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2-ELLIPTIC SHEAVES AND THE HASSE PRINCIPLE

ABSTRACT. Let p be a rational prime, ¢ > 1 a power of p and F' = Fy(t). For
an integer d = 2, let D be a central division algebra over F' of dimension d?
which is split at o0 and has invariant inv;(D) = 1/d at any place = of F at
which D ramifies. Let X be the Drinfeld-Stuhler variety, the coarse moduli
scheme of the algebraic stack over F' classifying Z-elliptic sheaves. In this
paper, we establish various arithmetic properties of Z-elliptic sheaves to give
an explicit criterion for the non-existence of rational points of X2 over a finite
extension of F' of degree d. As an application, for d = 2, we present explicit
infinite families of quadratic extensions of F' over which the curve XL violates
the Hasse principle.
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1. INTRODUCTION

Let p be a rational prime and let ¢ > 1 be a power of p. Let A = F,[t] be the
polynomial ring over F, and let F' = F,(t) be its fraction field. We denote by oo
the place of F defined by 1/t. Let d > 2 be an integer. Let D be a central division
algebra over F' of dimension d? which splits at co and such that for any place z of F
at which D ramifies, the invariant of D at x is 1/d. For any global field E and any
place v of E, we denote by E, the completion of E at v and by E®*°P a separable
closure of E.

A Z-elliptic sheaf is a system of locally free sheaves equipped with an action of
a sheafified version 2 of D. It is a function field analogue of a polarized abelian
surface equipped with an action of an indefinite quaternion division algebra B over
Q. The modular varieties of Z-elliptic sheaves were studied by Laumon—Rapoport—
Stuhler [LRS], with the aim of proving the local Langlands correspondence for
GL(n) in positive characteristic.

Let XP be the Drinfeld-Stuhler variety, the coarse moduli scheme of the alge-
braic stack over F classifying Z-elliptic sheaves. Then X P is proper of dimension
d—1. When d = 2, it is also smooth over F' and we call it the Drinfeld-Stuhler
curve. It is a function field analogue of the quaternionic Shimura curve Vg corre-
sponding to B. For the latter, Jordan [Jor] proved criteria for the non-existence of
quadratic points on Vg, and using them, gave an example of B such that the curve
Vp violates the Hasse principle over a quadratic number field E. Namely, in his
example the curve Vp has no E-valued point despite that Vp has E,-valued points
for any place v of E.

In this paper, we generalize Jordan’s results to X . We have three objectives:

(1) Establish various arithmetic properties of Z-elliptic sheaves.

(2) Give an explicit criterion for the non-existence of rational points on X?
over finite extensions of F' of degree d, using (1).

(3) Produce examples of Drinfeld-Stuhler curves violating the Hasse principle
over infinitely many quadratic extensions of F', by combining (2) with cri-
teria for the existence of local points on Drinfeld—Stuhler curves obtained
by the fourth author [Pap2].

For any field extension K/F, we denote by X7 (K) the set of K-valued points
of XP over F (Definition 3.5). Then our main theorems are as follows.

Theorem 1.1 (Theorem 8.5). Let K/F be a field extension of degree d. Assume
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o there exists a place vy # o0 of F' which totally ramifies in K and such that
D splits at v,

o there exists a place p of F such that D ramifies at p and p ¢ P(y), where
P(y) is a certain explicitly computable finite set of places of F (Definition

8.4),

o D4C>£)F F(/py) % Ma(F(/py)) for any peFy.
Then XP(K) = &.
Theorem 1.2 (Theorem 9.11). Let

(3, 2 +t2+t+2, t+1),
B, "+ 42t +1, 2+ 1), (3, t°+2+1, t+2),
(5, 3+ t2+4t+1, t+2), (5, t*+2, 2+t+1),
(7, t* +2, t +3)

and let D be the quaternion division algebra over F which ramifies only at p and
q. Let ne A be any monic square-free polynomial which is coprime to tpq. Put

g IF;\(]F;)2 (deg(n) =1 mod 2),
o { Fg (deg(n) = 0 mod 2).

(q,p,9) €

Define
K = K, . := F(y/etpqn), e S,.
Then we have XP(K) = & and XP(K,) # & for any place v of K.

One significant difference between our work and [Jor] is that Theorem 1.1 is valid
for any d > 2, not just quaternion algebras and curves. In principle, Theorem 1.2
can be extended to higher dimensional Drinfeld—Stuhler varieties once the results
on local points in [Pap2] are extended to these higher dimensional varieties.

We record here some known cases in which Shimura curves Vg violate the Hasse
principle. Jordan showed that Vp for B of discriminant 39 is a counterexample
to the Hasse principle over Q(1/—13). Other references for counterexamples over
(finitely many) explicit quadratic fields are [Sko, RAVP]. Arai [Ara, Proposition
2.6 (1)] found an explicit infinite family of quartic number fields. The method we
found applies in the number field case as well, and we can obtain an explicit infinite
family of quadratic number fields (using the Weil bound and [Jor, Example 6.4]).

Let us give an outline of the proof of Theorem 1.1. Let D, K, y and p be as in
the theorem and let F,, be the residue field of p. Suppose X (K) # &J. First of all,
we show that any element of XP(K) yields a Z-elliptic sheaf £ over K (Theorem
3.8). This follows from a Galois descent argument due to Shimura [Shi], once we
know that any point of XP(K) gives rise to a Z-elliptic sheaf over a separable
extension of K. We deduce the separability from the fact that the automorphism
group of a Z-elliptic sheaf over a finite extension of F' is a finite group of order
prime to p (Lemma 3.3).

Next we attach to £ a character

pep : Gal(K*P/K) — F*

valued in the extension F/F, of degree d, and show that pg , has very restrictive
properties at each place of K. This eventually leads to a contradiction and we
obtain X (K) = ¢#. The strategy of using a character to show the non-existence
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of rational points is standard and originally due to Mazur [Maz]. We loosely follow
its adaptation in [Jor].

Let II be a prime element in the maximal order of the completion of D at p. Let
E[p] be the p-torsion of the abelian t-module associated with £. We define pg , as
the Galois representation of the Il-torsion in £[p](K*P) (§7.1), and call pg , the
canonical isogeny character of £.

Now our main task is local analysis of the character pg , at any place v of K,
to which a large part of the paper is devoted. Let G, be the decomposition group
and I, the inertia subgroup of Gal(K®P/K) at v.

When v { poo, we bound the order of pg ,(I,,) independently of v (Proposition
5.8). For this it is enough to bound the degree of an extension over which any
9-elliptic sheaf over K, acquires good reduction (Proposition 4.16). Since any -
elliptic sheaf over K, is known to have potentially good reduction [LRS, Hau], a
standard argument reduces it to bounding the order of the automorphism group of
a Z-elliptic sheaf over a finite field (Proposition 4.3).

When v | p, we relate pg |7, to the Carlitz character (Corollary 6.8). In Jordan’s
case [Jor], a corresponding property is shown by the use of polarization, whereas
we do not have a suitable notion of polarization on Z-elliptic sheaves. Instead, we
employ the determinant of t-motives to obtain an explicit description of a small
power of pg |1, (Proposition 6.5), which is enough for our purpose.

Somewhat delicate is the case of v | co. Contrary to the number field setting
where the absolute Galois group of R is of order two, that of K, for v | oo is of
infinite order. Nonetheless we have a good control of pg ,, at v | c0: by combining the
lemma of the critical index [BS, Lemma 3.3.1] with the descent lemma of Drinfeld
[Dri, Proposition 1.1], we show that pg ,(G,) has a rather small order (Corollary
7.6).

As a consequence of these local analyses we conclude that, for a positive integer
n which is sufficiently smaller than the order of F*, the dn-th power of the image
by pgp of a Frobenius element over y has a very special form (Proposition 8.1),
from which we derive the contradiction as desired.

The organization of the paper is as follows. In §2, we recall definitions and
basic properties concerning Z-elliptic sheaves. In §3, we study the automorphism
group of a Z-elliptic sheaf over a finite extension K of F' and apply it to produce
a Z-elliptic sheaf over K from an element of X (K) when K splits D.

In §4, we investigate the structure of the endomorphism ring of the ¢-motive
associated with a Z-elliptic sheaf £ over a finite extension k/F,. By abuse of
notation, we write End (&) for this ring. (Warning: we consider endomorphisms as
t-motive and automorphisms as Z-elliptic sheaf.) In [LRS, Hau], similar structure
theorems are proved for Z-elliptic sheaves over an algebraic closure & of k. Basically
we reduce to that case. Note, however, that this reduction is not immediate, since
we have End(€) < End(€];), while the opposite containment holds for the centers
of these rings. Then we apply it to bound the degree of an extension over which a
Z-elliptic sheaf over a local field has good reduction.

In §5, we introduce the p-adic Galois representation attached to a Z-elliptic
sheaf over a field, and study the reduced characteristic polynomial of the Frobenius
action on it using results in §4. We also give a bound on the local monodromy of
the mod p Galois representation when the base field is a finite extension of F.
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In §6, we study the determinant of the ¢-motive associated with a Z-elliptic
sheaf and relate it to the Carlitz character. In §7, we define the canonical isogeny
character of a Z-elliptic sheaf and show that the image of the decomposition group
at o0 under the character is small. Its local property at p is also deduced from
results in §6.

In §8, we put these results together to prove Theorem 1.1. In §9, we combine
it with [Pap2] to obtain Theorem 1.2, with the help of computer calculation using
PARI/GP. (The codes we used can be found at [Hat].)

Acknowledgments. K.A. and S.K. thank the organizers of the conference at Tuan
Chau, Vietnam in 2018 where a part of this work was done. S.K. also thanks
Seidai Yasuda for answering some questions and Kurgat Aker for some coding. K.A.
was supported by JSPS KAKENHI Grant Numbers JP16K17578, JP21K03187 and
Research Institute for Science and Technology of Tokyo Denki University Grant
Number Q20K-01 / Japan.

S.H. thanks Fu-Tsun Wei and Chieh-Yu Chang for pointing out a gap in the
proof of [Tae, §9.2, Lemma] on which an earlier draft of the paper relies, Gebhard
Bockle for helpful comments on this issue and the National Center for Theoretical
Sciences in Hsinchu, where part of this work was carried out, for its hospitality. S.H.
was supported by JSPS KAKENHI Grant Numbers JP20K03545, JP23K03078.

M.P. thanks the National Center for Theoretical Sciences in Hsinchu and the
Max Planck Institute for Mathematics in Bonn, where part of this work was carried
out, for their hospitality, excellent working conditions, and financial support. M.P.
was also supported in part by a Collaboration Grant for Mathematicians from the
Simons Foundation, Award No. 637364.

2. 9-ELLIPTIC SHEAVES

2.1. Definition of Z-elliptic sheaves. Let p be a rational prime and let ¢ > 1
be a power of p. We denote by X the projective line over F, and by |X| the set
of closed points of X. For w0 € X, put A = T'(X\{0}, Ox) and we identify it with
F,[t]. Put F =F,(t). For any = € |X|, we denote by F, the completion of F at x
and by O, the valuation ring of F.

For any two schemes X; and X, over IFy, we write their fiber product over [,
as X1 x Xo. Similarly, we denote by ® the tensor product over F,. For any valued
field L, we write Oy, for its valuation ring.

Let d > 2 be an integer. Let D be a central division F-algebra of dimension d?
such that D ®p F,, splits (that is, D ®p Fopn ~ My(Fy)). Let R = Ram(D) be the
subset of |X| consisting of z € |X| such that D, = D ®p F, does not split. We
assume

(2.1) inv(D,) =1/d for any x € R.

This assumption, in particular, implies that D, is a division algebra for = € R.

Let 2 be a locally free coherent Ox-algebra such that the stalk at the generic
point of X is equal to D and that for any € |X|, the completion 7, = Z2®o , O,
of the stalk at x is a maximal order Op, of D,. Put Op = H°(X\{o0}, Z), which
is a maximal A-order of D. For any monic irreducible polynomial p € A, by abuse
of notation, we also let p denote the place of F' defined by p. We write

Fy:= A/(p) and |p|:= [F, |
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For any scheme S over IFy, we denote by Frobg the g-th power Frobenius mor-
phism of S. For any Ox x s-module £, put "€ = (idx xFrobg)*&. For any Fy-algebra
R, the ¢-th power Frobenius endomorphism of R is denoted by o = a,.

We define Z-elliptic sheaves following [LRS, Definition 2.2], except that we allow
fibers at the infinity and ramified places by using [BS, Definition 4.4.1] and [Hau,
Définition 3.5] (see also [Spi, Definition 5.9]).

Definition 2.1. A Z-elliptic sheaf over an Fy-scheme S is a sequence € = (&;, ji, ti)iez
consisting of locally free Ox » s-modules &; of rank d? equipped with an O x-linear
right action of 2 and injective Ox x g-linear maps

Ji &= i1, i > Ein
compatible with Z-actions, satisfying the following conditions for any i € Z:
(1) The diagram

Ji
& ———=&n

T T
i—1 . > gz
Ji—1

is commutative.
(2) Eivda =& ®oy,. s (Ox(0)XOg) and the composite
Jiva—10:07; 1 & = Eiya
is induced by the natural map Ox — Ox(c0). Here [X] denotes the external
tensor product.

(3) For the projection prg : X x S — S, the direct image (prg)4(Coker(j;)) is
a locally free Og-module of rank d.

(4) Coker(t;) is supported by the graph of a morphism iy : S — X over F,
which is independent of i. Moreover, Coker(t;) is the direct image of a
locally free Og-module of rank d via the graph S — X x S of ig. We refer
to ig as the zero of the Z-elliptic sheaf £ and put

Z(£) =io(9).
(5) For any geometric point s € S, the Euler-Poincaré characteristic x(Eo|xxs)
lies in [0, d?).
(6) £ is special in the sense of [Hau, Définition 3.5].

Let us recall the condition (6) briefly. Take any p € R. Let Féd) be the unramified
extension of degree d of Fy,. Note that the maximal order Op, of D, contains
Ogd) = OF(d) as an Op-subalgebra. Let ng) be the residue field of Féd). Let

p
E[p®] be the p-divisible group associated with £ (see §5.2). The condition (6)
means that, for any p € R and any geometric point s = Spec(k(s)) of S satisfying
io(s) = p, the O;Sd)—action on Lie(E[p®]s) is decomposed as the sum of d embeddings
Ogd)/p(ﬂgd) = Féd) — k(s) of extensions of Fy.

For an F,-algebra R, we refer to a Z-elliptic sheaf over Spec(R) also as a Z-
elliptic sheaf over R. If co ¢ Z(£), then the zero iy defines a homomorphism of
Fg-algebras A — R, by which we consider R as an A-algebra.

When o ¢ Z(€) and R = K is a field, we refer to the kernel (or its monic
generator) of the map A — K as the characteristic of K and denote it by char 4 (K).
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If chars (K) = 0, we say K is of generic characteristic. From the definition of the
zero ig, we see that if o ¢ Z(€) and chara(K) ¢ R u {0}, then Op ®4 K is
isomorphic to My(K).

Definition 2.2. Let R be an F,-algebra equipped with a morphism Spec(R) — X
over F, and let £ be a Z-elliptic sheaf over R. We say £ is sound if the zero
ip : Spec(R) — X agrees with the given map.

For example, when K/F is a field extension, we say a Z-elliptic sheaf over K
of generic characteristic is sound if its zero agrees with the composite Spec(K) —
Spec(F) — X of natural maps. Similarly, for any x € |X| we can consider sound
Z-elliptic sheaves over an O, -algebra, in particular those over a field extension of
the residue field at z.

Definition 2.3. A morphism of Z-elliptic sheaves (&;, ji, ti)iez — (L, ji,t:)iez is a
system of homomorphisms {1); : & — &!}icz of Oxxs-modules which is compatible
with the actions of 2, j; and t;.

For any Z-elliptic sheaf £, we denote its automorphism group by Aut(£).
For the zero ig of a Z-elliptic sheaf £ over S, note that

e the zero of any Z-elliptic sheaf over S which is isomorphic to £ is ig, and
e for any morphism f: T — S of Fs-schemes, the sequence

Elr = (1 x f)* &, (1 x f)* i (Lx f)*t)iez
defines a Z-elliptic sheaf over T' whose zero is ig o f.

Definition 2.4. Let v € |X| and let L/F, be an extension of complete discrete
valuation fields. We say a sound Z-elliptic sheaf £ over L of generic characteristic
has good reduction if there exists a Z-elliptic sheaf £,, over O such that its
restriction £y, | to L is isomorphic to £ as Z-elliptic sheaves over L. Then &4,
is also sound and we have Z(€p, ) N | X]| = {v}.

2.2. Level I structure and moduli schemes. Let I be a finite closed subscheme
of Spec(A). Let S be a scheme over F,. Let € = (&, ji, ti)iez be a P-elliptic sheaf
over S satisfying I n Z(£) = . Then &;|;xs and t;|1xs are independent of i. Let
us denote them by &|7xs and |« s.

Let E; be the functor from the category of schemes over S to that of right
HO(I, 9)-modules defined by

T — Ker(H(I x T, t|1xs —idg, . 5))-

Then it is representable by a finite étale H°(I, 2)-module scheme of rank one over
S [LRS, Lemma 2.6]. Note that E; is also independent of i. We consider the right
action of 2 on itself by the right translation (that is, the multiplication from the
right).

Definition 2.5. Let I be a finite closed subscheme of Spec(A). Let S be a scheme
over F,. Let € = (&;, ji, ti)iez be a P-elliptic sheaf over S satisfying I n Z(£) = &.
A level I structure on £ is an isomorphism of O;ys-modules

1:2|1X 05 — &lixs
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compatible with the right actions of 2|; such that the following diagram is com-
mutative.

|
Elrxs sl Elixs

21X 0g

By [Dri, Proposition 2.1], to give a level T structure on £ is the same as to give
an isomorphism

Oplr — Er

of finite étale right Op-module schemes over S, where the source is the constant
group scheme with Op-action defined by the right translation.

Let &40 1 be the fppf stack of Z-elliptic sheaves with level I structure over the
category of F,-schemes and put &y = 0y 4, as in [LRS, §2]. The zero map i
defines a morphism &¢(5 ; — X, which factors as

(2.2) Ello s — X\I.

Then &g ; is a Deligne-Mumford stack which is smooth of relative dimension
d —1 over X\({oo} UR U I) [LRS, Theorem 4.1].

Let w be a place of F' satisfying w ¢ I. When I # (J, the stack &ly 1 is
representable by a projective scheme Ellg ; over X\(({oo} u R u I)\{w}). This is
proved in [LRS, Corollary 6.2] for w ¢ {00} UR, [Hau, Théoréme 6.4] for w € R and
[BS, Theorem 4.4.8 and Theorem 4.4.9] for w = oo (see also [Spi, Remark 4.12]).
We note that, if T # ¢, then for any scheme S over X\(({oo} U R U I)\{w}) each
object of &0l 1(S) has no non-trivial automorphism.

2.3. Z-elliptic sheaves and t-motives. Let R be a (commutative) local Fg-
algebra. We denote by R[7] the skew polynomial ring defined by the relation
7b = bi7 for any b € R.

Let € = (&, i, ti)iez be a P-elliptic sheaf over R. As in [LRS, (3.4)], put

P = H°((X\{0}) ® R, &),

which is independent of . The A ® R-module P is locally free of rank d?. We
consider P as an R[7]-module, by letting 7 act on P via t; : "&; — &;11. Then the
R-module H(X ® R, Coker(j;_1)) is free of rank d

Moreover, the R[7]-module P admits a natural right Op-action which commutes
with the left R[7]-action. It gives a homomorphism of F,-algebras

P OODp - EndR[‘r] (P)a

which is compatible with the natural action of the subring A < O7) on the R-
module P. We refer to P as the t-motive associated with the Z-elliptic sheaf £.

When R = L is a field, the A® L-module P is free of rank d?. The proof of [LRS,
Lemma 3.7] works for this case and shows that the map ¢ : O — Endp-j(P) is
injective.



2-ELLIPTIC SHEAVES AND THE HASSE PRINCIPLE 9

If o ¢ Z(£), then the zero A — R of £ yields the commutative diagram

(2.3) O® —* > Endpg(P)

| |

O ®4 R — Endg(Coker(7)),

where we consider 7 as an R-linear map 7 : (1® o)*P — P. If o ¢ Z(£) and
R = L is a perfect field, then the L[r]-module P is free of rank d [LRS, Lemma
3.5] (see also [And, Proposition 1.4.4]) and we have Coker(r) = P/TP.

Lemma 2.6 ([Pap3|, Lemma 2.5). Let L/F, be a field extension and let £ be a
Z-elliptic sheaf over L with oo ¢ Z(E). Suppose chars(L) ¢ R. Then the map at
the bottom of the diagram (2.3)

Oon ®A L — EndL(Coker(T)) ~ Md(L)
is an isomorphism.

Proof. When char4 (L) # 0, the assumption shows that O ®4 L is isomorphic
to My(L). When char4(L) = 0, the source equals D°? ® L. Since in both cases
the map of the lemma is a homomorphism of unitary rings from a simple algebra,
its kernel is trivial. Since both sides have the same dimension over L, it is an
isomorphism. (Il

Since X x Spec(L) is an integral scheme, we have injections
(2.4) Aut(&) — Autf[g] (P) — Auty(P),

where Autf[DT ](P) denotes the group of automorphisms of the L[7]-module P that
commute with the Op-action.

By abuse of notation, we write End(€) for the endomorphism ring of the t-motive
associated with a Z-elliptic sheaf £ over a field L:
(2.5) End(€) := End{p (P).

When L is a finite extension of Fy, the A ® L-module P is free of rank d? and
thus P is also free of finite rank as an A-module. This implies that if L/F, is a
finite extension, then the A-module End(£) is free of finite rank.

3. COARSE MODULI SCHEME

3.1. Automorphisms of Z-elliptic sheaves in generic characteristic. Let
K/F be a field extension. Let £ be a Z-elliptic sheaf over K of generic character-
istic. Then its zero ig : A — K factors through the natural inclusion A — F.

Lemma 3.1 ([Pap3|, Lemma 2.12). Let K/F be an extension and let € be a -
elliptic sheaf over K of generic characteristic. Let K be an algebraic closure of K.
Let P and P = P ®xk K be the t-motives associated with £ and El i, respectively.
Then the natural map

Aut(€) — Autg (P/7P)
is injective and factors through K*. In particular, Aut(E) is an abelian subgroup
of K* such that any element of finite order has an order prime to p.
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Proof. Since Aut(£) < Aut(€|z), we may assume K = K.

Consider the diagram (2.3). Since K = K is perfect, the K[r]-module P is free
of rank d and the ring Endg[,1(P) is identified with the matrix ring Mgy(K[7]°P).
For any a € A, by the commutativity of (2.3) we can write

pla) = als+ Y. A7, A; € My(K),
i>1
where Iy € My(K) is the identity matrix .

To show that the natural map Aut(£) — Autg (P/7P) is injective, suppose that
there exists f # id in the kernel of this map. Using (2.4), we identify f with an
element of Endg,1(P) which we write

f=Is+ ), Bit', Bje My(K), By #0
=m
with some positive integer m. Since f commutes with the Op-action, it also com-
mutes with (). This yields tB,, = t4" B,,, and B,, = 0, which is a contradiction.
Now Lemma 2.6 implies that the image of f in Autx (P/7P) lies in its center,

namely K*. Thus we obtain an injection Aut(£) — K*. Then the lemma follows
since K* has no non-trivial element of p-power order. O

For any positive integer n, let
ly(n) =lem(¢" —1]1<i<n)
be the least common multiple. We have
ptl,(n) and [,(2) =¢* — 1.

Lemma 3.2. Let m € A be an irreducible polynomial of degree one. Let H be a
cyclic subgroup of (Op/mOp)* of order prime to p. Then |H| divides l,(d).

Proof. Let x € X be the closed point that 7 defines. Since D, is a central simple
algebra over F, there exist integers e, m satisfying d = em and a central division
algebra D, of degree m? over F, satisfying D, ~ M, (Dz) By assumption Z, is a
maximal order of D, and by [Rei, Theorem 17.3 (ii)] it is identified with M.(Op )

for the maximal order O o of D,. Thus we have
Op/mOp ~ M(Op_/7Op ).

For the division algebra D, by [Rei, Theorem 14.5] we can write
m—1
Op. /105 = @ Fgnll', T™ =0, Hw=w!II
i=0

for any w € F,m, with some integer r € [1,m] which is coprime to m. Then we have
the exact sequence of groups
(3.1)

l——1I. +1IM.(Op /7Op ) — (Op/mOp)* —— GLc(Fgm) —1,

where I, € M.(Fym) is the identity matrix.
Since the first term is a group of p-power order, its intersection with H is trivial.
Thus we obtain an injection
H — GL(Fym).
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Take any element h € H. Since h is of order prime to p, its image in GL¢(Fgm)
is semisimple. Note that for any element of GL.(Fgm ), its eigenvalue is a root of a
monic polynomial of degree e with coefficients in Fym. Thus its eigenvalue lies in
an extension of F,m of degree no more than e, hence in a finite extension over I, of
degree no more than d. Therefore we obtain h'e(¥) = id. This proves the claim. O

For any ring R which is not necessarily commutative and z € R, we denote by
21 : R — R the left translation of z, so that (2z"); = z; 0 2] for any 2,2’ € R.

Lemma 3.3. Let £ be a P-elliptic sheaf over K of generic characteristic. Then
Aut(€) is a cyclic group of order dividing l,(d).

Proof. We may assume that K is algebraically closed. Let x be a closed point of
X\{oo} of degree one. Let m € A be an irreducible polynomial defining 2. Note that
£ admits a level z structure over K = K. Let us identify it with an isomorphism
of right Op-modules

t:Op/nOp — E,(K).

Since Op/mOp is a finite ring, any element with right inverse is invertible. Thus
the set of level x structures on £ is an (Op/7Op)*-torsor, where the action of
g€ (Op/mOp)* is given by ¢ — rog;. Since the group Aut(£) acts on this set from
the left, we have a homomorphism

Aut(€) — (Op/mOp)~,

which is injective since any element of £¢¢4 ,(K) has no non-trivial automorphism.
Thus Aut(€) is a finite group, and Lemma 3.1 shows that it is a cyclic group of
order prime to p. Now Lemma 3.2 concludes the proof. (]

3.2. Galois descent for Z-elliptic sheaves. Let K/F be a finite extension such
that there exists an isomorphism of K-algebras
7:0p®as K ~ My(K).
Let L/K be a finite Galois extension with the Galois group G = Gal(L/K). Let
W be a right Op ®4 L-module satisfying dimp (W) = d. Let L? be the L-vector
space of row vectors on which My(L) acts naturally from the right. Since any
right My(L)-module of dimension d over L is isomorphic to L%, there exists an
isomorphism
¥ W~ L4

which is compatible with the actions of Op®a4 L and M,4(L) under the isomorphism
N®1:O0p®as L~ MyL).

For any g € G, consider the right Op ®4 L-module W ®p, 4 L. The action is
given by

(v®ry1)(d®a)=v6®r4ga, d€0p, aclL.

We regard it as an L-vector space by the action on L on the right factor.

Let ge G and let A : W — W ®r 4 L be an isomorphism of right Op ®4 L-
modules. We consider the following diagram:

W-—2>W®p,L

(3.2) wl %

L L~ L' @ L.
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The maps A, ¥ and ¥ ® 4 1 are isomorphisms and the isomorphism ¥ is given by

U((ay,...,aq) ®a) = (ag(ar),...,ag(aq)).
We define f to be the isomorphism that makes the diagram commutative.
We claim that f is an isomorphism as My(L)-modules. Indeed, since the map
1 is compatible with the isomorphism n : Op ®4 K ~ M4(K), the right action
of Op ®a L on W ®p, 4 L is identified with the right action of My(K) ®x L on
L ®r,q L defined by

((a1,...,04)®r,g1)(B®a) = ((a1,...,a44)B)®rga, Be MyK), a€L.

This implies that the right My(L)-action on L¢ induced by the latter action via ¥
agrees with the right multiplication. Since the only endomorphism of the tautolog-
ical right M4(L)-module L? is a scalar multiple, the map f is the multiplication by
an element, say cy (A, g) € L*.

Thus, for any he G and X : W — W ®, 5, L as above, we have

(3-3) ew (N ®@L,g 1) oA, gh) = glew (X', h))ew (A, 9).
For any F,-algebra R and its automorphism g € Auty, (R) as an F,-algebra, we
write
fq =idx x Spec(g) : X x Spec(R) — X x Spec(R),
so that fy, = fn o fy for any g,h € Autp, (R). Now the following lemma can be
proved in a manner similar to that of the proof of [Shi, Theorem 9.5] (see also [Jor,
Proposition 1.3] and [Pap3, Theorem 6.13]).

Lemma 3.4. Let K/F be a finite extension satisfying Op ®a4 K ~ My(K). Let
L/K be a finite Galois extension and let £ be a sound P-elliptic sheaf over L of
generic characteristic. Suppose that we are given an isomorphism of @D-elliptic
sheaves over L
O0g:&— frE

for any g € G = Gal(L/K). Then there exist a sound P-elliptic sheaf £ over K
of generic characteristic, a finite extension L'/L and an isomorphism of P-elliptic
sheaves E|pr ~ E' |1 over L.

Proof. Take a finite Galois extension L/K containing L and all I,(d)-th roots of
unity. For any g € Gal(L/K), we have g|;, € Gal(L/K) and fly),, induces an isomor-

L
phism of Z-elliptic sheaves over L

O, 11+ Elp = (f5, O ~ fo (Elp)
¢

Thus we may assume that L contains all [,(d)-th roots of unity.
For any g, h € G, define a5, € Aut(€) by
9gh = f;@h 9} 99 O Qg h-
Let P be the t-motive associated with £ and let W be the cokernel of the map
7:(1®0)*P — P. Then the map 6, induces an isomorphism of right Op ®4 L-
modules
Ag W — W@L,g L.
Put e = |Aut(£)| and let L be an algebraic closure of L. By Lemma 3.3, the
group Aut(€) is cyclic and e | I;(d). By Lemma 3.1, the restriction to W defines
an injection

0 Aut(€) — L*
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whose image agrees with the subgroup p.(L) of e-th roots of unity in L. Thus the
automorphism «, j, induces the multiplication by dayg 5 € pe(L) on W.
Put ¢y = ew(Ag,9) € L*. Then (3.3) yields
cgh = g(cn)cglag
and cf), = g(cy)cg. Hence g — cg defines a 1-cocycle G — L* and by Hilbert 90

e 9(a)

there exists an element a € L™ satisfying c{ aa) for any g € G.

Take b € L*°P satisfying b¢ = a and put L' = L(b). Then the extension L'/K is
Galois. Put G’ = Gal(L'/K) and let 7 : G’ — G be the natural projection. We
have

g(b) € Cr(gybue(L), ge G’
This implies that for any g € G, there exists a unique element o, € Aut(£) satis-
fying cq(g) = #&ag. Put
0, = (On(gyery ) : ElLr — [EE|L.
For any g, h € G, define o , € Aut(€[r/) by
on = fabn 00,00, ;.
Put W = W ®, L'. For any g € G’, we denote by
)\; : W/ g W’ ®L/,g L/
the map induced by ;. By (3.3), ¢, = cw ()}, g) satisfies

P RSO ECIN

b

and thus 80/97h = 1. Since the map 0 is injective, we obtain a’gﬁ = id. Hence

b Qg,h

g p 0 Con T

{9;}96(;/ defines a descent datum on £|z.. Now the lemma follows by Galois descent.
|

3.3. Coarse moduli scheme and its rational points. Since &¢{y|r is a Deligne—
Mumford stack, it admits a coarse moduli space.
Let x be the closed point of X of degree one defined by an irreducible polynomial
me A. Put
G = (OD/WOD)X.
We let G act from the right on the moduli scheme Z := Ellg ,|r by

[9] : [(E,0)] = [(E,eomm)], g€,

where [(£,¢)] denotes the isomorphism class of the pair (£,:) of a Z-elliptic sheaf

£ and a level x structure ¢ on it. The forget-the-level-structure map &g ,|p —

&l g|F is representable, finite, étale and surjective.

Moreover, the morphism &0y |r — [Z/G], sending £ to the G-torsor Isom(Op/mOp, E,)

equipped with the tautological map to Z, is an equivalence of categories. Then [DR,

Ch. I, (8.2.2)] implies that the coarse moduli space of &¢l4|F is represented by the
quotient scheme X := Z/G, which we call the Drinfeld-Stuhler variety. Note that

since Z is projective over F' the quotient exists and XP is proper over F'. When

d = 2, [KM, p. 508, Theorem| implies that X is a proper smooth curve over F.

Definition 3.5. For any field extension K/F, we denote by X?(K) the set of
morphisms Spec(K) — XP over F, where we consider Spec(K) as an F-scheme
via the natural inclusion F — K and XP via (2.2).
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The authors learned the following lemma from [CES, p. 347] and [Ces, p. 2084].

Lemma 3.6. Let S be a local ring with mazimal ideal mg. Let H be a finite group
acting on the ring S from the left. Put R = S™. Note that S is an integral extension
of R and thus R is also a local ring. Let L and K be the residue fields of S and R,
respectively. Suppose that for the inertia subgroup

H; ={he€ H|h=id mod mg},

its order |H;| is invertible in R. Then the extension L/K is finite Galois. Moreover,
the action of H on S induces a surjection

H — Gal(L/K).

Proof. By [Sta, Lemma 15.110.9], the extension L/K is algebraic normal and the
natural map H — Aut(L/K) is surjective. It is enough to show that L/K is finite
separable. Let R; = S which is a local ring with maximal ideal mp, = mg N R;.
By [Sta, Lemma 58.12.4], the map R — R; is étale at mp, and thus the residue
field R;/mp, is finite separable over K. Hence we may assume H = H;.
Since |H| = |H;| is invertible in R, by [KM, Proposition A7.1.3 (4)] we have
(S®r K)7 = K.

Write B = S ®g K. Let mp be the maximal ideal of the local ring B, which is
stable under the H-action. Note that the residue field of B is L. The H-action on
B induces its action on the residue field L which fixes its subfield K.

Since |H| is invertible in B, by [Ser2, Ch. VIII, §2, Corollary 1] we have the
exact sequence of K-vector spaces

0 mi BH L? H'(H,mg) = 0.

Since B¥ = K and L¥ is nonzero, we obtain L = K. Now a classical theorem of
Artin shows that the extension L/K is finite Galois. This concludes the proof. O

Lemma 3.7. Let zg € Z be a closed point and let wg € XP be its image in XP. Let
K (z0) and K (wp) be the residue fields at zg and wy, respectively. We consider these
residue fields as F-algebras by using the structure map X — Spec(F). Then the
finite extension K (zo)/K(wg) is Galois. Moreover, the action of G on Z induces a
surjection

0 Gy — Gal(K (20)/K (wo),

where G, is the stabilizer of zo in G.

Proof. We denote by R the complete local ring @XD,wo of XP at wy and write
Z x xp Spec(R) = Spec(S). Then S is a finite R-algebra and Hensel’s lemma
implies that S is the product of complete local rings of S at the maximal ideals.
Since the formation of quotient by G commutes with any flat base change [Sta,
Lemma 15.110.7], we have R = S¢.

We denote by S, the complete local ring of S at a closed point z; € Spec(S).
Note that any g € G induces an isomorphism Sy(.,) — S, and we have R = SZC:;ZO.
The point 29 € Z = Ellg ;| corresponds to the isomorphism class of a pair (€, ),
where £ is a sound Z-elliptic sheaf over K(zp) and ¢ is a level x structure on it.
We identify ¢ with an isomorphism of right Op-modules

L OD/’/TOD - Em(K(Zo)SEP).
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Since K (zp) is of generic characteristic, Lemma 3.3 shows that Aut(£) is cyclic
of order dividing {,(d). Note that g € G, lies in its inertia subgroup G, ; if and
only if the following diagram is commutative:

Spec(K (z0)) — Z

0
l[g]
Spec(K(z9)) — Z.

This is the same as saying that there exists an element f € Aut(£) satisfying

vogr = fle, o

Since no non-trivial automorphism of £ fixes ¢, such f is unique and we obtain a
homomorphism

Gy — AUt(E),
which is injective since the set of level x structures is a G-torsor. Thus G, ; is also
cyclic of order dividing {,(d). Since the order is prime to p, applying Lemma 3.6 to
(S, H) = (S4,Gy,) yields the lemma. O

For any algebraic closure F' of F, the natural map Z — X® induces a bijection
between the set of isomorphism classes of sound Z-elliptic sheaves over F' of generic
characteristic and X P (F).

Theorem 3.8. Let K/F be a finite extension satisfying Op®@a K ~ My(K). Let F
be an algebraic closure of F' containing K. For anyw € XP(K), there exists a sound
P -elliptic sheaf over K of generic characteristic which represents the isomorphism
class corresponding to the image of w by the natural map XP(K) — XP(F).

Proof. Let wy € XP be the image of the map w : Spec(K) — XP. Since the
projection Z = Ellg ;|r — XP is finite and surjective, we can choose a closed
point zg € Z above wy. By Lemma 3.7, the residue extension K (zg)/K (wo) is finite
Galois.

Choose an embedding of F-algebras K (z9) — F and let M be a composite field
of K(z) and K over K (wy) inside F. Then the composite

Spec(M) — Spec(K (z)) — Z = Ellg »|r

corresponds to an isomorphism class [(€,;,¢)] of the pair consisting of a sound
P-elliptic sheaf £;; over M and a level x structure ¢ on it.
The extension M /K is Galois, and we have a natural embedding

Gal(M/K) ~ Gal(K (z0)/K n K(z)) € Gal(K (z0)/K (wp)).

We identify Gal(M/K) with a subgroup of Gal(K (zg)/K (wp)) by this embedding.
For any g € Gal(M/K), its action on M is induced by the action of some hy € G,
on Z via the surjection 7 of Lemma 3.7. Namely, we have the commutative diagram

Spec(M) — Spec(K (z)) —= Z
Spec(g)l Spec(9|K(z0))l l[hg]
Spec(M) — Spec(K (z)) — Z.

Hence, there exists an isomorphism of Z-elliptic sheaves over M
og : §M - f;éM
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sending the level x structure ¢ o (hy); to g*.

Now Lemma 3.4 implies that there exist a sound Z-elliptic sheaf £& over K of
generic characteristic and an isomorphism £ ,;|z ~ £'| over F. Since the image of
w by the map XP(K) — XP(F) corresponds to the isomorphism class represented
by €,/17, the theorem follows. O

4. P-ELLIPTIC SHEAVES OVER FINITE FIELDS

For any global field L over I, and any place v of L, we identify v with the
normalized additive valuation which represents v. We denote by deg(v) the degree
of the residue field of v over F,. For any finite extension L’/L and any place v’ of
L' over v, we write

deg(v'/v), e(v'/v)
for the residue degree and the ramification index of v’ over v.

4.1. Endomorphism rings. Let € A be an irreducible polynomial. Let k be a
finite extension of Fyy = A/(y) and write |k| = ¢™. Let € be a sound Z-elliptic sheaf
over k of characteristic y as in [LRS, (9.1)] and let P be the associated t-motive.
We defined End(€) by (2.5), which is an A-algebra. Put

D' := F®4End(€), F:=2Z(D),

where Z(D') denotes the center of D'.
Let k be an algebraic closure of k. To study the structure of D', we use corre-
sponding results over k obtained in [LRS, §9] and [Hau, §5]. Put

Dy := F®4End(El;), Fo:= Z(D}).
Consider the natural injection
D' = F®aEnd(€) » Dy = F®aEnd(Elg), f— flr

by which we identify D’ with an F-subalgebra of Dj.
Put
Pp=P®yk=H"((X\{o0}) ® K, Eolz)-
Note that F'®4 Pj, equipped with the induced actions of 7 and D, is equal to the
p-space associated with £|; [LRS, §9.1], which we denote by (Vo, o, to). We have

End(Vp, @0, t0) = Endij1(F ®a F) = F ®4 End}? () = D;.

By [LRS, Propositon 9.9 (ii)] and [LRS, Corollary 9.10] when y ¢ R and [Hau,
Proposition 5.2] when y € R, there exists a unique place ¢ of Fy over the place o
of F, since in the latter case [Hau, Proposition 5.2] shows Fy=F.

Moreover, by [LRS, Corollary 9.10] and [Hau, Proposition 5.2], we see that Dy,
is a central division algebra over the finite extension Fy of F' satisfying
d [FO : F]

[D} : Fy] = ([ﬁ};F]) and inve, (Dg) = a

Thus the completion D, @0 of D{ at oo is a central division algebra over Fo,o'oo~

Lemma 4.1. Let L be a field. Let D be a division L-algebra of finite dimension.
Then any L-subalgebra B of D is also a division algebra.
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Proof. Take any nonzero b € B. Since D is division, the left translation by b is
injective on B. Since B is also of finite dimension over L, it is bijective and b has
the right inverse. The existence of the left inverse follows similarly. O

Lemma 4.2. D’ is a division F-algebra of finite dimension and F is a field exten-
sion of F of finite degree.

Proof. Since Dy is a division F-algebra of finite dimension, this follows from Lemma
4.1. O

Proposition 4.3. Let £ be a sound Z-elliptic sheaf over k of characteristic v.
Then Aut(&) is a cyclic group of order dividing q* — 1.

Proof. Let m € A be an irreducible polynomial of degree one which is coprime to 9.
Note that 7w always exists since A has at least two monic irreducible polynomials
of degree one. Let = be the place of F' which 7 defines, and put G = (Op/7Op)*
as before.

The set of level x structures on £|; is a G-torsor on which Aut(€) acts naturally.
As in the proof of Lemma 3.3, it yields an injective homomorphism

Aut(€) — G.

Hence Aut(€) is a finite group.
Consider the central division algebra B = D, %, Over Fo g, We have

deg(500/00) | [Fo,z, : Fuo] = [Fo : F.
Let Ng/p, be the (usual) norm map and let w = [B : Fz] "' (000 Ng/p, ), which is
the valuation on B extending oo [Rei, Theorem 12.10]. We denote by
Op={beB|w) =0} and mp={be B|w() >0}

the valuation ring and the maximal ideal of B, respectively. By [Rei, Theorem
14.3], the residue field Fp = Op/mp satisfies

d .
(4.1) [Fp:F,] = mdeg(ooo/oo) d.

By (2.4), we have inclusions
Aut(€) < End(€)™ < End(€];)™ < B*.

Since the multiplicative group 1+mp is torsion free and we have shown that Aut(£)
is finite, we obtain an injection Aut(€) — Fj. Then the proposition follows from
(4.1). O

4.2. Determination of the center. For the map 7 on P, the element 7 = 7"
satisfies 7 € End(£) € D’. We call 7 the ¢"-th power Frobenius endomorphism
of £. Since any element of End(£) commutes with 7, the F-subalgebra F[x] of
D’ = F®4 End(£) generated by 7 is commutative. By Lemma 4.1 and Lemma
4.2, we see that F[r] is a field extension of F of finite degree satisfying

(4.2) Flr] € F.

Since the k[7]-module P is free and dimy(P/7P) = d, we see that the action of
m on P is neither zero nor invertible. This shows that 7 is transcendental over F,,.
Indeed, if 7 is algebraic over g, then we have 7™ = id for some integer m > 1 and
7 is invertible on P, which is a contradiction.
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Let k(7) be the fraction field of k[7] [LRS, Lemma 3.2] and put
E = Endy;)(V), V =k(1)®x- P.

Since F is isomorphic to a matrix algebra over the division ring k(7)°P, it is a central
simple algebra over its center F, (7). By [LRS, Corollary 3.8], we have an injection
¢ : D°? — Endy (V) = E, by which we identify D" and I with subrings of £.

Lemma 4.4. The natural map

Fq(m) ®F, [x] End,?[g] (P) = Endyy, (V).

is an isomorphism.

Proof. First note that the Fy[r]-algebra k[7] is a maximal F,[r]-order of the cen-
tral division Fy(m)-algebra k(r) [Gos, Lemma 4.12.6]. Thus we have a natural
isomorphism
Fy(m) @, [x] Ma(k[T]??) — Ma(k(T)"),
which implies that the natural map
Fy(m) ®r, [x] Endg-)(P) — Endyr) (V)
is an isomorphism.
In particular, for any g € Endy,)(V) there exists a non-zero element a € Fy[n]

satisfying ag € Endy[-)(P). Since the Op-action on V' commutes with that of k[7],
this shows that we also have an isomorphism

Fy(7) @, x) Endi2y(P) — Endg?) (V).

Since V is a torsion free A-module, if f € E commutes with any element of Op,
then it commutes with any element of D. Thus we obtain the equality Endk(?(‘j ) (V)=

End,?(T)(V) of subalgebras of E. This concludes the proof. O

Lemma 4.5. The natural map

D' = F®au End,?[g] (P) — Endj, (V)

is an isomorphism.

Proof. Since Endko[f] (P) is an A-subalgebra of the F-algebra Ende(T)(V), the map
is injective.

On the other hand, Lemma 4.4 implies that the F,(m)-algebra End,?(T)(V) is
generated by its subring Endko[’;’](P)7 which contains 7. Since F[r] is a field, it

contains F,(7) as a subring. Hence the map of the lemma is surjective. ]

Note that any element of D°P commutes with 7. Let D°P[r] be the image of the
natural map
D ®p F[r] — E,
which is a subalgebra of E.
Lemma 4.6. D°P[r] is a central simple algebra of dimension d* over F|[r].

Proof. Since D°P is a central simple algebra of dimension d? over F, so is D°? ®p
F[r] over F[r]. Since we have a surjection

D°? ®p F[r] — D°P[r]

and the left-hand side is simple, it is an isomorphism. This concludes the proof. [
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Lemma 4.7. }
F = F[r], [E:D']=[D®[r]:Fy(n)].

Proof. This follows similarly to [Lau, Proposition 2.2.2 (i)]. For any subset S of F,
we denote by Cg(S) the commutant of S in E. By Lemma 4.5, we have
D/ = CE(DOP) = CE(DOP[’/T]).

Since F[7] is a field, it contains F, (7). Thus D°P[n] is an algebra over the center

F,(m) of E, and it is simple by Lemma 4.6. Then [Rei, Theorem 7.11] yields
D°P[r] = Cp(D') 2 F.
Since any element of D°P[7]| commutes with any element of D', Lemma 4.6 implies
F < Z(D°P[r]) = F[r]. By (4.2), the first equality of the lemma follows. Moreover,
[Rei, Corollary 7.13] gives
(B Fy(m)] = [DP[r] - Fo(m)][D" : Fy ()],

which yields the second equality. O

4.3. Structure of the endomorphism ring. In this subsection, we assume 1) ¢
R.
By [LRS, (A.4) and Corollary 9.10], there exists a positive integer N satisfying
Fy = F[#N]. In particular, we have
(4.3) FcFyc Fc D c D).
Moreover, put
7o =N, I:= " € FOX ® Q.

Then (Fy, Io) is the ¢-pair associated with the ¢-space (Vo, @0, o) [LRS, (A.4)].

For the field Fjy, by [LRS, Proposition 9.9 (ii)] the unique place doq of Fy over oo
satisfies

(4.4) deg(Obo)Obo(ﬂo) == [Focé F]~

Lemma 4.8. (1) [F : F] divides d. )
(2) There exists a unique place © of F' over co. It satisfies

deg(60) () _g

Proof. As mentioned in §4.1, the FO’@O—algebra Dy &, 1S a central division alge-
. 0,600 Fo.z,] = [D}y : Fo] = (d/[Fy : F])% Since the Fy-linear
embedding F' — Djj of (4.3) induces an Fy-linear injection

Foo ®@p F — Fyy ®F Dy = (Fop ®F Fo) ®p, Df = Foz, ®p, Db = D}y 3,5

bra satisfying [D,

Lemma 4.1 shows that F,, @ F' is a field extension of Fo,obo of degree dividing
d/[Fy : F]. This implies the first assertion of (2) and

[F: F) d
[13‘07500 i Fy] [I:_'o : F) .

Since [Fy 4, : Foo] = [Fo : F], we obtain (1).
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On the other hand, the equality

and (4.4) yield

Hence we obtain

deg(&o)@(ﬂ') = % deg(o~0/0~og) deg(obo)e(ob/obo)obo(ﬂo)

N~ = n, -
=——[F: F][Fy: F]l=—=[F:F].
d d
Thus the second assertion of (2) follows. O

Corollary 4.9. For any a € F, we denote by |a|,, its normalized absolute value
defined by oo, namely

—ob(a)e(o?)/ao)’l.

lalo = q

Then we have ||y = |k|Y4.

Proof. Lemma 4.8 yields

_ n[F : F) n o, _
o(m) = *m = *36(00/00)’
which gives the equality of the corollary. ([

By [LRS, Proposition 9.9 (iii)], there exists a unique place §o # g of Fy sat-
isfying §0(Ilp) # 0. Moreover, B lies over y. It is shown in [LRS, p. 265] that we
have

L deg(H0)fo(I1o)
h [FO,f)o : FU]
with some positive integer h. In particular,
(4.5) 9o(Ilo) > 0.

Lemma 4.10. The element © € F is integral over A and NF/F(W) e A. Moreover,
the only prime divisor of Ng/p (m) isv.

Proof. By (2.5), the A-module End(€) is finitely generated and contains A[7] as a
subring. Thus 7 is integral over A and we obtain Np, p(7) € A.

Since 7 € Fp, we have
Nﬁ/F(ﬂ')N _ NF~'/F(7TN) _ NFO/F<7TN)[F:FO]~

Thus it is enough to show that the only prime divisor of Ny, , () is p. For this,

let vy be any place of I:_'o which is not over oo. If 1}0(7TN ) > 0, then we also have
vo(ﬁo) > 0. Hence, [LRS, Proposition 9.9 (iii)] implies vy = §o and vg | . Thus
every place of Fy dividing N o) p(mV) is a conjugate of vy, which divides y. This
yields the lemma. [
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We have a diagram of field extensions

as

ol

Fy(mo)

F.

Since F is an F,(7)-subalgebra of E, it is a finite extension of F ().

Let oo, be the place of Fy(m) defined by 1/m, and let 0o, be a similar place of
F,(mo). Then oo, lies over cor,. By Lemma 4.8 (2) and (4.4), the values ¢o(7) and
o (mp) are negative. Thus we have

D | 0Og, Dp | Ong-
Lemma 4.11. The place 0 is the unique place ofﬁ' which lies over oo .

Proof. Let v be a place of F over 0, and put vy = v|ﬁ0. Then vy lies over c0,, and

~ 1 1
vo(Ilo) = anvo(ﬂo) = —me(UO/@wO) <0.
By [LRS, Proposition 9.9 (iii)] and (4.5), we obtain vy = ®g. Then Lemma 4.8 (2)
yields v = c0. |

Proposition 4.12.

D" F] = ([FdF]>

Proof. By Lemma 4.11 and Lemma 4.8 (2), we have

[F : Fy(m)] = deg(d0/o0r)e(00/0r) = — deg(50) % (m) =
On the other hand, Lemma 4.6 and Lemma 4.7 yield
[2: D] = [D[x] : Fy(m)] = &°[F : Fy(m)]
Since E ~ My(k(7)°) and [k(7) : Fy(m)] = n?, we obtain
E :Fy(m)] d*n? n?

e _ _
[D -Fq( )] [E: D] dQ[F:FQ(W)] [FSIFq(Tr)]’

which gives

) m_ [D i Fy(m)] n? _(_d 2
B E = T, m) ~ F P <[ F]>'
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Proposition 4.13. There ezists an embedding of F-algebras F — D.

Proof. For any place & of F, we denote by Zo and z the places of Fy and F below
Z. By [LRS, Corollary 9.10], the Fyp-algebra D is a central division algebra of
dimension (d/[Fy : F])?. Moreover, for any place & of F satisfying & { §)oo00, we
have
(4.6) invz, (D)) = [Fo.z, : Fulinve(D).

Applying [Lau, Corollary A.3.4] to the Fy-linear embedding F — D}, of (4.3),
(4.6) yields

d
[F: F]

[F; : F,linv, (D)

d/[Fo: F = | = - .
:fFi:Fi Fj;:FranxD EZ
Fpy e Fon o, Fulinva(D)
for any place Z of F satisfying Z 1 Dp%g. When Z | §0g, we have inv, (D) € Z
by assumption and Lemma 4.8 (1) shows that the same integrality holds. Now the
proposition follows from [Lau, Corollary A.3.4]. O

4.4. Potentially good reduction of Z-elliptic sheaves.

Lemma 4.14. Let v € |X| and z € | X|\{v,0}. Let K/F, be an extension of
complete discrete valuation fields and let L/K be a finite Galois extension. Let H
be a subgroup of Gal(L/K). Let £ be a sound 2-elliptic sheaf over L of generic
characteristic with a level z structure ¢.

(1) There exist a sound P-elliptic sheaf £, over O satisfying Z(Ep, )N |X| =
{v} with a level z structure 1o, and an isomorphism & : £ ~ £ |1 sending
L to Lo, |L-

(2) Let {0y : £ — [ E}nen be a family of isomorphisms of P-elliptic sheaves
over L satisfying the cocycle condition. Then it extends to a family of
isomorphisms {On @ Eo, — [FEo, Yhem of P-elliptic sheaves over O
satisfying the cocycle condition.

Proof. We have [(£,¢)] € Elly .(L). Since £ is sound, the natural map Spec(Op) —
X\(R u {z,00}\{v}) fits into the commutative diagram

Elly . — X\(R U {0, z}\{v})

[(E’L)]T T

Spec(L) Spec(Op).

Since the map Ellg . — X\((R u {0, z})\{v}) is proper, the valuative criterion of
properness implies that there exists an element [(£p,,t0,)] € Ellg .(Or) which
agrees with [(£,¢)] over L. Hence (1) follows.

For (2), let 7, € A be the monic irreducible polynomial defining z. Note that the
isomorphism 6, : £ — f*€ sends ¢ o v(h), to f¥1 with some v(h) € (Op/7.Op)*.
Since the map Ellg ,(Or) — Elly . (L) is injective, we have

[(Eo,, o ov(R))] = [(fi€o,, fitoL)]-

Hence there exists an isomorphism

Oy : §(9L - f}féoL
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of Z-elliptic sheaves over Or, sending o, o v(h), to ffio,. Since there is no non-
trivial automorphism fixing a level z structure, we see that the restriction of ©;, to
L is identified with 6, under the isomorphism £ of (1). From the cocycle condition
satisfied by 6y, it follows that v : H — (Op/m.Op)* is a homomorphism and thus
the cocycle condition also holds for ©;. This concludes the proof. O

Lemma 4.15. Let y # oo € |X| and let x € | X|\{n, 0} be a closed point of degree
one. Let K/F) be a finite extension and let £ be a sound Z-elliptic sheaf over K of
generic characteristic. Then there exists a finite Galois extension L/K such that its
inertia subgroup is cyclic of order dividing ¢ —1 and £|p admits a level x structure.

Proof. Let m € A be the monic irreducible polynomial that defines x and put
G = (Op/mOp)*™ as before. Let KP be a separable closure of K and let G =
Gal(K®°P/K) be the Galois group. We denote by E, the finite étale right Op /7Op-
module scheme over K defined in §2.2. Let L/K be the finite Galois extension
corresponding to the kernel of the Gg-action on FE,(K®P), so that we have a
natural injection

(4.7) Gal(L/K) — Aut(E,(L)).

Then £|;, admits a level x structure ¢.

Let I be the inertia subgroup of Gal(L/K). By Lemma 4.14, there exists a sound
P-elliptic sheaf £, over O satisfying Z(£y, ) n|X| = {p} such that the canonical
isomorphism [h]r : €| — f*&€|L for any h € I extends to an isomorphism

[h] 3§0L - f;f§oL

of Z-elliptic sheaves over O, satisfying the cocycle condition.

We denote by mj; the maximal ideal of O and by kj, the residue field of O.
Since h € I, the reduction of [h] modulo my, defines an element [h]x, € Aut(Ep, |x,)
and by the cocycle condition on [h] we obtain a homomorphism

Yl = A€o, k), h [B ]k,

Since kg, is a finite field of characteristic y and £y, |x, is sound, Proposition 4.3
implies that I/Ker(v) is a cyclic group of order dividing ¢% — 1.

Let Eo, .« be the group scheme defined in a manner similar to E, for £, . Since
Eo, « is étale over O, we have an isomorphism of F,-vector spaces

(4.8) Ex(L) ~ (Eoy alkr)(KL)-

The action of h € I on the right-hand side of (4.8) is described as follows: for
the canonical isomorphism [h]y 1 : Ez|r — f7¥(Ez|r), the reduction modulo mp,
of its unique extension [hl, : Fo, . — ffFo, . defines an element [h],x, €
Aut(Eo, x|k, ). Then the action of h agrees with [h™1], 1, .

For any scheme S and any locally free Og-module £, we denote by V(L) the
covariant vector bundle associated with £, which represents the functor

T H(T, £|7)
over S. Note that = Spec(F,) and we have natural closed immersions

Eat|L - V*(5i|x><SpeC(L))7 E(’)L,m - V*(£OL,’£‘$XSP€C(OL))
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which are independent of ¢. By functoriality and the uniqueness of the extension
[h]z, we have commutative diagrams

[h]e,
EmlL - f}T(Ez|L)

| |

Ve (51 |a:><Spec(L) )VM)V* (f;x: (57 |z>< Spec(L) ))7

[h]=
EOL,ZL‘ f}TEOL,J,‘

| |

Vi (EOL,i|:c><SpCC((')L)) m \o (f;f (SOL,i|mxSpcc(OL)))'

This implies that the map [h™'],x, agrees with the automorphism of Eo, |k,
induced by [h™!]),, and thus Ker(¢) acts trivially on E,(L). Since the map (4.7)
is injective, it follows that Ker (1) is trivial and I is cyclic of order dividing ¢ — 1.
This concludes the proof. (I

Proposition 4.16. Lety # o € |X|. Let K/F, be a finite extension and let £ be
a sound PD-elliptic sheaf over K of generic characteristic.

(1) € has good reduction over a finite Galois extension L/K with cyclic inertia
subgroup of order dividing q¢% — 1.

(2) £ has good reduction over a finite totally ramified extension K'/K with
ramification inder e(K'/K) dividing q¢ — 1.

Proof. Let x € | X[\{y, 0} be a closed point of degree one. By Lemma 4.15, there
exists a finite Galois extension L/K with cyclic inertia subgroup of order dividing
g% — 1 such that £|;, admits a level x structure ;. Then Lemma 4.14 (1) yields (1).

For (2), put e = e(L/K). Let wy and w be uniformizers of L and K. Write
w$§ = wu with some v € Of. Since p t e, Hensel’s lemma shows that there exists
an unramified extension N/K such that the composite field L' = LN contains all
e-th oot of . This implies that L’ is unramified over K’ = K (w'/¢).

By Lemma 4.14 (2), the canonical descent datum on £ for the Galois extension
L'/K' extends to that on £y, |o,, for the Galois covering Spec(Or/) — Spec(Ok)
with Galois group Gal(L//K’). Hence it descends to a Z-elliptic sheaf over Ok
such that its restriction to K’ is naturally isomorphic to £|ks. This concludes the
proof of the proposition. |

5. p-ADIC PROPERTIES OF 2-ELLIPTIC SHEAVES

In this section, we fix p € | X[\{o0}.

5.1. The functor Gr. Let R be a local Fy-algebra and let ¢ = o, be the ¢-th
power Frobenius map on R. We say a pair (M, 7) is a (finite) ¢-sheaf over R if M
is a finite locally free R-module and 7 : 0*M — M is an R-linear map [Dri, §2].
By [Dri, Proposition 2.1], we can associate with it a finite locally free F,-module
scheme over R which we denote by Grr(M). Here we briefly recall the construction.
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For any R-algebra S, we denote by Fs the ¢-th power Frobenius map of S. Put
Sy = Symp(M). Let Jyy be its ideal generated by (Fs,, ® 1 — 7)(c*M). Define

GI‘R(M) = Spec(SM/JM).

Note that Symp (M) has the following universal property: for any (commutative)
R-algebra S, the natural map

Homp.atg. (Symp (M), S) — Hompg(M, S)
is a bijection. This yields a bijection
(5.1) Grr(M)(S) — {f €e Homg(M,S) | f(m)? = f(r(c*(m))) for any m € M}.

Thus Grg(M) has a natural structure of an F,-module scheme, which is compatible
with the one on Spec(Symp(M)). Its zero section is defined by the zero map
M — S. Then Grpy gives an exact functor from the category of (p-sheaves over R
to that of finite locally free F,-module schemes over R [Dri, Proposition 2.1].

A p-sheaf (M, 7) is said to be étale if 7: 0* M — M is an isomorphism. From
[Dri, Proposition 2.1], we see that the functor Grg defines an anti-equivalence of
categories from the category of étale y-sheaves over R to that of finite étale -
module schemes over R.

When M admits a right Op-action which commutes with 7, the action induces
a left Op-action on the group scheme Grg(M).

5.2. p-divisible groups of Z-elliptic sheaves. Let £ be a Z-elliptic sheaf over
a local F,-algebra R. Let P be the t-motive associated with £. It is a locally free
A ® R-module of rank d? equipped with an Op-action given by

¢ : OF — Endg[,(P).

For any positive integer n, the pair (P/@(p™)P,7) defines a p-sheaf over R. We
write

E[p"] := Grr(P/p(p")P).
Since P is a torsion free A-module, we have an exact sequence of p-sheaves over
R

0—= P/op(p') P 22 Po(pmti) P —— PJo(pm) P — 0,

which is compatible with the right Op-actions. Note that the Op-action on P/p(p™)P
induces a right Op,-action on it, and the exact sequence above is also compatible
with the ODp—actions.

By [Dri, Proposition 2.1], the functor Grg gives an exact sequence

T,

0 Elpr] — E[prt] Elp'] 0

of finite locally free Fy-module schemes over R which is compatible with the left
Op,-actions. Since the multiplication by p? factors as

(5:2) E[pr] T Elpn ] S ),
we have a natural isomorphism
Elp'] > Ker(p' : £[p"] — £[p"])

for any n > i.
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Thus the group schemes £[p™] define a p-divisible group over R of height d? in
the sense of [Tag, §1.2], which we denote by

EpP] = lim E[p"].

Since the functor Grp commutes with base change, the formation of £[p*] also
commutes with base extension of local F4-algebras.

5.3. Tate modules attached to Z-elliptic sheaves. Suppose that R = L is a
field. Let £ be a Z-elliptic sheaf over L satisfying oo ¢ Z(£) and chara(L) # p.
Then the group scheme £[p™] is étale over L by [Dri, Proposition 2.1]. Let L*P be
a separable closure of L and put G, = Gal(L**P/L).

Lemma 5.1. Let & be a D-elliptic sheaf over L satisfying oo ¢ Z(E) and char4(L) #
p. Then the A/(p™)-module E[p™](LP) is free of rank d>.

Proof. Put N = E[p"™](L*°P), which is an Oy-module of length d’n. By (5.2), we
have an isomorphism of Op-modules

N/pN — E[p](L*P).

Lifting a basis of the Fy-vector space on the right-hand side to NV, we obtain a homo-

morphism of Op-modules (A/ (p”))d2 — N. By Nakayama’s lemma and comparing
the length, we see that the map is an isomorphism. O

Put
Tp (é) — £iI_Il§[pn'](Lsep)7
n
where the inverse limit is taken with respect to the map my ,,. It is a left Op,-module
such that the natural left G -action commutes with the O p,-action.

Lemma 5.2. Let & be a P-elliptic sheaf over L satisfying oo ¢ Z(E) and char (L) #
p. Then the Op,-module T, (E) is free of rank one. In particular, for any n we
have an isomorphism of left Op-modules

Op/p"Op — E[p"](L*P).

Proof. Since the Op-module T, (€) is free of rank d?, from [Rei, Theorem 18.7] it
follows that the Op,-module T, (£) is free of rank one. O

5.4. Reduced characteristic polynomial of the Frobenius automorphism.
In this subsection, we assume p € R.

Let v # p be a monic irreducible polynomial in A satisfying y ¢ R. Let k be a
finite extension of F, and write |k| = ¢", as in §4. Let k be an algebraic closure of
k and put Gy = Gal(k/k).

Let £ be a sound Z-elliptic sheaf over k of characteristic 1.

Lemma 5.3. The natural ring homomorphism
Jp : Op ®4 End(£)*" — Endo,,, (T, (€))
1s injective.
Proof. By (2.5) and Lemma 5.2, the source and target are p-adically complete.
Hence it is enough to show the injectivity of the A-linear map

A/(p™) ®4 End(€) — End(E[p™](K))
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for any m.

Take any f € End(£) which induces the zero map on £[p™](k). Since E[p™] is
étale over k, it is the same as saying that f defines the zero map on £[p™]. By [Dri,
Proposition 2.1 (5)], we see that f = 0 on P/p™P, in particular Im(f) < p™P.
Since P is p-torsion free, by (2.5) we can write f = p™g with some g € End(£).
Thus 1Q f =p™ ®g =0in A/(p™) ®4 End(E). O

By Lemma 5.2, choosing a basis of the left Op, -module T,(£), we see that the
G-action on Ty, (€) defines a homomorphism

ip : G, — Autp, (Fy ®o, Tp(E)) =~ (DgP)™
Let Fry € G}, be the ¢"-th power Frobenius automorphism of k. Let
Péyk(X) = I\TIdD;p/FF (X - zp(Frk))

be the reduced characteristic polynomial of i, (Fry) € Dy over F}, [Rei, (9.2)], which
is of degree d.

On the other hand, we have the ¢™-th power Frobenius endomorphism =« €
End(£) € D' = F®4 End(£). By Lemma 4.10, we see that 7 is an integral
element of the center F' of D’. We denote the minimal polynomial of = € F over F
by

Mé)k<X) € A[X]

Proposition 5.4. i
Pe p(X) = Mg 1 (X)YEFFl ¢ A[X].

Proof. By Lemma 5.3, we have an injection of Fj-algebras
P (Fp QF D/)op N Dop

which induces an injection j, : Fp ®p F — DyP. Since p € R, the assumptlon (2. 1)
implies that D), is a division algebra and by Lemma 4.1 we see that F, = =F,®pF
is a field. With the left multiplication via the map j,, we con81der DyP as an
F,-vector space which is of dimension d2?/[F : F].

For any Fj-algebra R of finite dimension and any element a € R, we denote by
charp, (a; R) the characteristic polynomial over F, of the left multiplication of a on
R. By (5.1), the action of Fry on T,(£) agrees with that of m € D’. Note that we
have F' = F[r]| by Lemma 4.7. Then [Rei, Theorem 9.5] shows

Pe x(X)? = charg, (j,(1®); D) = charg, (m; £,)/1FF)
= Mg k(X)dz/[FFL
Since Pg ;(X) and Mg,k(X)d/[F:F] are monic, the proposition follows. O

Lemma 5.5. The polynomial Mg (X)) is irreducible over Fy,. Moreover, the oo-
adic Newton polygon of Pg 1,(X) has the unique slope n/d.

Proof. By Lemma 4.7, the extension F/F is generated by m. By Lemma 4.8 (2),
there is only one place @ of F over co. The first assertion follows from this. This
also implies that the roots of Mg 1(X) in an algebraic closure of Fy, are conjugate to
each other over Fi, and thus their co-adic valuations are the same. From Proposition
5.4, it follows that the co-adic Newton polygon of Pg (X)) has a unique slope. It
is equal to n/d by Corollary 4.9. O
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Lemma 5.6. The ideal generated by Pg 1 (0) in A is (ylFFol),
Proof. By Proposition 5.4, we have
Pg,k(o) _ iNF/F(W)d/[F'F]

By Lemma 4.10, we can write (Pgx(0)) = (p°) with some integer s > 0. Now
Lemma 5.5 yields

—sdeg(y) = 0(Pek(0)) = —n = —[k: Fy],
which gives s = [k : Fy]. O
Corollary 5.7. Assume k = F,. Then we have

Pei(X) = Mep(X), F@aEndE)=F

and F is an extension of F of degree d with a unique place over co. Moreover, if
we write

ng(X) =X + alefl + -+ aq,
then deg(a;) < ideg(n)/d for any i€ [1,d] and aqg = py for some peFx.

Proof. 1f k = Fy, then Lemma 5.6 implies Pg (0) = py for some p € FX. In
particular, it is irreducible in A. On the other hand, Proposition 5.4 shows

Pe 11 (0) = Mg 1 (0) Y1+,

from which it follows that d = [F : F] and Pg ,(X) = Mg (X). Then Proposition
4.12 implies D’ = F. The assertion on oo follows from Lemma 4.8 (2). Lemma 5.5
shows the assertion on deg(a;). O

5.5. Bounding the local monodromy. Let K/F be a finite extension. For any
place v of K, let K3°P be a separable closure of K,. We denote the inertia subgroup
of Gg, = Gal(K®/K,) by I,. We fix an embedding K*® — K:°° extending
K- K,.

Proposition 5.8. Let K/F be a finite extension and let £ be a sound PD-elliptic
sheaf over K of generic characteristic. Then, for any place v of K satisfying v t poo,
the image of the natural map

Pp.o : Ly = Aut(E[p](K*P))
is a cyclic group of order dividing q¢% — 1.

Proof. Let q ¢ {p,0} be the place of F below v. By Proposition 4.16 (1), there
exist a finite Galois extension L/K, with cyclic inertia subgroup of order dividing
q* — 1 and a Z-elliptic sheaf £, over Of satisfying Z(£p,) N |X| = {q} with an
isomorphism £, |p ~ £|r. Since p # q, the finite group scheme (£y, )[p] is étale
over Or, and the Gr-module E[p](KP) is unramified. Thus the map 1, , factors
through the inertia subgroup of Gal(L/K,), which is cyclic of order dividing ¢% — 1.
Hence the proposition follows. [
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6. DETERMINANT OF Z-ELLIPTIC SHEAVES

In this section, we fix p € R and put |p| = ¢".
Let L be a field over F, and let £ be a Z-elliptic sheaf over L satisfying oo ¢ Z(&)
and char (L) # p. Consider the Fy[Gr]-module E[p](L**P). As an Fy-vector space,

2
it is of dimension d?. Thus the Gz-action on /\]‘;p E[p](L5°P) defines a character
(5§7p : GL - IF; .
The aim of this section is to compute dg¢ , when L contains Fy,.

6.1. Determinant of ¢-sheaves.

Definition 6.1. Let L be a field containing F, and let i be a positive integer. An
(Fy, )-sheaf of rank h over L is a @-sheaf (M, 7) over L equipped with an L-linear
Fy-action on M compatible with 7 such that the F, ® L-module M is free of rank
h.

The compatibility condition means that for any A € F,, the action [A] of A on
M makes the following diagram commutative:

o*M —> M
G*P\]l l[/\]
o*M —— M.
An (Fy, ¢)-sheaf (M, 7) is said to be étale if 7 is an isomorphism.

Let (M, ) be an étale (Fy, ¢)-sheaf of rank h over L. Then we have the F,-vector
space
V(M) := Grp(M)(L*P)

of dimension %, on which G, acts Fy-linearly.
On the other hand, the isomorphism

(6.1) Fo@L— [[ L. a®b— (a”b);
E€L/TT

induces a decomposition as an L-vector space

(6.2) M= @ M, M ={meM|[X(m)=2X"m forany A € F,}.
i€Z/r7,

Since the Fy, ® L-module M is free, the L-vector space M; is of dimension h and 7
induces an L-linear isomorphism

T30 My — M.
By taking the exterior product /\]i over L, we define a pair
h h h
/\M::( @ /\Mi7 @ /\7‘1)
W€Z/r7 L W€Z/r7 L

It is an étale (I, )-sheaf of rank one over L, where the Fy-action is defined by

_ h
[\(m) =A"m, me /\Ml
L
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Thus we have the F,-vector space

h h
V(/\ M) = Grp(/\ M)(L>*P)
of dimension one, on which G, acts Fy-linearly.

Lemma 6.2. For any étale (Fy, p)-sheaf (M, T) of rank h over L, we have a natural
isomorphism of Fy[Gr]-modules

h

h
A V) =~ V(A M).

F\J
Proof. Let e; 1,...,e; be a basis of the L-vector space M;. Write
’T(l ® Cilyees 1® eiyh) = (€i+171, e ,€i+1’h)ci, Cz € GLh(L)

For any matrix B = (b;;) € My,(L), write B@) = (b7,). Put

C=Cry--C ) e GLy(L).
Then we have an isomorphism of Fy[G]-modules

V(M) — {(z); € (L>P)" ] (22); = (2);C,
(f ‘M — Lsep) e (f(eo,j))p

where the right-hand side is an Fy-vector space consisting of row vectors with the
Fy-action given by [A](2;); = (Azj);.

Let z1 = (21,4)j,.-.,2n = (zn,j); be a basis of the Fy-vector space V(M). Put
Z = (z1j)1; € Mp(L>P). It satisfies

79 = zC, det(2)7 = det(Z)det(C).

We claim
Z € GL,(L*P).

The argument below is similar to the one in the proof of [Fon, Proposition A1.2.6].
Indeed, it is enough to show that z1,..., z;, are linearly independent over L*°P. Sup-
pose the contrary. Consider the set of non-zero row vectors (a;); € L% satisfying
(a;);Z = 0, and take (a;); with minimal number of non-zero entries. Let aj, be a
non-zero entry. Multiplying its inverse, we may assume a;j, = 1. Then we have

0=(a? );29) = (a ), 2C,

which yields (a?r) ;jZ =0 and (a; — agr)jZ = 0. This contradicts the minimality
unless a; = a;?' for any j. In this case, we have a; € F,,, which is a contradiction
since 21, ..., 2 are linearly independent over IF,.

Next we consider the ¢-sheaf /\h M. Note that §; =e; 1 A--- A e, is a basis of

the L-vector space /\Z M;. Since

(/h\ Ti) (1®4;) = det(Ci)dit1,
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we have an isomorphism of Fy,[Gf,]-modules

(63) VM)~ fwe 1 | w — det(Clu,

h
(f 2 \ M — L*) = f(%),

where the Fy-action on the source is given by [A](w) = Aw.
Now we have an [Fy-linear map

h h
(6.4) AV > V(N\M), 2z a0 Az det(2).
Fy

Since det(Z) is non-zero and the source and target are Fy-vector spaces of dimension
one, it is an isomorphism.
For any g € G, write

g(zl?""zh) = (Zl,---,Zh)p(g), p(g)e GLhGFP)'

Then we have g(Z) = p(g)Z and g(det(Z)) = det(p(g)) det(Z), which shows that
the isomorphism (6.4) is Gr-equivariant. O

Lemma 6.3. Let (M,7) be an étale (Fy,)-sheaf of rank h over L. Then the
(Fyp, @)-sheaf /\h M is isomorphic to

h h
(N M N\ 7).

F,®L F,®L

Proof. Let ¢; € Fy, ® L be the idempotent corresponding to the i-th factor of (6.1).
Since M; = ;M and g;;; = 0 for any 7 # 4/, the lemma follows by using the natural
isomorphism

]F/};LM N @ ® /]1\ MZ

Jo+rtjr—1=h \i€Z/rZF,QL
O

6.2. Determinant of t-motives. Let L/F be a field extension containing F, and
let £ be a sound Z-elliptic sheaf over L of generic characteristic. Let P be the
t-motive associated with £. Recall that P is free of rank d? over the principal ideal
domain A®QL = L[t], and for the map 7 : (1®0)* P — P, we have dim, (Coker(7)) =

d. Put
d2
Q= /AP
A®L
Then @ is a free A ® L-module of rank one. The map 7 induces an A ® L-linear
injection
d2
A7 (en'a—0.
A®L
which we also denote by 7.
Let 0 be the image of ¢ by the natural inclusion A — L. Since £ is sound, we
have 6 = iy(t) for the zero ig: A — L of £.
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Lemma 6.4. Let e be a basis of the A® L-module Q. Then we have
(1®o)*e) = c(f —t)%, ceL*.

Proof. Consider the A ® L-linear injection 7 : (1 ® 0)* P — P. From the diagram
(2.3), we see that the element 6 — ¢ annihilates Coker(7). Thus any elementary
divisor of the L[t]-linear map 7 divides 6 — ¢, that is, it lies in either of L* (6 —t) or
L*. Since Coker(7) is an L-vector space of dimension d, the former appears exactly
d times. Taking the determinant yields the lemma. O

We denote by ¢ the image of ¢ by the natural map A — F,.

Proposition 6.5. The F,[G]-module ;i E[p](L5°P) is identified with the set of
roots in L*°P of the equation

AN = O -7 1) .. (6‘17'71 — )%z

for some ¢ € L*, where the action of X € Fy, is given by [A](z) = Az. In particular,
for any such root z and any g € G, we have

9(2) = 0g p(g)2-

Proof. Put P = F,®4 P. Since L is of generic characteristic, the pair (P, ) defines
an étale (Fy, p)-module of rank d? over L satisfying E[p] = Grp(P). erte

dZ

Q: /\ szp@AQ~

Fp®L

Then the map 7 induces on @ a structure of an étale (Fy, p)-module of rank one
over L. Then Lemma 6.2 and Lemma 6.3 yield an isomorphism of F,,[G,]-modules

/\g (L°°P) ~ Grp(Q)(L*P).

Le’E e be a basis of the free A® L-module @ of rank one and let € be the image of
ein Q. Let ¢; € Fy, ® L be the i-th idempotent as before. Then ¢¢€,¢1€,....6,_1€
form a basis of the L-vector space () which satisfies

T(1®0)*(eie)) = ciaT((1®@0)*(8)).

Then £;Q = Q;, where Q; is the direct summand as in (6.2).
Now Lemma 6.4 implies

T ((1®c")*(e0€)) (H cq €€

for some c € L*. Since the o-sheaf Q) is étale, as (6.3) the F, [G 1 ]-module Gr,(Q)(LP)
is identified with the set of roots of the equation

= (ﬁ e (qu — t_)d> z
i=0

with prescribed Fy-action. This concludes the proof. [
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6.3. Determinant at p and the Carlitz character. Let K/F be a finite exten-
sion. In this subsection, let w be a place of K which lies over p. We fix a separable
closure Ki® of K,, and an embedding K*? — K extending K — K,. We
denote by I,, the inertia subgroup of Gx = Gal(K®P/K) at w.

Since Fy, is perfect, we have the canonical section F, — O, of the reduction map
O, — F,. We consider [, as a subfield of F}, and K,, by this map.

Let v,, be the p-adic additive valuation on K3 satisfying v, (K)) = Z. Put
e = vy(p). Let my=er be the maximal ideal of Ogser and let k be the residue field
of Ogser. We consider k as an Fy-algebra via the reduction map of Op — Ogser.
For any positive rational number [, put

miliep ={ze KJP | vy(2) = 1}, m?{%?p ={ze KJP | vw(z) > 1}.

Let
_ =1 >1
O = Miguer /Mpzer.

It is a k-vector space of dimension one on which I,, acts k-linearly. Thus it defines
a character

91 : Iw — ];ZX .
For any positive rational numbers [; and l3, the multiplication induces a natural
isomorphism of k[I,,]-modules 0;, ®; O;, ~ Oy, +1,. Thus we have
(65) 911012 = 0114—12'

Let C' = Spec(Ok|[Z]) be the Carlitz module. It is a Drinfeld A-module of rank
one defined by [t]c(Z) = tZ + Z%. Then the p-torsion subgroup C[p](K®P) is an
Fy-vector space of dimension one. The G k-action on it defines a character

xc,p : Gk — F,
which we refer to as the mod p Carlitz character.

Lemma 6.6. .

g —1

XcCyplr, =0; where j=

Proof. Since ©; is generated by the image of pt/(@ =1 the character 6; factors
through F < k.
The action of p on the Carlitz module C' is given by the monic polynomial

,
[Plc(Z2) =pZ+ ) 027, bicA
i=1

satisfying b1,...,b,—1 € pO, [Hay, Proposition 2.4]. Thus the abelian group
C[p](K35P) is identified with the set of z € Opser satisfying [p]c(z) = 0. Since
any of its non-zero elements has valuation j, we have an injection of F4-vector
spaces

v: Cp(K5P) — ©;, z+— zmod m;(z;uep
which is compatible with the I,,-actions.

We claim that ¢ is compatible with the natural Fy-actions. The Fy-action on
Clp](K3$P) is induced by that of A = Fy[t]. Since F, = A/(p) is generated over Fy
by the image of ¢, it suffices to show that ¢ is compatible with the natural actions
of t. This follows from the equality

>J
Ko

[t]lc(z) =tz 4+ 27 =tz mod m
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for any z € Cp](K5P). Thus we obtain xc plr, = 6;. O

Let 6 be the image of ¢ by the natural inclusion A — O, as before.
Lemma 6.7. ForteF, € K,,, we have
vp(@—1t) =€ and v,(0 —t_qi) =0
for any integer i € [1,r —1].
Proof. Let k,, be the residue field of K,,. Consider the commutative diagram

A— 0, — Ok,

NS

]Fp — kw,
where the upper horizontal arrows are natural inclusions. Then the image of t € A
by the upper horizontal composite is # and that by the oblique arrow is ¢. This
implies vy, (60 — ¢) > 0.

For any integer i € [1,r — 1], we have ¢ # #" in k,, since the extension F,/Fq is
generated by 7. Hence we obtain v, (f — #4') = 0 and v, (6 — #7') = 0. This yields

— r—1

e = v, (p) = vu (0= DO — 1) (0 1)) = v, (0 — 1)

as claimed. O

Corollary 6.8. Let w be a place of K which lies over p and let I, be the iner-
tia subgroup of Gx at w. Let £ be a sound Z-elliptic sheaf over K,, of generic
characteristic. Then we have

I )d(qfl).

(Oepl1.,)7 " = (xoop

Proof. Since F, < K,,, we may apply Proposition 6.5 to L = K,,. Then, for any
g € Gk, and any root z € K;°P of the equation

= (O -0 1) (07 D), e K

we have g(z) = dg,,(g)? 2. Replacing z by z/c, we see that the same relation holds
for any root z € K;P of the equation

= (0D 1) (07 D).
Now Lemma 6.7 and (6.5) show

(dg.p

with j = e/(¢" — 1). Hence Lemma 6.6 yields the corollary. O

)qfl 94(’1—1)

J

"

7. CANONICAL ISOGENY CHARACTER

As in the previous section, we fix p € R and put |p| = ¢".
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7.1. Definition of the canonical isogeny character. Let L/F, be a field exten-
sion and let £ be a P-elliptic sheaf over L satisfying oo ¢ Z(€) and chars (L) # p.
We denote by F the extension of F, of degree d. By the assumption (2.1), the
completion D, is a division algebra and it contains an unramified extension of F
of degree d. In particular, we have an injective ring homomorphism F — Op /pOp,
which we fix once and for all.
By the assumption that inv(D,) = 1/d and [Rei, Theorem 14.5], we can write
d—1
(7.1) Op/pOp = PFI, 1¢=0, Mw=w1I
i=0
for any w € F, with some prime element Il € Op, .
By Lemma 5.2, the left Op/pOp-module E[p](LP) is identified with Op/pOp.
Consider its II-torsion submodule E[p](L**P)[II]. By (7.1), it is an F-vector space
of dimension one on which G -acts F-linearly. Hence it defines a character

pep: G — F*,

which we call the canonical isogeny character.

7.2. Relationship with the determinant. Let L/F, be a field extension and
let £ be a P-elliptic sheaf over L satisfying o0 ¢ Z(£) and chara(L) # p. Let
pep + G — F* be its canonical isogeny character. Consider the F[G]-module
E[p](L5°P), which is an F-vector space of dimension d. This gives a representation

e+ G — Aute(E[p](L*F)).
Then the G-action on /\% E[p](L5°P) defines a character

d]P(?t(’/Té,p) G — F*.

Lemma 7.1. For any g € G, the characteristic polynomial of mg x(g) (over IF)
equals

d—1 _
[T (X = peslo)") e FIX].
i=0

In particular, the polynomial lies in Fy[X] and

dgt(ﬂé,p) =Pgp = N]F/]F,, O Pg,p-

Proof. Put V. = E[p](L**?) and R = Op/pOp. Note that the filtration by R-
submodules

VolVoIll’Vo..- 2"V 20

is stable under the G -action. Moreover, each graded piece is an F-vector space of
dimension one, and we have an isomorphism of F,-vector spaces

¢ VIV - VIO, =T

which is compatible with the G-actions. v
Since the action of A € F satisfies ¢;(Az) = API"""¢;(2), the Gp-action on

. . i+1—d
IV /II*F1V is given by the character pg‘; . This concludes the proof. ]
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Lemma 7.2.
=
pl=1  __
E.p = 0g.p,

where g, was defined at the begz'nﬁing of §6.

Proof. By Lemma 7.1, we see that the image of the character detp(mg p) lies in .
Thus [Sta, Lemma 9.20.4] gives

(Sé’p = N]F/]Fp o dgt(ﬂép) = d]g)t(ﬁép)d.
Then Lemma 7.1 concludes the proof. (I

Lemma 7.3. Suppose that L = k is a finite field. Let Fry € Gy, be the |k|-th power
Frobenius automorphism, as in §5.4. Then we have

d—1 v

Pé}k(X) = H (X — pé)p(FI‘k)lpV) mod p.

i=0
Proof. By [Rei, Theorem 9.5], we see that Pg 1 (X)? mod p is equal to the character-
istic polynomial of 7¢ , (Fry) when we regard E[p](L*P) as an Fy-vector space. Since
F is Galois over F,, the characteristic polynomial is the product of all conjugates
over I, of the characteristic polynomial of mg ,(Fry) when we regard E[p](L*°P) as
an F-vector space. By Lemma 7.1, we obtain

d—1 4
Pe(X)" modp = [T (X — pep (Fro)*)
i=0
from which the lemma follows. O

7.3. Control at infinity.

Lemma 7.4. Let k/F, be a finite extension and let m > 0 be an integer. Let F
be a locally free Oxgr-module of rank m, equipped with an isomorphism of Oxgk-
modules T: (1® 0)*F — F. Let f : F — F be an isomorphism of Oxgr-modules
which is compatible with . Put P = H°((X\{0}) ® k, F), which is a free A® k-
module of rank m. Then the characteristic polynomial char(f; P) of f acting on
the A® k-module P has coefficients in F,.

Proof. Let k be an algebraic closure of k. Then the restriction to k defines an
isomorphism f|; : F|z — F|; which is compatible with 7|;. By [Dri, Proposition
1.1], there exist a locally free Ox-module Fy of rank m and an isomorphism of
Ox-modules fy : Fo — Fo such that the pair (Fy|j, folz) is isomorphic to the pair
(Flg, flg)- Since the characteristic polynomial of f|; acting on the A ® k-module
P|; agrees with char(f; P), replacing (F, f) by (Fo, fo) we may assume k = Fy.
Since the A-module P is free of rank m, with some basis the map f|p is rep-
resented by a matrix B € GL,,(A). On the other hand, since f is also an isomor-
phism at oo, it follows that the restriction of f|p to Fy, defines an automorphism
on an Oy-lattice of Foy ®4 P. Hence there exists a matrix C € GL,,(Fy) satis-
fying C~'BC € GL,;,(Oy). This implies that any coefficient of char(f; P) lies in
An Oy =Ty, which concludes the proof. O

Proposition 7.5. Let L/Fy, be a finite extension and let £ be a sound Z-elliptic
sheaf over L of generic characteristic. Suppose that € has good reduction. Then we
have

Pé,p(GL)lQ(d) =L
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Proof. Let ki, be the residue field of L. By assumption, there exists a sound Z-
elliptic sheaf £,, = (€0, .i)icz over Of satisfying Z(Ep, ) N |X| = {00} with an
isomorphism £ ~ £, [r. Put E = Eo, |ky, which is a Z-elliptic sheaf over kp,
satisfying Z(€) n | X| = {o0}.

First we claim that the Gp-module £[p](L*P) is unramified. Indeed, let P be
the t-motive associated with £ and put

Py = H(X\{0}) ®Or,€0,.4), Pi=7P:iQo, kr.
Since Coker(j;) is supported on {00} x Spec(Op,), the map j; induces an isomorphism
Ji : Pi = Piga1.
Similarly, since Z(£p, ) N |X| = {0}, the map ¢; induces an isomorphism
ti: (1®0)*(A/(p) ®a Pi) = A/(p) ®a Pit1.

Hence the map j; ' ot; defines a structure of an étale ¢-sheaf over Or, on A/(p)®@aP;
which agrees over L with that on A/(p) ®4 P|r. Then it follows that the group
scheme
Elplle = Grr(A/(p) ®a Pl|1) ~ Grr(A/(p) ®a PilL)

is the generic fiber of the finite étale group scheme Grp, (A/(p) ®4 P;) over Of,.
This shows the claim.

Let Fry, be the |kz|-th power Frobenius element of Gy, = Gal(F,/kr) and let
Fr; € G be its lift. To prove the proposition, it is enough to show

pe.p(Frp)ls@ =1,

As explained in [BS, p. 170], the lemma of the critical index [BS, Lemma 3.3.1]
is valid for the Z-elliptic sheaf £ over k. In particular, for some index i the map
t; of £ = (&;)iez factors as

(1®a0)*(&) % & 5 i1,

where t; is an isomorphism.
Write |kz| = ¢°. Since we have natural isomorphisms

E[PI(L*P) ~ Gro, (A/(p) ®4 Pi)(Orser) ~ Gy, (A/(p) @4 Pi) (Fy),
the action of Fry, on E[p](LP) is identified with the action of Fry, on Gry, (A/(p)®a

P;)(F,), and by (5.1) the latter agrees with the map induced by the s-th iteration
f of the map #;, namely
f = 2?1 o (1 ®U)*£i ©---0 (1 ®0’3_1)*£i : (1 @0‘8)*8_1‘ = S_i - gi-

Since f is an isomorphism of Oxgg,-modules compatible with t;, Lemma 7.4
shows that the characteristic polynomial char(f;P;) is a polynomial over F, of
degree d2. B

Put Fj = kp((t)) and Vo = F§ Qagk, Pi. It is an Fj-vector space of dimension
d? which admits a right action of Dy := F} ®p D. Since Dy is a central simple F{-
algebra of rank d?, the right Dy-module Vj is free of rank one. Since f |5, commutes
with the right action of Op, the map which f induces on Vj can be identified with
the left translation §; for some § € Dy.

Let R(X) € Fj[X] be the reduced characteristic polynomial of §. By [Rei,
Theorem 9.5], we have

(7.2) R(X)? = char(f; P;) € F [ X],
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which yields R(X) € kr[[t]][X] since the ring kr[[t]][X] is normal. Put R(X) :=
R(X) mod t € kz[X]. Reducing (7.2) modulo t shows R(X)? = R(X)% in kp [[¢]][X
and thus R(X) = R(X). Then (7.2) implies that each irreducible factor of R(X) €
kr[X] has the same multiplicity as any of its conjugates over F,. Hence we obtain
R(X) e F,[X].

Therefore, the action of Fry on £[p](L*°P) satisfies the equation char(f;P;) =
R(X)? = 0. In particular, each eigenvalue of it lies in a finite extension of F, of
degree no more than deg(R(X)) = d, which implies FrlL"(d)pm = id on E[p](L*°P) for
some integer m and also on its G'r-subrepresentation pg ,. Since the target of the
latter is F*, we obtain pg ,(Frp)4(® = 1. O
Corollary 7.6. Let K/F be a finite extension and let £ be a sound PD-elliptic sheaf
over K of generic characteristic. Let v be a place of K over co. Then we have

2
(Peplc, )l = 1.

Proof. Let x = (m) be a prime ideal of A of degree one and put G = (Op/7Op)* as
before. Let L/K be the finite Galois extension cut out by the Gx-module E, (K®P),
so that £|;, admits a level x structure ¢. Note that we have E,(K*P) = E, (L) and
the action of Gal(L/K) gives an injective homomorphism

b Gal(L/K) » G, gou=109(gh,

where 1 (g); denotes the left translation of ¢(g) as before.

Let w be any place of L over v with residue field k,,. We consider the ring O,
naturally as an Og-algebra. Then Lemma 4.14 (1) implies that £|;, has good
reduction. By Proposition 7.5, we have

(73) (0.8l )@ = 1.
Note that L,,/K, is a finite Galois extension satisfying
Gal(L,/K,) < Gal(L/K) < G.
Take any element g € Gk, and let § be its image in Gal(L,,/K,). Let H be the
finite cyclic subgroup of Gal(L,,/K,) generated by g. Write H = H' x H, with a

subgroup H' of order prime to p and a p-group H, of order p"*. By Lemma 3.2,
the order of H' divides [,(d). Then we have g?"%(¥) e G and (7.3) yields

pmlq(d))lq(d) lq(d)2 = 1.

X

pe.pg = pep(9)
This concludes the proof of the corollary. O

7.4. Local class field theory. Let K/F be a finite extension. We denote by K?P
the maximal abelian extension of K in K*P. Let G3® = Gal(K**/K). For any
place v of K, let
wy s K — Gab

be the local Artin map.

Let £ be a sound Z-elliptic sheaf over K of generic characteristic. For the
fixed element p € R, the canonical isogeny character pg , factors though G3b. Put
0, = Ok, and

Fep(v) = pepowy: K = F*, rep(v) = fé,p(””aj 1OF - F™.

Proposition 7.7. (1) If v tpoo, then Té)p<v>qd_1 1
(2) If v | o0, then Fg p(v)la@” =1,
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Proof. Since pg p is a Gg-subrepresentation of E[p](K*P), (1) follows from Propo-
sition 5.8. Corollary 7.6 yields (2). O

Now we consider a place v of K over p. Let k, be the residue field of K, with
fv = [kv : Fy]. Let 7, be a uniformizer of K, and let e, be the ramification index
of v over p. Put

ty = ged(fy, d).
We denote by Fét”) the subextension of F/F, of degree t,,. Similarly, let k], be the
subextension of k,/F, of degree t, and we fix an F,-linear isomorphism j : k], —

]Fl(f'”). For any u € O., we denote by « its image in k,,.
Lemma 7.8. There exists a unique integer ¢, € [0, |p|'> — 2] satisfying
e p(v)(w) = §(Np,ur (@)~

for any ue OF.

Proof. Since the target F* of the character pg , is a cyclic group of order |p|¢ — 1,
the map rg p(v) is trivial on 1 + 7,0, and thus it factors through the reduction
map O — k. Hence its image lies in the unique cyclic subgroup of F* of order

ged(lplfr — 1, [p|* — 1) = |p[** — 1,

which is equal to (IF‘(;”))X.

Since the norm map Ny, : k) — (k;)* is surjective, for any ug € O
such that 4o generates the cyclic group k.S, we can uniquely write r¢ ,(v)(uo) =
J(Nk, /i (0))~¢ with some integer c, as in the lemma. This ¢, has the desired
property. ([l

X

X, we have

Lemma 7.9. For any ue O

—ey

XC,p © WU(UJ) = Nkv/le (ﬂ)

Proof. We recorded the polynomial [p]c(Z) giving the action of p on the Carlitz
module C' in the proof of Lemma 6.6. The information about the valuations of the
coefficients tells us that the formal Op-module C[p®] is a Lubin-Tate group. By
Lubin-Tate theory [Serl, §3.4, Theorem 3], for the local Artin map wy : O) — G"}bp
of Fy, we see that the composite xc,p o wy sends a € O to a~! mod p. Since the
inclusion G3? — G%bp corresponds to the norm map via local Artin maps [Serl,
§2.4], the lemma follows from

Ng,/p,(u) mod p = Ny p, (@), ue€O,.

O
Lemma 7.10.
d2
7(q - 1)CU = d(q — 1)61} mod |p| —1.
Proof. By Lemma 7.2 and Corollary 6.8, we have
Nz, © (peplr,) @Y = (xoplr,) 0.

Take any v € O). On one hand, Lemma 7.8 gives

d(g— . _\—d(g—1)e
Negs, © g 0 w(u) = Negm, © j o Ny, g (@) =400

e
= N, sm, ()~ o 070w,
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On the other hand, Lemma 7.9 yields
xely ) own(u) = Ny, (@) 100,

Since Ny, /r, is surjective and the group F is cyclic of order |p| — 1, the lemma
follows. O

Proposition 7.11. Let v be a place of K satisfyingv | p. Let q € A be an irreducible
polynomial which is coprime to p. Then we have

rep()(@ )0 = g% mod p.
Proof. Lemma 7.8 gives
—_ 2 p— . —_ 2 —
rep()(@ )T = (N e ()4 @D
Since q € Fp,, by Lemma 7.10 we obtain

(N i (q))cf(qfl)cv - q%dz(q_l)cv — gla—Desfo

O
Put
2
(7.4) n = 1,(d)? (WM) :
Since d > 2, we see that g2 — 1 divides I,(d) and n satisfies
(7.5) d*(g—1)|n, Ilg(d)?|n.

Corollary 7.12. Let v be a place of K satisfying v | p. Let q € A be an irreducible
polynomial which is coprime to p. Then we have

rep(0)(@ )" = qdF T mod p.

Proof. By Proposition 7.11 and (7.5), we have

rep()(q” )" = qd2<g’”d(q_1)e“f” = q@ Kol mod p.

Remark 7.13. When d = 2 and ¢ is odd, we have
n= lq(2)2 = (¢* = 1%

8. GLOBAL POINTS ON DRINFELD—STUHLER VARIETIES

8.1. Key global property of the canonical isogeny character. Let K/F be
an extension of degree d satisfying the following conditions.

e DRpr K ~ My(K).

e There exists y € | X|\(R u {©0}) which totally ramifies in K.

Let 9 be the unique place of K over y. For any integer N > 1, we denote by
]F.(,N) the finite extension of I of degree IN.

Let p € R so that inv(D,) = 1/d by (2.1). Since D ®p K ~ My(K), for any
place v of K over p we have that D, ®p, K, splits and d | [K, : F}]. Hence there
exists a unique place B of K over p.

Let £ be a sound Z-elliptic sheaf over K of generic characteristic. Let pg , :
Gg — F* be the canonical isogeny character and let n be the integer from (7.4).
Proposition 7.7 (1) and (7.5) imply that p2 , is unramified at ). We choose a
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Frobenius element Frg) € Gk at ). Then pgm(Fr%) is independent of the choice of
FI‘@.
Proposition 8.1. Under the assumptions above, we have
d
pg’p(FrQJ) = 9" mod p.

Proof. By class field theory, we consider PE p as a character of the idele class group
Ay /K* of K. Let wy be a uniformizer of the completion Ky of K at 2) so that
@y = uy with some u € O, . We write ((a)y, (b)?) for the idele such that the
component at ) is a and the other components are b. Then we have

pE»(Fry) = p2 o (@), (1)) = pi , (un)y, (1)?)
= pEp((wy, (1™")?)
= rep (D))" [ ] Fep@)(7 )™

EZD)]
By Proposition 7.7 (1) and (7.5), we have

rep(D) ()" =Tep(0)(07)" =1 (vfpyo).
On the other hand, Proposition 7.7 (2) and (7.5) give
fep())" =1 (v]o0).
Thus we obtain
P p(Fryy) = e p(B) (071" = re,p(B)(07H)"™
Since [Ky : Fy| = d, Corollary 7.12 yields

pg »(Frgy) =y mod p,

which concludes the proof. ([

8.2. Criterion for the non-existence of global points. Let F' be an algebraic
closure of F.
Definition 8.2. Let W(n) be the set of elements 7 € F' such that

(1) = is integral over A.

(2) [F(m): F]=d.

(3) There is only one place @ of F(r) dividing oo.
(4) NF(Tr)/F(ﬂ-) € F;\)

Note that if 7 € W(y), then the reasoning as in the proof of Lemma 5.5 shows
that the minimal polynomial of 7 over F

My(X)=X"+a, X 4t ay

has the following properties:

e a; € A and deg(a;) < ideg(y)/d for any integer i € [1,d].
e ag = py for some p € F.

In particular, W(y) is a finite set.
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Remark 8.3. When d = 2 and y = ¢, the set WW(t) agrees with the set of roots in
F of quadratic polynomials X2 + a; X + ay with the two properties above. Indeed,

since we have

az

t727

the polynomial is Eisenstein over Oy. Thus it is irreducible over F,, and its roots
lie in W(t).

Definition 8.4. Put
D() = { Ny r(x™ —y") [ 1€ W(y)} < A.

Let P(n) be the set of prime divisors of nonzero elements of D(y).

1
S ((EX)? + ar(tX) + az) = X7 + %X +

Note that for any 7 € W(p), by Definition 8.2 (4) we have Np(r)/p (7% — p™) ¢
F7. Thus we obtain

(8.1) Py) =g < a=y"forall me W(y).

Theorem 8.5. Let K/F be a field extension of degree d. Assume
D®r K ~ Mq(K),

there exists § € | X[\(R u {o0}) which totally ramifies in K,
there exists p € R\P(y),

D ®p F(/py) # Ma(F(/py)) for any pe Fx.

Then XP(K) = &.

Proof. Suppose XP(K) # #. By Theorem 3.8, there exists a sound Z-elliptic
sheaf £ over K of generic characteristic. Let %) be the unique place of K lying over
y. Then Proposition 4.16 (2) implies that there exist a totally ramified extension
L/Ky and a sound Z-elliptic sheaf £, over Op satisfying Z(Ep,) N |X| = {n}
and £p, |z, ~ &|L. We denote by £ the reduction of £, modulo the maximal ideal
of Op. Note that the residue field of O is F, and £ is a sound Z-elliptic sheaf
over Iy of characteristic v.

Let Pg g, (X) be the reduced characteristic polynomial of the |y|-th power Frobe-
nius automorphism Frg, € Gy, acting on T,(E), as in §5.4. Let 7 be the |y|-th
power Frobenius endomorphism of £ and consider the subfield F(r) = F[r] of

F'®4 End(£). By Corollary 5.7, we have Pgp (X) € A[X] and it is irreducible of

degree d. Write
d

P, (X)=[[(X —m), mePF.
i=1
Since F(m;) is conjugate to F(m) over F, Corollary 5.7 implies 7; € W(y) for any i.
Consider the integer n of (7.4). Let F,gd") be the finite extension of F, of degree
dn. Let Pz pan) (X) be the reduced characteristic polynomial of Frpn € Ggan
%y _ v v
acting on T (§\F(dn)). Note that the Gpn)-module T, (Q\F(dn)) is the restriction
) _ ) )
to Gngn) of the Gy, -module T,(£), and similarly the canonical isogeny character

_ IS _ : _ dn :
PE| (an) P of§|ngn) equals p§7p|Gngn>. Since Fr]ngm = Fri’, [Rei, Theorem 9.5] shows
n

d
Py am (X) = [Jx ==,

- i=1
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On the other hand, by Lemma 7.3 we have
d—1 _ .
Pg am (X) = I (X pe.p (Frgam) )Pl ) H <X PE.p d:)\p\’) mod p.
=0 i=0

Since L/F), is totally ramified and the natural isomorphisms
EPIEY®) ~ (£o,)[Pl(Oxgr) ~ Elp](Fy)
are compatible with the actions of Op/pOp, we have

pe.p(FrEr) = pep(Fry’).
By Proposition 8.1,
pg,p(Fr%") =" mod p.

Thus we obtain
d d

[Tx =) = T]X = v") mod p.

i=1 i=1
This congruence implies that for any integer i € [1,d], there exists a prime 9B’ of
F(m;) lying over p satisfying 7" = n™ mod ’. Therefore, p divides Np(,)/p (7" —
p") for all 4. This yields 7" = 1) for all ¢, since the equality follows from (8 1)
when P(y) = &, and otherw1se md" —y™ # 0 contradicts the assumption p ¢ P(p).
Hence all m; have the same y- adlc valuation 1/d with respect to any place of F
above 1.

Write Pg g, (X) = X¥+ a; X4t + ... + ag with a; € A. By Corollary 5.7,
aq = —py for some p € Fy and any other coeflicient a; is not divisible by y unless
a; = 0. Then inspecting the y-adic Newton polygon shows a; = 0 for all i € [1,d—1].
Namely, we have

Pep,(X)=X"—py,  F(r) = F({/u).

Now Proposition 4.13 gives an F-linear embedding F(&/uy) — D. Then F(¢/uy)
is isomorphic to a maximal commutative subfield of D, and thus it splits D. This
contradicts the assumption. Therefore, we obtain X?(K) = (. g

Example 8.6. Let d = 2, ¢ = 3 and y = ¢. A computer calculation with PARI/GP
using Remark 8.3 shows that the following monic irreducible polynomials p are not
in P(y):
B+t +t+2, tr+3+204+1, tP+2t+1.

Let q be a monic irreducible polynomial which is coprime to p satisfying

. (%)—101"( ) =1, and

. (‘T)—lor( by =1.
Let D be the quaternion division algebra over F with R = {p,q}. Then neither of
D ®p F(y/*t) splits.

For a square-free element m € A which is coprime to ¢, put K = F(1/tm).
If neither p nor q splits in K, then K splits D. Therefore, Theorem 8.5 yields
XP(K)=.

For example, let

B+ +t+2, t+1),
(p,q) € :

(34241, t2+1), (P+2t+1,t+2)
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Let n € A be any square-free element which is coprime to tpq. Then we have

XP(K) = & for K = F(y/tpqn).
Example 8.7. Let d =2,y =1t and
(,0,9) e {5, 3 +t2 +4t+1, t+2), (6,242, t2+t+1), (7,£3+2,t+3)}.

Then a computer calculation with PARI/GP shows p ¢ P(p), and as in Example
8.6 we obtain XP(K) = J for K = F(y/tpqn) with any square-free element n € A
which is coprime to tpq.

9. COUNTEREXAMPLES TO THE HASSE PRINCIPLE

In this section, using Theorem 8.5, we construct examples of curves violating the
Hasse principle. The main auxiliary tool that we will use are results from [Pap2]
on the existence of local points on Drinfeld—Stuhler curves, which are function field
analogues of results of Jordan-Livné for Shimura curves [JL]. For the convenience
of the reader, we summarize these results specialized to the case that will be of
particular interest for us.

9.1. Local points on Drinfeld—Stuhler curves. Let K/F be a quadratic exten-
sion. Let D be the quaternion algebra over F' with R = {p, q}, where p and q are
two distinct monic irreducible polynomials of A. For a place v of K, we denote by
K, the completion of K at v. For the place [ of F below v, we denote by deg(v/I)
the residue degree and by e(v/[) the ramification index of v over [, as before.

Lemma 9.1 ([Pap2], Theorem 5.10). Let v be a place of K over co.
(1) If oo does not split in K, then XP(K,) # &.
(2) If oo splits in K, then XP(K,) # & if and only if both of deg(p) and deg(q)
are odd.

Remark 9.2. Assume ¢ is odd and K = F(1/0) for a square-free polynomial d € A.
Then oo splits in K if and only if deg(?) is even and its leading coefficient is a square
inFy.
Lemma 9.3 ([Pap2], Theorem 4.1). Let v be a place of K over p. Put e = e(v/p)
and f = deg(v/p).

(1) If f =2, then XP(K,) # &.

(2) If e = 2, then XP(K,) # & if and only if there exists ju € Fx such that

neither q nor oo splits in F(\/up).

Remark 9.4. If K splits D, then for any place v | p of K we have [K, : F,| = 2
and thus one of the cases in Lemma 9.3 occurs.

Lemma 9.5 ([Pap2], Theorem 3.1). Let [ ¢ {p,q,0} be a place of F and let v be
a place of K over | with f = deg(v/l). We denote the monic irreducible polynomial
defining | also by L.
(1) If f =2, then XP(K,) # &.
(2) If f =1, then XP(K,) # & if and only if there exvista € A and c € Fx such
that the minimal splitting field L of the polynomial 2 — ax + cl is quadratic
over F' and no place w in {p,q, 0} splits in L.
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Proof. Let a,c be as in (2) and let a be a root of 22 — az + ¢l = 0 in an algebraic
closure of F. Let Op(q) be the integral closure of A in F'(a). If both of the
conjugates of «a lie in [Op(,), then a is divisible by [ and thus [ ramifies in F'(«).
This is enough to deduce the lemma from [Pap2, Theorem 3.1]. (]

Remark 9.6. Suppose g is odd. Then we can write

22 —ax+cl= (x—g)z—ﬂ.
2 4
This implies that when ¢ is odd, the place p does not split in the minimal splitting
field of this polynomial if either of the following conditions holds:
° (a2;4c[) — 717 or
e the normalized p-adic valuation of a? — 4cl is odd.
Indeed, under either of these conditions the polynomial 22 — az + ¢l is irreducible

over Fj.

Lemma 9.7. Let [ ¢ {p,q,0} be a place of F and let v be a place of K over l.
Suppose q is odd and

deg(l) > 2(deg(y) + deg(a)) — 1.
Then XP(K,) # &.

Proof. 1t is enough to prove that there exist a € A and c € FX as in Lemma 9.5 (2).
We denote the monic irreducible polynomial defining [ also by [.

For any ¢ € F; and any irreducible polynomial v € A which is coprime to [, let
I, be the image of the map

FX > F, z—ax+ 5[

x
and put J. = F\I. .. Since [ # 0 mod t, the quadratic polynomial 22 —ax + clis
irreducible over F, if and only if @ mod t € J. .. Thus the polynomial 2* — ax + cl
is irreducible over F; if a mod vt € J. ..

For any z,y € FX, we have
[ [ [ [
x+c—=y+c—<:>(x—y) (1—6) =O©ye{x,c}.
x y Yy x
Since q is odd, this shows
=) B @) R (e ()
B (g ()2, 7

In particular, we have J.. # &.
Put r = deg(p) and s = deg(q). Since the natural map A/(pq) — A/(p) x 4/(q)
is an isomorphism, for any c € F there exists a polynomial a. € A satisfying

deg(ac) <r+s—1, a.modped.,, a.modqeJ.q.

Then the polynomial 22 — a.z + cl is irreducible over F, and Fy.
Put n = deg(l) and 7, = 1/¢t. If n = 2m + 1 is odd, then the assumption yields
deg(a.) < r+s—1<m and the equality

2
T T 1
o _ 2 m+1 2m+2
< m+1> ac< m+1>+c[— gz (@7 —acmd T + clmy" )
Teo Teo Teo
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shows that #* — acx + cl is irreducible over F, for any ¢ € F.
If n = 2m is even, then we have deg(a.) < r+s—1<m — 1. From the equality

2
T T 1
< m) — a. (m) +cl = 5 (x2 —acrpx + c[wfom),
TrOO TrOO Tr@

we see that 22 — a.x + cl is irreducible over Fy, for any c € [ satisfying —c ¢ (F; )2,
Since ¢ is odd, such ¢ always exists. This concludes the proof. O

Remark 9.8. We can prove a slightly better result than Lemma 9.7 by combining
a genus formula for X? [Papl, Theorem 5.4] and the Weil bound. However, we
decided not to rely on it since Lemma 9.7 is much easier to prove and sufficient for
our computation.

Let A be the finite set of monic irreducible polynomials [ 5 p, q satisfying deg(l) <
2(deg(p)+deg(q))—2. For t € {p, q}, we denote by v, the normalized t-adic valuation
on A.

Proposition 9.9. Assume that q is odd and

(1) K splits D,

(2) oo does not split in K,

(3) there exist pu, 1’ € Fx such that neither q nor oo splits in F(\/up) and

neither p nor oo splits in F(\/1/'q),

(4) for any L€ A, there exist a € A with deg(a) < deg(l)/2 and c € F such that

o a2 —4cl has odd degree or its leading coefficient is not a square in Fy,
and

o for any v € {p,q}, we have

2 _4el
<a . C)z—l or wve(a® —4cl) =1 mod 2.

Then we have XP(K,)) # & for any place v of K.

Proof. By the condition (2), Lemma 9.1 yields X (K,) # ¢ when v | c0. By the
conditions (1) and (3), Lemma 9.3 and Remark 9.4 give X (K,) # & when v | pq.

Let [ € A be any monic irreducible polynomial satisfying [ # p,q. We claim
XP(K,) # & when v | I. By Lemma 9.7, we may assume [ € A. By Lemma 9.5,
to show XP(K,) # ( it is enough to find a € A and ¢ € F such that 2* — ax + cl
is irreducible over F, for any w € {p,q,00}. Note that if deg(a) > deg([)/2, then
Remark 9.2 shows that 22 — ax + cl is not irreducible over F,. By the condition
(4), the claim follows from Remarks 9.2 and 9.6. This concludes the proof of the
proposition. O

The following lemma makes it easier to check the conditions of Proposition 9.9

(4).
Lemma 9.10. Assume that q is odd. Let m be an integer satisfying the following
conditions:

o 0 < m < deg(p) + deg(q) — 2.

e For any be A with deg(b) < deg(p) + deg(q) — 1 such that b is coprime to

pq, there exists a € A with deg(a) < m satisfying
2

£7)- (5 -~
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Then the conditions of Proposition 9.9 (4) are satisfied for any € A with deg(l) >
2m + 1.

Proof. Let [ € A be as in the lemma. Take ¢ € FY such that —4c ¢ (F))2. We also
take b € A satisfying

deg(b) < deg(p) + deg(q) —1 and b= 4cl mod pq.

Since [ # p, q, we see that b is coprime to pq. By assumption we can choose a € A
with deg(a) < m satisfying (9.1). Since deg(l) = 2m + 1, we have deg(a?) < deg(1).
This yields deg(a? — 4cl) = deg(l) and the leading coefficient of a? — 4cl is —4ec.
Thus the first condition of Proposition 9.9 (4) is satisfied. The second condition
follows from (9.1). O

9.2. Violation of the Hasse principle. To give examples of curves violating the
Hasse principle, we concentrate on the case y = .

Theorem 9.11. Let
B3 +t2 +t+2, t+1),
Gyttt + 20+ 1, 2 4+1), (B, P +2t+1, t+2),
G2+t 44t +1, t+2), G, +2, t24+t+1),
(7,83 +2,t + 3)

(¢,p,9) €

and let D be the quaternion division algebra over F' with R = {p,q}. Let ne A be
any monic square-free polynomial which is coprime to tpq. Put

g IF;\(]FQX)2 (deg(n) =1 mod 2),
o { Fy (deg(n) = 0 mod 2).

Define
K = K, := F(\/etpqn), €€ S,.
Then we have XP(K) = & and XP(K,) # & for any place v of K.

Proof. Consider the case
(g:p,9) = (3,83 + 1>+t +2, t+1).

By Example 8.6, the extension K/F splits D and we have X?(K) = (.
We check that the conditions (2), (3) and (4) of Proposition 9.9 hold true. The

condition (2) follows from our choice of € and Remark 9.2. Since (_Tp) = (%) =-1

and deg(p) and deg(q) are odd, we see that neither q nor o splits in F'(y/—p) and
that neither p nor oo splits in F'(,/q). Thus (3) also follows.

For (4), we use computer calculations. Since we chose p and q with small degrees,
we can carry out the computation with a reasonable execution time and memory
consumption. Our PARI/GP program confirms that a and ¢ for which the necessary
conditions are satisfied always exist. Hence Proposition 9.9 yields the theorem for
this case.

We can prove the theorem for the other cases of (¢, p,q) in the same way, using
Examples 8.6 and 8.7. Note that the execution time is reduced by first looking for
an integer m satisfying the assumptions of Lemma 9.10 and then checking (4) for
any [ € A with deg(l) < 2m. O
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Remark 9.12. Let D be a quaternion division algebra over F' which splits at oo
and let K/F be a quadratic extension. Suppose that K does not split D. Then
there exists a place v of K over an element p € R satisfying K, = F},, and [Pap2,
Theorem 4.1 (3)] implies XP(K,) = XP(K) = . Hence, in the non-split case
there is no quadratic extension K /F such that X violates the Hasse principle over
K, in contrast to Theorem 9.11 in the split case.
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