we may apply Proposition 6.5 to L “ Kw. Then, for any
g P GKw

and any root z P Ksep
w of the equation

zq
r´1 “ cq

r´1ppθ ´ t̄qpθq ´ t̄q ¨ ¨ ¨ pθq
r´1

´ t̄qqdpq´1q, c P Kˆ
w ,

we have gpzq “ δE,ppgqq´1z. Replacing z by z{c, we see that the same relation holds
for any root z P Ksep

w of the equation

zq
r´1 “ ppθ ´ t̄qpθq ´ t̄q ¨ ¨ ¨ pθq

r´1

´ t̄qqdpq´1q.

Now Lemma 6.7 and (6.5) show

pδE,p|Iwqq´1 “ θ
dpq´1q
j

with j “ e{pqr ´ 1q. Hence Lemma 6.6 yields the corollary. □

7. Canonical isogeny character

As in the previous section, we fix p P R and put |p| “ qr.
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7.1. Definition of the canonical isogeny character. Let L{Fq be a field exten-
sion and let E be a D-elliptic sheaf over L satisfying 8 R ZpEq and charApLq ‰ p.

We denote by F the extension of Fp of degree d. By the assumption (2.1), the
completion Dp is a division algebra and it contains an unramified extension of Fp

of degree d. In particular, we have an injective ring homomorphism F Ñ OD{pOD,
which we fix once and for all.

By the assumption that invpDpq “ 1{d and [Rei, Theorem 14.5], we can write

(7.1) OD{pOD “

d´1
à

i“0

FΠi, Πd “ 0, Πω “ ω|p|Π

for any ω P F, with some prime element Π P ODp
.

By Lemma 5.2, the left OD{pOD-module ErpspLsepq is identified with OD{pOD.
Consider its Π-torsion submodule ErpspLsepqrΠs. By (7.1), it is an F-vector space
of dimension one on which GL-acts F-linearly. Hence it defines a character

ρE,p : GL Ñ Fˆ,

which we call the canonical isogeny character.

7.2. Relationship with the determinant. Let L{Fq be a field extension and
let E be a D-elliptic sheaf over L satisfying 8 R ZpEq and charApLq ‰ p. Let
ρE,p : GL Ñ Fˆ be its canonical isogeny character. Consider the FrGLs-module
ErpspLsepq, which is an F-vector space of dimension d. This gives a representation

πE,p : GL Ñ AutFpErpspLsepqq.

Then the GL-action on
Źd

F ErpspLsepq defines a character

det
F

pπE,pq : GL Ñ Fˆ.

Lemma 7.1. For any g P GL, the characteristic polynomial of πE,ppgq (over F)
equals

d´1
ź

i“0

´

X ´ ρE,ppgq|p|i
¯

P FrXs.

In particular, the polynomial lies in FprXs and

det
F

pπE,pq “ ρ
|p|d´1
|p|´1

E,p “ NF{Fp
˝ ρE,p.

Proof. Put V “ ErpspLsepq and R “ OD{pOD. Note that the filtration by R-
submodules

V Ě ΠV Ě Π2V Ě ¨ ¨ ¨ Ě Πd´1V Ě 0

is stable under the GL-action. Moreover, each graded piece is an F-vector space of
dimension one, and we have an isomorphism of Fp-vector spaces

ψi : Π
iV {Πi`1V Ñ V rΠs, x ÞÑ Πd´1´ix

which is compatible with the GL-actions.

Since the action of λ P F satisfies ψipλxq “ λ|p|d´1´i

ψipxq, the GL-action on

ΠiV {Πi`1V is given by the character ρ
|p|i`1´d

E,p . This concludes the proof. □
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Lemma 7.2.

ρ
d

|p|d´1
|p|´1

E,p “ δE,p,

where δE,p was defined at the beginning of §6.

Proof. By Lemma 7.1, we see that the image of the character detFpπE,pq lies in Fˆ
p .

Thus [Sta, Lemma 9.20.4] gives

δE,p “ NF{Fp
˝ det

F
pπE,pq “ det

F
pπE,pqd.

Then Lemma 7.1 concludes the proof. □
Lemma 7.3. Suppose that L “ k is a finite field. Let Frk P Gk be the |k|-th power
Frobenius automorphism, as in §5.4. Then we have

PE,kpXq ”

d´1
ź

i“0

´

X ´ ρE,ppFrkq|p|i
¯

mod p.

Proof. By [Rei, Theorem 9.5], we see that PE,kpXqd mod p is equal to the character-
istic polynomial of πE,ppFrkq when we regard ErpspLsepq as an Fp-vector space. Since
F is Galois over Fp, the characteristic polynomial is the product of all conjugates
over Fp of the characteristic polynomial of πE,ppFrkq when we regard ErpspLsepq as
an F-vector space. By Lemma 7.1, we obtain

PE,kpXqd mod p “

d´1
ź

i“0

´

X ´ ρE,ppFrkq|p|i
¯d

,

from which the lemma follows. □
7.3. Control at infinity.

Lemma 7.4. Let k{Fq be a finite extension and let m ą 0 be an integer. Let F
be a locally free OXbk-module of rank m, equipped with an isomorphism of OXbk-
modules τ : p1 b σq˚F Ñ F . Let f : F Ñ F be an isomorphism of OXbk-modules
which is compatible with τ . Put P “ H0ppXzt8uq b k,Fq, which is a free A b k-
module of rank m. Then the characteristic polynomial charpf ;P q of f acting on
the Ab k-module P has coefficients in Fq.

Proof. Let k̄ be an algebraic closure of k. Then the restriction to k̄ defines an
isomorphism f |k̄ : F |k̄ Ñ F |k̄ which is compatible with τ |k̄. By [Dri, Proposition
1.1], there exist a locally free OX -module F0 of rank m and an isomorphism of
OX -modules f0 : F0 Ñ F0 such that the pair pF0|k̄, f0|k̄q is isomorphic to the pair
pF |k̄, f |k̄q. Since the characteristic polynomial of f |k̄ acting on the A b k̄-module
P |k̄ agrees with charpf ;P q, replacing pF , fq by pF0, f0q we may assume k “ Fq.

Since the A-module P is free of rank m, with some basis the map f |P is rep-
resented by a matrix B P GLmpAq. On the other hand, since f is also an isomor-
phism at 8, it follows that the restriction of f |P to F8 defines an automorphism
on an O8-lattice of F8 bA P . Hence there exists a matrix C P GLmpF8q satis-
fying C´1BC P GLmpO8q. This implies that any coefficient of charpf ;P q lies in
AX O8 “ Fq, which concludes the proof. □
Proposition 7.5. Let L{F8 be a finite extension and let E be a sound D-elliptic
sheaf over L of generic characteristic. Suppose that E has good reduction. Then we
have

ρE,ppGLqlqpdq “ 1.
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Proof. Let kL be the residue field of L. By assumption, there exists a sound D-
elliptic sheaf EOL

“ pEOL,iqiPZ over OL satisfying ZpEOL
q X |X| “ t8u with an

isomorphism E » EOL
|L. Put Ē :“ EOL

|kL , which is a D-elliptic sheaf over kL
satisfying ZpĒq X |X| “ t8u.

First we claim that the GL-module ErpspLsepq is unramified. Indeed, let P be
the t-motive associated with E and put

Pi “ H0ppXzt8uq b OL, EOL,iq, P̄i “ Pi bOL
kL.

Since Cokerpjiq is supported on t8uˆSpecpOLq, the map ji induces an isomorphism

ji : Pi Ñ Pi`1.

Similarly, since ZpEOL
q X |X| “ t8u, the map ti induces an isomorphism

ti : p1 b σq˚pA{ppq bA Piq Ñ A{ppq bA Pi`1.

Hence the map j´1
i ˝ti defines a structure of an étale φ-sheaf over OL on A{ppqbAPi

which agrees over L with that on A{ppq bA P |L. Then it follows that the group
scheme

Erps|L “ GrLpA{ppq bA P |Lq » GrLpA{ppq bA Pi|Lq

is the generic fiber of the finite étale group scheme GrOL
pA{ppq bA Piq over OL.

This shows the claim.
Let FrkL be the |kL|-th power Frobenius element of GkL “ GalpF̄q{kLq and let

FrL P GL be its lift. To prove the proposition, it is enough to show

ρE,ppFrLqlqpdq “ 1.

As explained in [BS, p. 170], the lemma of the critical index [BS, Lemma 3.3.1]
is valid for the D-elliptic sheaf Ē over kL. In particular, for some index i the map
ti of Ē “ pĒiqiPZ factors as

p1 b σq˚pĒiq
t̃i

„ // Ēi
ji

// Ēi`1,

where t̃i is an isomorphism.
Write |kL| “ qs. Since we have natural isomorphisms

ErpspLsepq » GrOL
pA{ppq bA PiqpOLsepq » GrkLpA{ppq bA P̄iqpF̄qq,

the action of FrL on ErpspLsepq is identified with the action of FrkL on GrkLpA{ppqbA

P̄iqpF̄qq, and by (5.1) the latter agrees with the map induced by the s-th iteration
f of the map t̃i, namely

f “ t̃i ˝ p1 b σq˚t̃i ˝ ¨ ¨ ¨ ˝ p1 b σs´1q˚t̃i : p1 b σsq˚Ēi “ Ēi Ñ Ēi.
Since f is an isomorphism of OXbkL -modules compatible with t̃i, Lemma 7.4

shows that the characteristic polynomial charpf ; P̄iq is a polynomial over Fq of
degree d2.

Put F 1
0 “ kLpptqq and V0 “ F 1

0 bAbkL P̄i. It is an F 1
0-vector space of dimension

d2 which admits a right action of D0 :“ F 1
0 bF D. Since D0 is a central simple F 1

0-
algebra of rank d2, the right D0-module V0 is free of rank one. Since f |P̄i

commutes
with the right action of OD, the map which f induces on V0 can be identified with
the left translation δl for some δ P D0.

Let RpXq P F 1
0rXs be the reduced characteristic polynomial of δ. By [Rei,

Theorem 9.5], we have

(7.2) RpXqd “ charpf ; P̄iq P FqrXs,
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which yields RpXq P kLrrtssrXs since the ring kLrrtssrXs is normal. Put R̄pXq :“
RpXq mod t P kLrXs. Reducing (7.2) modulo t showsRpXqd “ R̄pXqd in kLrrtssrXs

and thus RpXq “ R̄pXq. Then (7.2) implies that each irreducible factor of RpXq P

kLrXs has the same multiplicity as any of its conjugates over Fq. Hence we obtain
RpXq P FqrXs.

Therefore, the action of FrL on ErpspLsepq satisfies the equation charpf ; P̄iq “

RpXqd “ 0. In particular, each eigenvalue of it lies in a finite extension of Fq of

degree no more than degpRpXqq “ d, which implies Fr
lqpdqpm

L “ id on ErpspLsepq for
some integer m and also on its GL-subrepresentation ρE,p. Since the target of the

latter is Fˆ, we obtain ρE,ppFrLqlqpdq “ 1. □
Corollary 7.6. Let K{F be a finite extension and let E be a sound D-elliptic sheaf
over K of generic characteristic. Let v be a place of K over 8. Then we have

pρE,p|GKv
qlqpdq2 “ 1.

Proof. Let x “ pπq be a prime ideal of A of degree one and put G “ pOD{πODqˆ as
before. Let L{K be the finite Galois extension cut out by the GK-module ExpKsepq,
so that E |L admits a level x structure ι. Note that we have ExpKsepq “ ExpLq and
the action of GalpL{Kq gives an injective homomorphism

ψ : GalpL{Kq Ñ G, g ˝ ι “ ι ˝ ψpgql,

where ψpgql denotes the left translation of ψpgq as before.
Let w be any place of L over v with residue field kw. We consider the ring OLw

naturally as an O8-algebra. Then Lemma 4.14 (1) implies that E |Lw has good
reduction. By Proposition 7.5, we have

(7.3) pρE,p|GLw
qlqpdq “ 1.

Note that Lw{Kv is a finite Galois extension satisfying

GalpLw{Kvq Ď GalpL{Kq Ď G.

Take any element g P GKv
and let ḡ be its image in GalpLw{Kvq. Let H be the

finite cyclic subgroup of GalpLw{Kvq generated by ḡ. Write H “ H 1 ˆ Hp with a
subgroup H 1 of order prime to p and a p-group Hp of order pm. By Lemma 3.2,

the order of H 1 divides lqpdq. Then we have gp
mlqpdq P GLw

and (7.3) yields

ρE,ppgp
mlqpdqqlqpdq “ ρE,ppgqlqpdq2 “ 1.

This concludes the proof of the corollary. □
7.4. Local class field theory. Let K{F be a finite extension. We denote by Kab

the maximal abelian extension of K in Ksep. Let Gab
K “ GalpKab{Kq. For any

place v of K, let
ωv : K

ˆ
v Ñ Gab

K

be the local Artin map.
Let E be a sound D-elliptic sheaf over K of generic characteristic. For the

fixed element p P R, the canonical isogeny character ρE,p factors though Gab
K . Put

Ov “ OKv and

r̃E,ppvq “ ρE,p ˝ ωv : K
ˆ
v Ñ Fˆ, rE,ppvq “ r̃E,ppvq|Oˆ

v
: Oˆ

v Ñ Fˆ.

Proposition 7.7. (1) If v ∤ p8, then rE,ppvqq
d´1 “ 1.

(2) If v | 8, then r̃E,ppvqlqpdq2 “ 1.
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Proof. Since ρE,p is a GK-subrepresentation of ErpspKsepq, (1) follows from Propo-
sition 5.8. Corollary 7.6 yields (2). □

Now we consider a place v of K over p. Let kv be the residue field of Kv with
fv “ rkv : Fps. Let πv be a uniformizer of Kv and let ev be the ramification index
of v over p. Put

tv “ gcdpfv, dq.

We denote by Fptvq
p the subextension of F{Fp of degree tv. Similarly, let k1

v be the
subextension of kv{Fp of degree tv and we fix an Fp-linear isomorphism j : k1

v Ñ

Fptvq
p . For any u P Oˆ

v , we denote by ū its image in kv.

Lemma 7.8. There exists a unique integer cv P r0, |p|tv ´ 2s satisfying

rE,ppvqpuq “ jpNkv{k1
v
pūqq´cv

for any u P Oˆ
v .

Proof. Since the target Fˆ of the character ρE,p is a cyclic group of order |p|d ´ 1,
the map rE,ppvq is trivial on 1 ` πvOv and thus it factors through the reduction
map Oˆ

v Ñ kˆ
v . Hence its image lies in the unique cyclic subgroup of Fˆ of order

gcdp|p|fv ´ 1, |p|d ´ 1q “ |p|tv ´ 1,

which is equal to pFptvq
p qˆ.

Since the norm map Nkv{k1
v

: kˆ
v Ñ pk1

vqˆ is surjective, for any u0 P Oˆ
v

such that ū0 generates the cyclic group kˆ
v , we can uniquely write rE,ppvqpu0q “

jpNkv{k1
v
pū0qq´cv with some integer cv as in the lemma. This cv has the desired

property. □
Lemma 7.9. For any u P Oˆ

v , we have

χC,p ˝ ωvpuq “ Nkv{Fp
pūq´ev .

Proof. We recorded the polynomial rpsCpZq giving the action of p on the Carlitz
module C in the proof of Lemma 6.6. The information about the valuations of the
coefficients tells us that the formal Op-module Crp8s is a Lubin–Tate group. By
Lubin–Tate theory [Ser1, §3.4, Theorem 3], for the local Artin map ωp : Oˆ

p Ñ Gab
Fp

of Fp, we see that the composite χC,p ˝ ωp sends a P Oˆ
p to a´1 mod p. Since the

inclusion Gab
Kv

Ñ Gab
Fp

corresponds to the norm map via local Artin maps [Ser1,

§2.4], the lemma follows from

NKv{Fp
puq mod p “ Nkv{Fp

pūqev , u P Ov.

□
Lemma 7.10.

d2

tv
pq ´ 1qcv ” dpq ´ 1qev mod |p| ´ 1.

Proof. By Lemma 7.2 and Corollary 6.8, we have

NF{Fp
˝ pρE,p|Iv qdpq´1q “ pχC,p|Iv qdpq´1q.

Take any u P Oˆ
v . On one hand, Lemma 7.8 gives

NF{Fp
˝ ρ

dpq´1q

E,p ˝ ωvpuq “ NF{Fp
˝ j ˝Nkv{k1

v
pūq´dpq´1qcv

“ Nkv{Fp
pūq

´ d2

tv
pq´1qcv .
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On the other hand, Lemma 7.9 yields

χ
dpq´1q

C,p ˝ ωvpuq “ Nkv{Fp
pūq´dpq´1qev .

Since Nkv{Fp
is surjective and the group Fˆ

p is cyclic of order |p| ´ 1, the lemma
follows. □
Proposition 7.11. Let v be a place of K satisfying v | p. Let q P A be an irreducible
polynomial which is coprime to p. Then we have

rE,ppvqpq´1qd
2pq´1q ” qdpq´1qevfv mod p.

Proof. Lemma 7.8 gives

rE,ppvqpq´1qd
2pq´1q “ jpNkv{k1

v
pq̄qqd

2pq´1qcv .

Since q̄ P Fp, by Lemma 7.10 we obtain

jpNkv{k1
v
pq̄qqd

2pq´1qcv “ q̄
fv
tv
d2pq´1qcv “ q̄dpq´1qevfv .

□
Put

(7.4) n “ lqpdq2
ˆ

d2

gcdpd2, q2 ´ 1q

˙

.

Since d ě 2, we see that q2 ´ 1 divides lqpdq and n satisfies

(7.5) d2pq ´ 1q | n, lqpdq2 | n.

Corollary 7.12. Let v be a place of K satisfying v | p. Let q P A be an irreducible
polynomial which is coprime to p. Then we have

rE,ppvqpq´1qn ” q
n
d rKv :Fps mod p.

Proof. By Proposition 7.11 and (7.5), we have

rE,ppvqpq´1qn ” q
n

d2pq´1qdpq´1qevfv
” q

n
d rKv :Fps mod p.

□
Remark 7.13. When d “ 2 and q is odd, we have

n “ lqp2q2 “ pq2 ´ 1q2.

8. Global points on Drinfeld–Stuhler varieties

8.1. Key global property of the canonical isogeny character. Let K{F be
an extension of degree d satisfying the following conditions.

‚ D bF K » MdpKq.
‚ There exists y P |X|zpR Y t8uq which totally ramifies in K.

Let Y be the unique place of K over y. For any integer N ě 1, we denote by

FpNq
y the finite extension of Fy of degree N .
Let p P R so that invpDpq “ 1{d by (2.1). Since D bF K » MdpKq, for any

place v of K over p we have that Dp bFp
Kv splits and d | rKv : Fps. Hence there

exists a unique place P of K over p.
Let E be a sound D-elliptic sheaf over K of generic characteristic. Let ρE,p :

GK Ñ Fˆ be the canonical isogeny character and let n be the integer from (7.4).
Proposition 7.7 (1) and (7.5) imply that ρnE,p is unramified at Y. We choose a



D-ELLIPTIC SHEAVES AND THE HASSE PRINCIPLE 41

Frobenius element FrY P GK at Y. Then ρnE,ppFrdYq is independent of the choice of
FrY.

Proposition 8.1. Under the assumptions above, we have

ρnE,ppFrdYq ” yn mod p.

Proof. By class field theory, we consider ρnE,p as a character of the idèle class group

Aˆ
K{Kˆ of K. Let ϖY be a uniformizer of the completion KY of K at Y so that

ϖd
Y “ uy with some u P Oˆ

KY
. We write ppaqY, pbq

Yq for the idèle such that the

component at Y is a and the other components are b. Then we have

ρnE,ppFrdYq “ ρnE,pppϖd
YqY, p1qYq “ ρnE,pppuyqY, p1qYq

“ ρnE,pppuqY, py
´1qYq

“ rE,ppYqpuqn
ź

v‰Y

r̃E,ppvqpy´1qn.

By Proposition 7.7 (1) and (7.5), we have

rE,ppYqpuqn “ r̃E,ppvqpy´1qn “ 1 pv ∤ py8q.

On the other hand, Proposition 7.7 (2) and (7.5) give

r̃E,ppvqpy´1qn “ 1 pv | 8q.

Thus we obtain

ρnE,ppFrdYq “ r̃E,ppPqpy´1qn “ rE,ppPqpy´1qn.

Since rKP : Fps “ d, Corollary 7.12 yields

ρnE,ppFrdYq ” yn mod p,

which concludes the proof. □

8.2. Criterion for the non-existence of global points. Let F̄ be an algebraic
closure of F .

Definition 8.2. Let Wpyq be the set of elements π P F̄ such that

(1) π is integral over A.
(2) rF pπq : F s “ d.
(3) There is only one place 8̃ of F pπq dividing 8.
(4) NF pπq{F pπq P Fˆ

q y.

Note that if π P Wpyq, then the reasoning as in the proof of Lemma 5.5 shows
that the minimal polynomial of π over F

MπpXq “ Xd ` a1X
d´1 ` ¨ ¨ ¨ ` ad

has the following properties:

‚ ai P A and degpaiq ď i degpyq{d for any integer i P r1, ds.
‚ ad “ µy for some µ P Fˆ

q .

In particular, Wpyq is a finite set.
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Remark 8.3. When d “ 2 and y “ t, the set Wptq agrees with the set of roots in
F̄ of quadratic polynomials X2 ` a1X ` a2 with the two properties above. Indeed,
since we have

1

t2
pptXq2 ` a1ptXq ` a2q “ X2 `

a1
t
X `

a2
t2
,

the polynomial is Eisenstein over O8. Thus it is irreducible over F8 and its roots
lie in Wptq.

Definition 8.4. Put

Dpyq “ tNF pπq{F pπdn ´ ynq | π P Wpyqu Ď A.

Let Ppyq be the set of prime divisors of nonzero elements of Dpyq.

Note that for any π P Wpyq, by Definition 8.2 (4) we have NF pπq{F pπdn ´ ynq R

Fˆ
q . Thus we obtain

(8.1) Ppyq “ H ô πdn “ yn for all π P Wpyq.

Theorem 8.5. Let K{F be a field extension of degree d. Assume

‚ D bF K » MdpKq,
‚ there exists y P |X|zpR Y t8uq which totally ramifies in K,
‚ there exists p P RzPpyq,
‚ D bF F p d

?
µyq fi MdpF p d

?
µyqq for any µ P Fˆ

q .

Then XDpKq “ H.

Proof. Suppose XDpKq ‰ H. By Theorem 3.8, there exists a sound D-elliptic
sheaf E over K of generic characteristic. Let Y be the unique place of K lying over
y. Then Proposition 4.16 (2) implies that there exist a totally ramified extension
L{KY and a sound D-elliptic sheaf EOL

over OL satisfying ZpEOL
q X |X| “ tyu

and EOL
|L » E |L. We denote by Ē the reduction of EOL

modulo the maximal ideal

of OL. Note that the residue field of OL is Fy and Ē is a sound D-elliptic sheaf
over Fy of characteristic y.

Let PĒ,Fy
pXq be the reduced characteristic polynomial of the |y|-th power Frobe-

nius automorphism FrFy
P GFy

acting on TppĒq, as in §5.4. Let π be the |y|-th

power Frobenius endomorphism of Ē and consider the subfield F pπq “ F rπs of
F bA EndpĒq. By Corollary 5.7, we have PĒ,Fy

pXq P ArXs and it is irreducible of
degree d. Write

PĒ,Fy
pXq “

d
ź

i“1

pX ´ πiq, πi P F̄ .

Since F pπiq is conjugate to F pπq over F , Corollary 5.7 implies πi P Wpyq for any i.

Consider the integer n of (7.4). Let Fpdnq
y be the finite extension of Fy of degree

dn. Let PĒ,Fpdnq
y

pXq be the reduced characteristic polynomial of FrFpdnq
y

P GFpdnq
y

acting on TppĒ |Fpdnq
y

q. Note that the GFpdnq
y

-module TppĒ |Fpdnq
y

q is the restriction

to GFpdnq
y

of the GFy
-module TppĒq, and similarly the canonical isogeny character

ρĒ|
Fpdnq
y

,p of Ē |Fpdnq
y

equals ρĒ,p|G
Fpdnq
y

. Since FrFpdnq
y

“ FrdnFy
, [Rei, Theorem 9.5] shows

PĒ,Fpdnq
y

pXq “

d
ź

i“1

pX ´ πdni q.
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On the other hand, by Lemma 7.3 we have

PĒ,Fpdnq
y

pXq ”

d´1
ź

i“0

´

X ´ ρĒ,ppFrFpdnq
y

q|p|i
¯

”

d´1
ź

i“0

´

X ´ ρĒ,ppFrdnFy
q|p|i

¯

mod p.

Since L{Fy is totally ramified and the natural isomorphisms

ErpspKsep
Y q » pEOL

qrpspOKsep
Y

q » ĒrpspF̄yq

are compatible with the actions of OD{pOD, we have

ρĒ,ppFrdnFy
q “ ρE,ppFrdnY q.

By Proposition 8.1,

ρE,ppFrdnY q ” yn mod p.

Thus we obtain
d

ź

i“1

pX ´ πdni q ”

d
ź

i“1

pX ´ ynq mod p.

This congruence implies that for any integer i P r1, ds, there exists a prime P1 of
F pπiq lying over p satisfying πdni ” yn mod P1. Therefore, p divides NF pπiq{F pπdni ´

ynq for all i. This yields πdni “ yn for all i, since the equality follows from (8.1)
when Ppyq “ H, and otherwise πdni ´ yn ‰ 0 contradicts the assumption p R Ppyq.
Hence all πi have the same y-adic valuation 1{d with respect to any place of F̄
above y.

Write PĒ,Fy
pXq “ Xd ` a1X

d´1 ` ¨ ¨ ¨ ` ad with ai P A. By Corollary 5.7,

ad “ ´µy for some µ P Fˆ
q and any other coefficient ai is not divisible by y unless

ai “ 0. Then inspecting the y-adic Newton polygon shows ai “ 0 for all i P r1, d´1s.
Namely, we have

PĒ,Fy
pXq “ Xd ´ µy, F pπq “ F p d

?
µyq.

Now Proposition 4.13 gives an F -linear embedding F p d
?
µyq Ñ D. Then F p d

?
µyq

is isomorphic to a maximal commutative subfield of D, and thus it splits D. This
contradicts the assumption. Therefore, we obtain XDpKq “ H. □

Example 8.6. Let d “ 2, q “ 3 and y “ t. A computer calculation with PARI/GP
using Remark 8.3 shows that the following monic irreducible polynomials p are not
in Ppyq:

t3 ` t2 ` t` 2, t4 ` t3 ` 2t` 1, t5 ` 2t` 1.

Let q be a monic irreducible polynomial which is coprime to p satisfying

‚ p tp q “ 1 or p tq q “ 1, and

‚ p ´t
p q “ 1 or p ´t

q q “ 1.

Let D be the quaternion division algebra over F with R “ tp, qu. Then neither of
D bF F p

?
˘tq splits.

For a square-free element m P A which is coprime to t, put K “ F p
?
tmq.

If neither p nor q splits in K, then K splits D. Therefore, Theorem 8.5 yields
XDpKq “ H.

For example, let

pp, qq P

#

pt3 ` t2 ` t` 2, t` 1q,

pt4 ` t3 ` 2t` 1, t2 ` 1q, pt5 ` 2t` 1, t` 2q

+

.
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Let n P A be any square-free element which is coprime to tpq. Then we have
XDpKq “ H for K “ F p

?
tpqnq.

Example 8.7. Let d “ 2, y “ t and

pq, p, qq P tp5, t3 ` t2 ` 4t` 1, t` 2q, p5, t4 ` 2, t2 ` t` 1q, p7, t3 ` 2, t` 3qu.

Then a computer calculation with PARI/GP shows p R Ppyq, and as in Example
8.6 we obtain XDpKq “ H for K “ F p

?
tpqnq with any square-free element n P A

which is coprime to tpq.

9. Counterexamples to the Hasse principle

In this section, using Theorem 8.5, we construct examples of curves violating the
Hasse principle. The main auxiliary tool that we will use are results from [Pap2]
on the existence of local points on Drinfeld–Stuhler curves, which are function field
analogues of results of Jordan–Livné for Shimura curves [JL]. For the convenience
of the reader, we summarize these results specialized to the case that will be of
particular interest for us.

9.1. Local points on Drinfeld–Stuhler curves. Let K{F be a quadratic exten-
sion. Let D be the quaternion algebra over F with R “ tp, qu, where p and q are
two distinct monic irreducible polynomials of A. For a place v of K, we denote by
Kv the completion of K at v. For the place l of F below v, we denote by degpv{lq
the residue degree and by epv{lq the ramification index of v over l, as before.

Lemma 9.1 ([Pap2], Theorem 5.10). Let v be a place of K over 8.

(1) If 8 does not split in K, then XDpKvq ‰ H.
(2) If 8 splits in K, then XDpKvq ‰ H if and only if both of degppq and degpqq

are odd.

Remark 9.2. Assume q is odd and K “ F p
?
dq for a square-free polynomial d P A.

Then 8 splits in K if and only if degpdq is even and its leading coefficient is a square
in Fˆ

q .

Lemma 9.3 ([Pap2], Theorem 4.1). Let v be a place of K over p. Put e “ epv{pq

and f “ degpv{pq.

(1) If f “ 2, then XDpKvq ‰ H.
(2) If e “ 2, then XDpKvq ‰ H if and only if there exists µ P Fˆ

q such that
neither q nor 8 splits in F p

?
µpq.

Remark 9.4. If K splits D, then for any place v | p of K we have rKv : Fps “ 2
and thus one of the cases in Lemma 9.3 occurs.

Lemma 9.5 ([Pap2], Theorem 3.1). Let l R tp, q,8u be a place of F and let v be
a place of K over l with f “ degpv{lq. We denote the monic irreducible polynomial
defining l also by l.

(1) If f “ 2, then XDpKvq ‰ H.
(2) If f “ 1, then XDpKvq ‰ H if and only if there exist a P A and c P Fˆ

q such

that the minimal splitting field L of the polynomial x2 ´ax` cl is quadratic
over F and no place w in tp, q,8u splits in L.
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Proof. Let a, c be as in (2) and let α be a root of x2 ´ ax ` cl “ 0 in an algebraic
closure of F . Let OF pαq be the integral closure of A in F pαq. If both of the
conjugates of α lie in lOF pαq, then a is divisible by l and thus l ramifies in F pαq.
This is enough to deduce the lemma from [Pap2, Theorem 3.1]. □

Remark 9.6. Suppose q is odd. Then we can write

x2 ´ ax` cl “

´

x´
a

2

¯2

´
a2 ´ 4cl

4
.

This implies that when q is odd, the place p does not split in the minimal splitting
field of this polynomial if either of the following conditions holds:

‚ pa
2´4cl
p q “ ´1, or

‚ the normalized p-adic valuation of a2 ´ 4cl is odd.

Indeed, under either of these conditions the polynomial x2 ´ ax ` cl is irreducible
over Fp.

Lemma 9.7. Let l R tp, q,8u be a place of F and let v be a place of K over l.
Suppose q is odd and

degplq ě 2pdegppq ` degpqqq ´ 1.

Then XDpKvq ‰ H.

Proof. It is enough to prove that there exist a P A and c P Fˆ
q as in Lemma 9.5 (2).

We denote the monic irreducible polynomial defining l also by l.
For any c P Fˆ

q and any irreducible polynomial r P A which is coprime to l, let
Ic,r be the image of the map

Fˆ
r Ñ Fr, x ÞÑ x`

cl

x

and put Jc,r “ FrzIc,r. Since l ı 0 mod r, the quadratic polynomial x2 ´ ax` cl is
irreducible over Fr if and only if a mod r P Jc,r. Thus the polynomial x2 ´ ax ` cl
is irreducible over Fr if a mod r P Jc,r.

For any x, y P Fˆ
r , we have

x`
cl

x
“ y `

cl

y
ô px´ yq

ˆ

1 ´
cl

xy

˙

“ 0 ô y P

"

x,
cl

x

*

.

Since q is odd, this shows

|Ic,r| “

#

|r|`1
2 pcl P pFˆ

r q2q
|r|´1

2 pcl R pFˆ
r q2q,

|Jc,r| “

#

|r|´1
2 pcl P pFˆ

r q2q
|r|`1

2 pcl R pFˆ
r q2q.

In particular, we have Jc,r ‰ H.
Put r “ degppq and s “ degpqq. Since the natural map A{ppqq Ñ A{ppq ˆA{pqq

is an isomorphism, for any c P Fˆ
q there exists a polynomial ac P A satisfying

degpacq ď r ` s´ 1, ac mod p P Jc,p, ac mod q P Jc,q.

Then the polynomial x2 ´ acx` cl is irreducible over Fp and Fq.
Put n “ degplq and π8 “ 1{t. If n “ 2m` 1 is odd, then the assumption yields

degpacq ď r ` s´ 1 ď m and the equality
ˆ

x

πm`1
8

˙2

´ ac

ˆ

x

πm`1
8

˙

` cl “
1

π2m`2
8

px2 ´ acπ
m`1
8 x` clπ2m`2

8 q
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shows that x2 ´ acx` cl is irreducible over F8 for any c P Fˆ
q .

If n “ 2m is even, then we have degpacq ď r` s´ 1 ď m´ 1. From the equality
ˆ

x

πm8

˙2

´ ac

ˆ

x

πm8

˙

` cl “
1

π2m
8

px2 ´ acπ
m
8x` clπ2m

8 q,

we see that x2 ´acx`cl is irreducible over F8 for any c P Fˆ
q satisfying ´c R pFˆ

q q2.
Since q is odd, such c always exists. This concludes the proof. □
Remark 9.8. We can prove a slightly better result than Lemma 9.7 by combining
a genus formula for XD [Pap1, Theorem 5.4] and the Weil bound. However, we
decided not to rely on it since Lemma 9.7 is much easier to prove and sufficient for
our computation.

Let Λ be the finite set of monic irreducible polynomials l ‰ p, q satisfying degplq ď

2pdegppq`degpqqq´2. For r P tp, qu, we denote by vr the normalized r-adic valuation
on A.

Proposition 9.9. Assume that q is odd and

(1) K splits D,
(2) 8 does not split in K,
(3) there exist µ, µ1 P Fˆ

q such that neither q nor 8 splits in F p
?
µpq and

neither p nor 8 splits in F p
?
µ1qq,

(4) for any l P Λ, there exist a P A with degpaq ď degplq{2 and c P Fˆ
q such that

‚ a2 ´ 4cl has odd degree or its leading coefficient is not a square in Fˆ
q ,

and
‚ for any r P tp, qu, we have

ˆ

a2 ´ 4cl

r

˙

“ ´1 or vrpa
2 ´ 4clq ” 1 mod 2.

Then we have XDpKvq ‰ H for any place v of K.

Proof. By the condition (2), Lemma 9.1 yields XDpKvq ‰ H when v | 8. By the
conditions (1) and (3), Lemma 9.3 and Remark 9.4 give XDpKvq ‰ H when v | pq.

Let l P A be any monic irreducible polynomial satisfying l ‰ p, q. We claim
XDpKvq ‰ H when v | l. By Lemma 9.7, we may assume l P Λ. By Lemma 9.5,
to show XDpKvq ‰ H it is enough to find a P A and c P Fˆ

q such that x2 ´ ax` cl
is irreducible over Fw for any w P tp, q,8u. Note that if degpaq ą degplq{2, then
Remark 9.2 shows that x2 ´ ax ` cl is not irreducible over F8. By the condition
(4), the claim follows from Remarks 9.2 and 9.6. This concludes the proof of the
proposition. □

The following lemma makes it easier to check the conditions of Proposition 9.9
(4).

Lemma 9.10. Assume that q is odd. Let m be an integer satisfying the following
conditions:

‚ 0 ď m ď degppq ` degpqq ´ 2.
‚ For any b P A with degpbq ď degppq ` degpqq ´ 1 such that b is coprime to
pq, there exists a P A with degpaq ď m satisfying

(9.1)

ˆ

a2 ´ b

p

˙

“

ˆ

a2 ´ b

q

˙

“ ´1.
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Then the conditions of Proposition 9.9 (4) are satisfied for any l P Λ with degplq ě

2m` 1.

Proof. Let l P Λ be as in the lemma. Take c P Fˆ
q such that ´4c R pFˆ

q q2. We also
take b P A satisfying

degpbq ď degppq ` degpqq ´ 1 and b ” 4cl mod pq.

Since l ‰ p, q, we see that b is coprime to pq. By assumption we can choose a P A
with degpaq ď m satisfying (9.1). Since degplq ě 2m` 1, we have degpa2q ă degplq.
This yields degpa2 ´ 4clq “ degplq and the leading coefficient of a2 ´ 4cl is ´4c.
Thus the first condition of Proposition 9.9 (4) is satisfied. The second condition
follows from (9.1). □

9.2. Violation of the Hasse principle. To give examples of curves violating the
Hasse principle, we concentrate on the case y “ t.

Theorem 9.11. Let

pq, p, qq P

$

’

’

’

’

&

’

’

’

’

%

p3, t3 ` t2 ` t` 2, t` 1q,

p3, t4 ` t3 ` 2t` 1, t2 ` 1q, p3, t5 ` 2t` 1, t` 2q,

p5, t3 ` t2 ` 4t` 1, t` 2q, p5, t4 ` 2, t2 ` t` 1q,

p7, t3 ` 2, t` 3q

,

/

/

/

/

.

/

/

/

/

-

and let D be the quaternion division algebra over F with R “ tp, qu. Let n P A be
any monic square-free polynomial which is coprime to tpq. Put

Sn “

"

Fˆ
q zpFˆ

q q2 pdegpnq ” 1 mod 2q,
Fˆ
q pdegpnq ” 0 mod 2q.

Define

K “ Kn,ε :“ F p
?
εtpqnq, ε P Sn.

Then we have XDpKq “ H and XDpKvq ‰ H for any place v of K.

Proof. Consider the case

pq, p, qq “ p3, t3 ` t2 ` t` 2, t` 1q.

By Example 8.6, the extension K{F splits D and we have XDpKq “ H.
We check that the conditions (2), (3) and (4) of Proposition 9.9 hold true. The

condition (2) follows from our choice of ε and Remark 9.2. Since p
´p
q q “ p

q
p q “ ´1

and degppq and degpqq are odd, we see that neither q nor 8 splits in F p
?

´pq and
that neither p nor 8 splits in F p

?
qq. Thus (3) also follows.

For (4), we use computer calculations. Since we chose p and q with small degrees,
we can carry out the computation with a reasonable execution time and memory
consumption. Our PARI/GP program confirms that a and c for which the necessary
conditions are satisfied always exist. Hence Proposition 9.9 yields the theorem for
this case.

We can prove the theorem for the other cases of pq, p, qq in the same way, using
Examples 8.6 and 8.7. Note that the execution time is reduced by first looking for
an integer m satisfying the assumptions of Lemma 9.10 and then checking (4) for
any l P Λ with degplq ď 2m. □
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Remark 9.12. Let D be a quaternion division algebra over F which splits at 8

and let K{F be a quadratic extension. Suppose that K does not split D. Then
there exists a place v of K over an element p P R satisfying Kv “ Fp, and [Pap2,
Theorem 4.1 (3)] implies XDpKvq “ XDpKq “ H. Hence, in the non-split case
there is no quadratic extension K{F such that XD violates the Hasse principle over
K, in contrast to Theorem 9.11 in the split case.
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