I would like to thank Paola Chilla for pointing out errors in [Hat1].

- (1) At several places, "complete local ring at a point" should be understood as "affine ring of the formal completion along that point". Namely,
 - page 93, line -4: "We write the complete local ring at this point as $\hat{\mathcal{O}}_{X_1^{\Delta}(\mathfrak{n})_{R_0}, P_{\infty}^{\Delta}}$ " should be replaced by "We write the formal completion of $X_1^{\Delta}(\mathfrak{n})$ along the section P_{∞}^{Δ} as

$$X_1^{\Delta}(\mathfrak{n})\mid_{P_{\infty}^{\Delta}}^{\wedge}=\mathrm{Spf}(\hat{\mathcal{O}}_{X_1^{\Delta}(\mathfrak{n})_{R_0},P_{\infty}^{\Delta}})"$$

• page 93, Theorem 5.3 (1): The statement should be replaced by "The map x_{∞}^{Δ} induces an isomorphism of topological rings

$$(x_{\infty}^{\Delta})^* : \mathcal{O}_{X_1^{\Delta}(\mathfrak{n})_{R_0}, P_{\infty}^{\Delta}} \to R_0[[x]],$$

where we consider the x-adic topology on $R_0[[x]]$ ".

- page 77, Theorem 1.1 (1): Since it is identical to Theorem 5.3 (1), it also should be changed accordingly.
- page 99, paragraph 3, line 6: "...same description of the complete local ring at P^{Δ, φ}ⁿ should be read as "...same description of the formal completion along P^{Δ, φ}ⁿ."
- (2) page 84, Remark 3.3: "it agrees with the quotient of Y(np) by a finite group, as considered in [11]" should be replaced by "for the n-th Carlitz cyclotomic polynomial W_n(X) and B = A[1/n][X]/(W_n(X)), the scheme Y₁^Δ(n, ℘)_B agrees with the quotient of Y(n℘)_B by a finite group".

This is because $Y(\mathfrak{n})$ is defined using the constant group scheme $(A/(\mathfrak{n}))^2$, whereas $Y_1(\mathfrak{n})$ is defined using $C[\mathfrak{n}]$.

With these changes, we need to fix the places where they are used in [Hat2]:

- page 56, paragraph 2, line 4–5: "the complete local ring of X^Δ₁(n)_{R0} at the ∞-cusp" should be read as "the affine ring of the formal completion of X^Δ₁(n)_{R0} along the ∞-cusp".
- (2) page 56, proof of Corollary 4.2, line 1–4: Here the problem is that the map $Y(\mathfrak{n}) \to Y_1^{\Delta}(\mathfrak{n})$ is only defined after the base extension from $A_{\mathfrak{n}}$ to $B = A[1/\mathfrak{n}][X]/(W_{\mathfrak{n}}(X))$. However, since it is enough to check that KS^{\vee} is an isomorphism after a finite etale base extension, by passing to $R_{\mathfrak{n}}$ and then pulling back to $Y(\mathfrak{n})_{R_{\mathfrak{n}}}$, we obtain the same conclusion (that KS^{\vee} is an isomorphism).

References

- [Hat1] S. Hattori: On the compactification of the Drinfeld modular curve of level Γ^Δ₁(n), J. Number Theory 232 (2022), 75–100.
- [Hat2] S. Hattori: Duality of Drinfeld modules and φ-adic properties of Drinfeld modular forms, J. Lond. Math. Soc. 103 (2021), no. 1, 35–70.